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Abstract

There has been a recent burst of activity in the atmosphere-ocean sciences com-
munity in utilizing stable linear Langevin stochastic models for the unresolved
degrees of freedom in stochastic climate prediction. Here a systematic mathe-
matical strategy for stochastic climate modeling is developed, and some of the
new phenomena in the resulting equations for the climate variables alone are
explored. The new phenomena include the emergence of both unstable linear
Langevin stochastic models for the climate mean variables and the need to in-
corporate both suitable nonlinear effects and multiplicative noise in stochastic
models under appropriate circumstances. All of these phenomena are derived
from a systematic self-consistent mathematical framework for eliminating the
unresolved stochastic modes that is mathematically rigorous in a suitable asymp-
totic limit. The theory is illustrated for general quadratically nonlinear equations
where the explicit nature of the stochastic climate modeling procedure can be
elucidated. The feasibility of the approach is demonstrated for the truncated
equations for barotropic flow with topography. Explicit concrete examples with
the new phenomena are presented for the stochastically forced three-mode inter-
action equations. The conjecture of Smith and Waleffe [Phys. Fluids11 (1999),
1608–1622] for stochastically forced three-wave resonant equations in a suitable
regime of damping and forcing is solved as a byproduct of the approach. Exam-
ples of idealized climate models arising from the highly inhomogeneous equilib-
rium statistical mechanics for geophysical flows are also utilized to demonstrate
self-consistency of the mathematical approach with the predictions of equilib-
rium statistical mechanics. In particular, for these examples, the reduced sto-
chastic modeling procedure for the climate variables alone is designed to repro-
duce both the climate mean and the energy spectrum of the climate variables.
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1 Introduction

An area with great importance for future developments in climate prediction
involves simplified stochastic modeling of nonlinear features of the coupled atmo-
sphere/ocean system. The practical reasons for such needs are easy to understand.
In the foreseeable future, it will be impossible to resolve the effects of the cou-
pled atmosphere/ocean system through computer models with detailed resolution
of the atmosphere on decadal time scales. However, the questions of interest also
change. For example, for climate prediction, one is not interested in whether there
is a significant deflection of the storm track northward in the Atlantic during a spe-
cific week in January of a given year, but rather, whether the mean and variance
of the storm track are large during several winter seasons and what the impact of
this trend is on the overall poleward transport of heat in both the atmosphere and
ocean. The idea of simplified stochastic modeling for unresolved space-time scales
in climate modeling is over twenty years old and emerged from fundamental pa-
pers by Hasselman [10] and Leith [15]. In the atmosphere/ocean community, there
is a recent flourishing of ideas utilizing simple stable linear Langevin stochastic
equations to model and predict short-term and decadal climate changes such as
El Niño [12, 21], the North Atlantic Oscillation [8, 22], and mid-latitude storm
tracks [1, 3, 5, 23, 25] with notable positive results, but this simplified stochastic
model has also failed in some circumstances [18].

In this paper, we develop a systematic mathematical strategy for stochastic cli-
mate modeling and also explore some of the new phenomena that occur in the re-
sulting stochastic models. The key assumptions in the systematic theory developed
below are that the climate variables in a given nonlinear system necessarily evolve
on longer time scales than the unresolved variables and that the nonlinear inter-
action among unresolved variables can be represented stochastically in a suitable
simplified fashion (see the detailed discussion in Section 2 of this paper). These
two assumptions are implicit in much of the work in stochastic climate modeling
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mentioned above [1, 3, 5, 8, 10, 12, 15, 18, 21, 22, 23, 25]. In the mathematical ap-
proach developed here, once the climate variables are identified via zonal averaging
[5], EOF expansions [1, 12, 21, 23], low-pass filtering in time [3, 18, 25], or some
other procedure, with the above two assumptions, new closed nonlinear stochastic
equations are derived for the climate variables alone on longer time scales. Several
new phenomena occur through this systematic approach including the following:

• Systematic nonlinear corrections to the climate dynamics due to the inter-
action with the unresolved variables.

• The need for multiplicative stochastic noises besides additive noises for
the climate variables. Such noises and their structure are deduced in a
systematic fashion from the theory.

• Mathematical criteria and examples with unstable linear Langevin equa-
tions for the climate variables. Such examples with less stable stochastic
models for the climate variables on a longer time scale indicate that inter-
actions with the unresolved variables can diminish predictability in appro-
priate circumstances.

The theory allows for strong coupling between the climate variables and the
unresolved variables. Furthermore, the predicted stochastic evolution equations
for the climate variables are given quantitatively so the theory is effectively com-
putable but much simpler than turbulence closure. The key mathematical idea in
the systematic theory developed here is to borrow techniques from singular pertur-
bation theory for Markov processes originally developed in the 1970’s for limits
of linear Boltzmann transport theory by Kurtz [13], Ellis and Pinsky [6], and Pa-
panicolaou [19] who combined the methods in [6, 13] with those developed by
Khasminsky [11] to allow for fast averaging. Although the applications to sto-
chastic climate modeling developed here are completely different with several new
phenomena and require several new concrete ideas, this connection to mathemat-
ical theory for stochastic processes guarantees that the results presented here are
mathematically rigorous in a suitable asymptotic limit.

We summarize the contents of the remainder of this paper briefly. In Section 2
we present the basic strategy for stochastic climate modeling, which utilizes the
two assumptions listed earlier for the important example of quadratically nonlin-
ear equations. In Section 3 we introduce the equations for barotropic flow on a
beta plane with topography and mean flow. This idealized climate model due to
Leith [4, 15] provides a simple illustrative example in that section and throughout
the remainder of the paper. In Section 4, we summarize the main results of this
paper involving consistent reduced stochastic equations for the climate variables
alone for the general quadratically nonlinear systems introduced in Section 2. We
emphasize the different general phenomena that occur with wave–mean flow inter-
action or climate scattering interaction alone, which introduce systematic additive
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and multiplicative noises, respectively, as well as their combination through inter-
action. The new features that occur naturally in stochastic modeling with fast-wave
averaging are developed in Section 5.

The implications of the theory for the truncated barotropic flow equations intro-
duced in Section 3 are developed in Section 6. One key result presented there is sys-
tematic self-consistency of the theory developed here with equilibrium statistical
mechanics. Also numerical simulations are presented in Section 6 for truncated ba-
rotropic flow with topography that demonstrate the validity of the key assumptions
in Section 2; another different but related example has already been presented else-
where by the authors [16]. In Section 7, the range of new phenomena are illustrated
in simple explicit examples involving stochastically forced three-mode interaction
equations and related examples, which also provide a pedagogical introduction to
the general theory. In particular, in Sections 7.1 and 7.2, we solve the interesting
conjecture of Smith and Waleffe [24] for stochastically forced three-wave resonant
equations in a suitable regime of damping and forcing. The systematic strategy of
effective calculation for the general theory is presented in two appendices in order
to streamline the presentation.

2 Basic Strategy for Stochastic Climate Modeling

We illustrate the ideas for stochastic climate modeling on an abstract basic
model involving quadratically nonlinear dynamics, which is very appropriate for
modeling many aspects of atmospheric dynamics. In the abstract model, the un-
known variableEz, generally complex, evolves in time in response to an external
forcing term EF(t), a linear operatorLEz, and a quadratic or bilinear operatorB(Ez, Ez),
and satisfies

(2.1)
dEz
dt

= Ef (t)+ LEz + B(Ez, Ez) .
An important example of quadratically nonlinear equations of the type as in (2.1)
that will be used as an illustration throughout this paper is given by the equations
for barotropic flow on a beta plane with topography and mean flow:

(2.2)

∂q

∂t
+ ∇⊥ψ · ∇q + U

∂q

∂x
+ β

∂ψ

∂x
= 0 , q = 1ψ + h ,

dU

dt
=
∫

h
∂ψ

∂x
.

Hereq(x, y, t) denotes the small-scale potential vorticity,U (t) is the mean flow,
ψ(x, y, t) is the small-scale stream function, andh(x, y) denotes the underlying
topography, whereasβ approximates the variation of the Coriolis parameter. The
bar across the integral sign indicates normalization by the area of the domain of
integration and∇⊥ = (−∂y, ∂x). The equations in (2.2) are discussed in detail in
Sections 3, 5.1, and 6. A good general reference for the equations in (2.2) and their
geophysical properties is Pedlosky’s book [20]. The effects of an interactive mean
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flow U with topography are discussed in [4] and [17]. Hamiltonian chaos in exact
solutions of (2.2) is discussed by Grote, Raggazzo, and one of the authors in [9].

In stochastic climate modeling, the variableEz is decomposed into an orthogonal
decomposition through the variablesEx, Ey by Ez = (Ex, Ey). The variableEx denotes
the climate state of the system; the climate state necessarily evolves slowly in time
compared to theEy-variables, which evolve more rapidly in time and are not re-
solved in detail in the stochastic climate model. In practice, the climate variables
Ex are determined by a variety of procedures, including leading-order empirical or-
thogonal functions (EOFs) [1, 12, 21, 23], zonal averaging in space [5], low-pass
time filtering [3, 18, 25], or a combination of these procedures. Decomposing the
dynamic equation in (2.1) by projecting on theEx- andEy-variables yields the equa-
tions

d Ex
dt

= Ef1(t)+ L11Ex + L12Ey + B1
11(Ex, Ex)+ B1

12(Ex, Ey)+ B1
22(Ey, Ey) ,

d Ey
dt

= Ef2(t)+ L21Ex + L22Ey + B2
11(Ex, Ex)+ B2

12(Ex, Ey)+ B2
22(Ey, Ey) .

(2.3)

Generally, stochastic climate modeling amounts to simplifying the dynamic
equations in (2.3) by representing some of the terms involving the variablesEy,
which are not resolved in detail, by a linear stochastic model. This procedure is
applied implicitly or explicitly in most of the works in the literature [1, 3, 5, 8, 10,
12, 15, 18, 21, 22, 23, 25]. In this paper, we systematically discuss this strategy
so we shall assume that the explicit nonlinear self-interaction throughB2

22(Ey, Ey) of
the variablesEy can be represented by a linear stochastic operator. More precisely,
we use the following:

Working assumption of stochastic modeling:

(2.4) B2
22(Ey, Ey)dt ≈ −0

ε
Ey dt + σ√

ε
d EW(t) , 0< ε � 1 .

Here0, σ are positive definite matrices, andEW(t) is a vector-valued Wiener pro-
cess. The parameterε measures the ratio of the correlation time of the unresolved
variablesEy to the climate variablesEx, and the requirementε � 1 is very natural for
stochastic climate models where the climate variables should change more slowly.

By (2.4), we assume that the nonlinear self-interactions can be modeled by an
Ornstein-Uhlenbeck process. The choice of this particular process is not essential
for the theory but is convenient for the calculations because of the full computabil-
ity of the Ornstein-Uhlenbeck process (see Appendix A). We also note that the
process defined through (2.4) has zero mean; there is no loss of generality in this
assumption, since it can always be enforced by appropriate definition of the vari-
ablesEy and the various operators entering the equations in (2.3).

If we coarse-grain the equations in (2.3) with the approximation from (2.4) on
a longer time scale,t → εt , to measure the slowly evolving climate variables, we
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obtain

dEx = 1

ε

(
Ef1

(
t

ε

)
+ L11Ex + L12Ey

+ B1
11(Ex, Ex)+ B1

12(Ex, Ey)+ B1
22(Ey, Ey)

)
dt ,

dEy = 1

ε

(
Ef2

(
t

ε

)
+ L21Ex + L22Ey + B2

11(Ex, Ex)+ B2
12(Ex, Ey)

)
dt

− 0

ε2
Eydt + σ

ε
d EW(t) .

(2.5)

In fact, with a few additional assumptions that are well suited for climate modeling,
which will be explained below, we derive from the equations in (2.5) the following:

Stochastic climate model:

dEx = EF1(t)dt + 1

ε
Ef1

(
t

ε

)
dt + DEx dt + 1

ε
(L11Ex + L12Ey)dt

+ B1
11(Ex, Ex)dt + 1

ε

(
B1

12(Ex, Ey)+ B1
22(Ey, Ey)) dt,

dEy = 1

ε
Ef2

(
t

ε

)
dt + 1

ε

(
L21Ex + L22Ey + B2

11(Ex, Ex)+ B2
12(Ex, Ey)

)
dt

− 0

ε2
Eydt + σ

ε
d EW(t) .

(2.6)

To obtain the equations in (2.6), we first made the following modification to ac-
count more appropriately for various climate effects:

A0. We have included damping and forcing terms acting on the slow time scale
in the equations for the climate variables. Thus, in (2.6) we have added a
term DEx and we have set

(2.7) Ef1

(
t

ε

)
→ ε EF1(t)+ Ef1

(
t

ε

)
.

We have also made the following additional assumptions:

A1. We assume that the forcing termsEf1, Ef2 in the equations in (2.6) have zero
mean with respect to time average

(2.8) lim
T→∞

1

T

∫ T

0

Ef1(t)dt = lim
T→∞

1

T

∫ T

0

Ef2(t)dt = 0 .

A2. In the equations in (2.6) for the climate variables, we assume that the lin-
ear operatorL11Ex accounts for fast-wave effects only; i.e.,L11 is skew-
symmetric.

A3. We assume that the nonlinear self-interaction of the climate variables is a
slow-time-scale driving effect, i.e., in (2.6) we have set

(2.9) B1
11(Ex, Ex) → εB1

11(Ex, Ex) .
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A4. We assume that the nonlinear interaction inEy in the equations in (2.6)
for the climate variables has zero expectation with respect to the invariant
measure of the Ornstein-Uhlenbeck process in (2.4), i.e.,

(2.10) PB1
22(Ey, Ey) = 0 .

The modification in A0 and assumption A1 for the climate-damping and the cli-
mate-forcing functions are very natural since external solar effects provide a sys-
tematic forcing on the annual cycle and many interesting climate-modeling prob-
lems involve accumulated effects over many decades. In the specific applications
to the barotropic equations in Sections 5.1, 6, and 7, assumption A4 in (2.10) is
trivially satisfied. This is the typical situation for many applications to geophysical
flows.

On the other hand, as will be shown below, it follows from assumptions A1
through A4 that a stochastic model for the climate variables alone can be derived
for ε � 1. More precisely, these assumptions ensure the existence of the limit as
ε → 0 of the equations for the climate variables in (2.6) because they imply that,
asymptotically, there are no effects of orderε−1 on the climate variables induced
by the various driving terms in (2.6) and, in particular, by the terms involving the
unresolved variables. As such, assumptions A1 through A4 may be regarded as the
very definition for the distinction between climate and unresolved variables, and
the mathematical framework developed in this work is the effective tool that will
allow us to explicitly derive the stochastic model for the climate variables alone
for ε � 1.

3 Stochastic Modeling for the Truncated Barotropic Equations

In this section we demonstrate the feasibility of the general strategy for stochas-
tic modeling introduced in Section 2 on the idealized climate model equations in
(2.2) for a barotropic flow on a beta plane with topography and mean flow intro-
duced by Leith [15]. These are especially attractive climate models because they
are highly inhomogeneous yet involve both a well-defined mean climate state as
well as an energy spectrum. In spherical geometry such models capture a number
of large-scale features of the atmosphere [7].

We proceed in two steps. We first introduce a finite-dimensional truncation of
the barotropic equations in (2.2), which we call the truncated barotropic equations
and are given in (3.6). These equations are well-suited for numerical simulations
(see Section 6.3) and are readily shown to belong to the class of the abstract model
in (2.1). Next, we introduce a stochastic model approximation for the truncated
barotropic equations by appropriate identification of climate and unresolved vari-
ables and stochastic modeling of the nonlinear self-interaction of the unresolved
variables. The stochastic model for the truncated barotropic equations is given in
(3.17) and belongs to the class of the abstract model in (2.6).

The finite-dimensional truncation of the barotropic equations in (2.2) is ob-
tained by making a Galerkin approximation where the equations are projected
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into a finite-dimensional subspace. Consistent with the two-dimensional periodic
boundary conditions used in the numerical simulations, the truncation is readily
accomplished with the standard Fourier basis. More precisely, we introduce the
Fourier series expansion of the truncated small-scale stream functionψ3, the trun-
cated vorticityω3, and the truncated topographyh3 in the term of the truncated
basisB3 = {ei Ek·Ex : Ek ∈ σ3}, whereσ3 = {Ek : 1 ≤ |Ek| ≤ 3},

(3.1)

ψ3(Ex, t) =
∑

1≤|Ek|2≤3
ψ̂k(t)e

i Ek·Ex , h3(Ex) =
∑

1≤|Ek|2≤3
ĥkei Ek·Ex ,

q3(Ex, t) =
∑

1≤|Ek|2≤3
q̂k(t)e

i Ek·Ex .

For simplicity of notation we omit the arrow for the subscripts:k ≡ Ek. We have
also assumed that the topography has zero mean with respect to spatial average;
i.e., we have taken̂h(0,0) = 0. This condition ensures that the solvability condition
for the steady-state equations associated with the equations in (2.2) is automatically
satisfied. The amplitudeŝψk, ω̂k, andĥk satisfy the reality conditions

(3.2) ψ̂∗
k = ψ̂−k , ω̂∗

k = ω̂−k , ĥ∗
k = ĥ−k .

Denote byP3 the orthogonal projector onto the finite-dimensional spaceV3 span-
ned by the basisB3. The truncated barotropic equations are obtained by projecting
the original barotropic equations in (2.2) onV3:

(3.3)

∂q3
∂t

+ P3(∇⊥ψ3 · ∇q3)+ U
∂q3
∂x

+ β
∂ψ3

∂x
= 0 ,

q3 = ω3 + h3 , ω3 = 1ψ3 ,
dU

dt
=
∫

h3
∂ψ3

∂x
.

For the remainder of this section, it will be convenient to work with the ampli-
tude associated with velocity rather than withψ̂k(t), and we define

(3.4) uk(t) = |Ek|ψ̂k(t) ,

whereuk satisfiesu∗
k = u−k. The equation for the potential vorticityq3 in (3.3) is

readily solved in terms ofuk as

(3.5) q̂k(t) = −|Ek|uk(t)+ ĥk .

Substituting (3.4) and (3.5) into the equations in (3.3) forψ3 andU , we obtain a
finite-dimensional system of ordinary differential equations for the Fourier coeffi-
cients withEk ∈ σ3. We will refer to the equations in this system as the truncated
barotropic equations.
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Truncated barotropic equations:

(3.6)

dU

dt
= Im

∑
Ek∈σ3

Hku
∗
k,

duk

dt
= i HkU − i (kxU −�k)uk +

∑
El∈σ3

Lklul + 1

2

∑
El , Em∈σ3Ek+El+ Em=0

Bklmu∗
l u∗

m ,

where

(3.7) Lkl = (kxl y − kylx)

|Ek||El | hk−l , Bklm = (l ymx − l xmy)
|El |2 − | Em|2
|Ek||El || Em| ,

and

(3.8) �k = kxβ

|Ek|2 , Hk = kxĥk

|Ek| .
Notice thatLkl is skew-symmetric,

(3.9) Lkl = −L∗
lk .

Since the terms accounting for linear coupling betweenU anduk are also skew-
symmetric, it follows that assumption A2 is automatically satisfied for the trun-
cated barotropic equations.

The equations in (3.6) can be written as a system of ordinary differential equa-
tions with real coefficients of the type of the equations in (2.1) upon defining

(3.10) Ez = (U,ak1,bk1,ak2,bk2, . . . ) ,

whereak = Reuk, bk = Im uk. The Ekj ’s span the set̄σ3 ⊂ σ3, whereσ̄3 is an
arbitrary subset ofσ3 such that the set of equations forEz are complete using the
reality conditionak = a−k, bk = −b−k (in other words, ifEkj ∈ σ̄ , then−Ekj 6∈ σ̄ ).
With this notation, the equations in (3.6) can be written in more compact form as

(3.11)
dEz
dt

= LEz + B(Ez, Ez) .
We now derive a stochastic model for the truncated barotropic equations in

(3.6). Following our general strategy, we assume that the variablesU , uk in the
truncated barotropic equations can be separated into climate variables and unre-
solved variables, depending on the time scale on which they evolve. For simplicity
of presentation, we also assume that the climate variables are the mean flowU and
the uk’s with |Ek| < 3̄, corresponding to the large scales. Numerical support for
these assumptions in some regimes of parameters is given in Section 6.3. For sim-
plicity of identification, we will denote byvk theuk declared climate variables, i.e.,

(3.12) vk ≡ uk for Ek ∈ σ1 = {Ek : 1 ≤ |Ek| < 3̄} ,
and bywk theuk declared unresolved variables, i.e.,

(3.13) wk ≡ uk for Ek ∈ σ2 = {Ek : 3̄ ≤ |Ek| ≤ 3} .
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The next step is to make a stochastic model assumption as in (2.4) for the nonlinear
self-interaction of the unresolved variableswk. For the truncated barotropic equa-
tions for the unresolved variableswk in (3.6), we will use the following stochastic
model assumption, which generalizes to the complex case the model in (2.4):

(3.14)
∑
El∈σ2

Lklwl dt + 1

2

∑
El , Em∈σ2Ek+El+ Em=0

BEkEl Emw
∗
l w

∗
m dt ≈

−1

ε
γk(wk − w̄k)dt + σk√

2ε
(dWk(t)+ dW∗

−k(t)) ,

whereγk, σk are positive real parameters satisfying

(3.15) γk = γ−k , σk = σ−k ,

and theWk’s are independent Wiener processes satisfying

(3.16) EWk(t)W
∗
l (s) = 2δk,l min(t, s) , EWk(t)Wl (s) = EW∗

k (t)W
∗
l (s) = 0 ,

whereE denotes the expectation over the statistics of theWk’s. (We assume that
γk is real for the simplicity of presentation only; the present formalism generalizes
easily to the situation withγk complex satisfyingγ ∗

k = γ−k, as will be shown
elsewhere by the authors.) The structure of the approximation in (3.14) together
with the conditions in (3.15), (3.16) guarantee that the reality condition,u∗

k = u−k,
is automatically satisfied. Notice that in (3.14) we model both the nonlinear self-
interaction of the unresolved variableswk and the interaction between thewk and
the small-scale topography: The latter is modeled by the term

∑
El∈σ2

Lklwl . This
is consistent with our general strategy for stochastic modeling since both terms
on the right-hand side of (3.14) account for the nonlinear self-interaction of the
unresolved variables in terms of the original variablesψ̂k, q̂k, as can be seen from
the first equation in (3.3).

We use assumption (3.14) in the truncated barotropic equation in (3.6) and
coarse-grained time,t → εt . This gives the following:

Stochastic model for the barotropic equations:

dU = 1

ε
Im
∑
Ek∈σ1

H ∗
k vk dt + 1

ε
Im
∑
Ek∈σ1

H ∗
kwk dt(3.17)
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dvk = i

ε
HkUdt − ikx

(
U − 1

ε
�k

)
vk dt + 1

ε

∑
El∈σ1

Lklvl dt

+ 1

ε

∑
El∈σ2

Lklwl dt + 1

2

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m dt

+ 1

ε

∑
El∈σ1, Em∈σ2Ek+El+ Em=0

Bklmv
∗
l w

∗
m dt + 1

2ε

∑
El , Em∈σ2Ek+El+ Em=0

Bklmw
∗
l w

∗
m dt ,

dwk = i

ε
HkUdt − i

ε
(kxU −�k)wk dt + 1

ε

∑
El∈σ1

Lklvl dt

+ 1

2ε

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m dt + 1

ε

∑
El∈σ1, Em∈σ2Ek+El+ Em=0

Bklmv
∗
l w

∗
m dt

− 1

ε2
γk(wk − w̄k)dt + σk√

2ε
(dWk(t)+ dW∗

−k(t)) ,

where consistent with the assumption in A3, we have treated as slow effects the
nonlinear self-interactions of the climate variables by setting

(3.18) − i

ε
kxUvkdt + 1

2ε

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m →

− ikxUvk dt + 1

2

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m .

Notice that we can use a compact notation in (3.10) and identify the climate vari-
ablesEx as

(3.19) Ex = (U,Revk1, Im vk1,Revk2, Im vk2, . . . ) ,

where theEkj ’s span the set̄σ1 = {Ek : Ek ∈ σ̄ and 1≤ |Ek| < 3̄}, and the unresolved
variablesEy as

(3.20) Ey = (Rew̃l1, Im w̃l1,Rew̃l2, Im w̃l2, . . . ) ,

wherew̃l = wl − w̄l and theEl j ’s span the set̄σ2 = {El : El ∈ σ̄ and3̄ ≤ |El | ≤ 3}. In
terms ofEx, Ey, the stochastic model for barotropic equations in (3.17) fits into the
generic stochastic climate model in (2.6).

In Section 6, we illustrate an important variant of this model that is constrained
through systematic principles to be automatically consistent with equilibrium sta-
tistical mechanics.

To conclude this section, it is worth pointing out that a rigorous derivation of
the stochastic model for the barotropic equations in (3.17) from the original equa-
tions in (3.6) is beyond the scope of the mathematical framework developed in
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the present paper and involves the difficult issues of ergodicity and mixing in dy-
namical systems. The truncated barotropic equations in (3.6) and their associated
stochastic model equations in (3.17) will be studied in more detail in Section 6.
The relevance of the stochastic model for the barotropic equations in (3.17) will
be verified numerically in Section 6.3 where we check the working assumption in
(2.4) or (3.14) for several regimes of parameters. In Section 7, we will also study
the stochastic model for the barotropic equations in (3.17) in some simple settings
that demonstrate the appearance of new phenomena.

4 Consistent Reduced Stochastic Equations
for the Climate Variables Alone

In this section we summarize our main results for stochastic model equations
for the climate variables alone that are derived from the stochastic model equations
in (2.6). In particular, we demonstrate the appearance of new phenomena relevant
to stochastic climate modeling. In Section 4.1, we consider a generic model for
wave–mean flow interaction, and we show that the effect of the unresolved wave
variables on the climate mean flow variables is accounted for by linear Langevin
terms that can be both stabilizing or destabilizing in contrast to what is usually
assumed in the literature. Explicit criteria for instability are given. Furthermore,
we show that the unresolved wave variables can modify the mean of the climate
variables. In Section 4.2, we consider a generic model for climate scattering in-
teraction. We show that, generally, the unresolved variables induce nonlinear cor-
rections in the dynamics for the climate variables, as well as multiplicative noises,
and the structure of these terms is deduced systematically from the theory. In
Section 4.3, we consider the general stochastic model equations in (2.6) without
fast-wave and fast-forcing effects, and we show that, generally, all kinds of ef-
fects as described in Sections 4.1 and 4.2 interact in the stochastic climate model.
Section 4.4 contains the details about the systematic asymptotic strategy for elim-
ination of the fast, unresolved variables in the cases where there are no fast-wave
effects in the climate variables. Finally, in Section 4.5, we give an alternative,
direct method for eliminating the unresolved variables in the special case where
the equations for the unresolved variables are linear and diagonal inEy. Fast-wave
effects will be considered in Section 5.

In the developments below, it will be convenient to have a more explicit repre-
sentation for the equations in (2.6). To this end we represent the variableEz with an
index notationj running in a setσ , i.e.,Ez(t) = {zj (t) : j ∈ σ }. The decomposition
of Ez into climate and unresolved variables then amounts to splittingσ into two sub-
setsσ1 andσ2 such thatσ = σ1 ∪ σ2 and the climate variablesEx(t) are thoseEz(t)
for which j ∈ σ1, i.e., Ex(t) = {xj (t) : j ∈ σ1}, whereas the unresolved variables
Ey(t) are thoseEz(t) for which j ∈ σ2, i.e., Ey(t) = {yj (t) : j ∈ σ2}. Usually the
context makes it clear to which set an index belongs in any expression, and we only
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specify it explicitly in case of ambiguity. Thus we represent (2.6) as

dxj = F1
j (t)dt + 1

ε
f 1
j

(
t

ε

)
dt +

∑
k

(
−Djkxk + 1

ε
L11

jk xk + 1

ε
L12

jk yk

)
dt

+ 1

2

∑
k,l

(
B111

jkl xkxl + 2

ε
B112

jkl xkyl + 1

ε
B122

jkl ykyl

)
dt ,

dyj = 1

ε
f 2
j

(
t

ε

)
dt +

∑
k

(
1

ε
L21

jk xk + 1

ε
L22

jk yk

)
dt

+ 1

2

∑
k,l

(
1

ε
B211

jkl xkxl + 2

ε
B221

jkl ykxl

)
dt − γj

ε2
yj dt + σj

ε
dWj (t) ,

(4.1)

where theWj ’s are statistically independent Wiener processes satisfying

(4.2) EWj (t)Wk(s) = δj,k min(t, s) .

To simplify the presentation, we have assumed that the stochastic-model term in
the equation for the unresolved variables in (2.6) is diagonal in the representation
for Ey. The stochastic model for the barotropic equation in (3.17) can be mapped
onto the equations in (4.1). In fact, with appropriate identification, the stochas-
tic model equations in (4.1) can describe a wide variety of situations relevant to
climate modeling, as we demonstrate now.

4.1 Wave–Mean Flow Interaction

We consider the following special setting of the stochastic model equations in
equation (4.1):

dxj = F1
j (t)dt −

∑
k

Djkxk dt + 1

2ε

∑
k,l

B122
jkl ykyl dt ,

dyj = 1

ε

∑
k

L22
jk yk dt + 1

ε

∑
k,l

B221
jkl ykxl dt − γj

ε2
yj dt + σj

ε
dWj (t) .

(4.3)

The equations in (4.3) can be regarded as a generic model for wave–mean flow
interaction. The mean flow is the declared climate variable, hence represented by
the xj ’s, whereas the waves are the unresolved variablesyj . Consistent with this
identification, the mean flow responds to nonlinear driving by the waves through
the terms

1

2ε

∑
k,l

B122
jkl ykyl dt

in the equation forxj in (4.3), and slow forcing and damping through the terms

F1
j (t)dt −

∑
k

Djkxk dt .
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The waves experience back reaction from the mean flow through frequency shift,
as is apparent from the terms

1

ε

∑
k

L22
jk yk dt + 1

ε

∑
k,l

B221
jkl ykxl dt

in the equation foryj in (4.3), while all nonlinear self-interactions between the
waves are modeled stochastically as

−γj

ε2
yj dt + σj

ε
dWj (t) ,

consistent with our general strategy.
To illustrate wave–mean flow interaction in a simple situation, we utilize the

stochastic model for the barotropic equations in (3.17) with no beta effect and
mean flow,β = U = 0. The climate variables in this example are the subspace
of functions with Fourier coefficientsEk = (0,q), with q 6= 0—these are the zonal
mean flows—and the unresolved variables to be modeled stochastically are the pro-
jection on all the remaining variables. With the standard stochastic approximation
for the nonlinear self-interaction of the unresolved variables, equations with the
structure in (4.3) emerge. A simple example of this sort is presented explicitly in
Section 7.1. Another important case of the system in (4.3) occurs when the climate
variablesEx are determined by zonal averaging in baroclinic flows. An illustrative
important example of stochastic modeling in geophysical flows that has the struc-
ture of the system in (4.3) can be found in [5]. The general theory developed below
will be applied to those concrete examples by the authors in the near future.

We consider the asymptotic behavior of the climate variables for smallε. We
have the following:

THEOREM 4.1 Denote by xεj (t) the solution of the first equation in(4.3). In the
limit as ε → 0, xεj (t) converges to xj (t) where the xj (t) satisfy

(4.4) dxj = F1
j (t)dt + aj dt −

∑
k∈σ1

(Djk + γjk)xk dt +
∑

k,l∈σ2

σjkl dWkl(t) ,

where Wkl(t) are independent Wiener processes satisfying

(4.5) EWkl(t)Wk̄l̄ (s) = δk,k̄δl ,l̄ min(t, s) ,

and aj , γjk , σjkl are given by

(4.6)

aj = 1

2

∑
k,l∈σ2

σ 2
l B122

jkl L22
kl

γl (γk + γl )
, γjk = −1

2

∑
l ,m∈σ2

σ 2
l B122

j lm B221
mlk

γl (γl + γm)
,

σjkl = B122
jkl σkσl

2
√
(γk + γl )γkγl

.



STOCHASTIC CLIMATE MODELS 905

Remark. It follows immediately from the definition ofWkl that we have for the
noise term in (4.6)

(4.7)
∑

k,l∈σ2

σjkl dWkl(t)
D=
∑
k∈σ1

σ̄jk dWk(t) ,

where
D= denotes equality in law, theWj (t)’s are independent Wiener processes,

and the matrix̄σjk satisfies

(4.8)
∑

l ,m∈σ2

σj lmσklm =
∑
l∈σ1

σ̄j l σ̄kl .

In other words, at the price of evaluating the square root of a matrix once and for
all, the noise in (4.4) can be represented byn independent Wiener processes, with
n being the cardinal of the setσ1 corresponding to the climate variables.

Theorem 4.1 can be proven using the asymptotic procedure outlined in Sec-
tion 4.4, and it tells us two things. First, the effect of the unresolved wave variables
on the climate mean flow variables can be either stabilizing or destabilizing. Stabi-
lization is observed ifγjk is a positive definite matrix, i.e., if for allξj , j ∈ σ1, such
that

∑
j ξ

2
j 6= 0, one has

(4.9)
∑

j,k∈σ1

γjkξj ξk > 0 .

If this criterion fails to be satisfied, the unresolved wave variables destabilize the
climate mean flow variables, and overall stability of the climate stochastic model
equation in (4.4) requires

(4.10)
∑

j,k∈σ1

(γjk + Djk)ξj ξk > 0 .

In particular, the predictability of the climate variables can be diminished through
interaction with the unresolved variables provided the explicit matrixγjk is not pos-
itive definite. Explicit examples of these phenomena are presented in Section 7.1.

The other important consequence of Theorem 4.1 is that the linear part of wave-
wave interaction modifies the climate mean. This is apparent from the termaj dt in
(4.4), withaj proportional toL22

jk as given by the first equation in (4.6).

4.2 Climate Scattering Interaction

As a second illustration consistent with the model equations in (4.1), we con-
sider

dxj = F1
j (t)dt −

∑
k

Djkxk dt + 1

2ε

∑
k,l

B112
jkl xkyl dt ,

dyj = 1

ε

∑
k,l

B211
jkl xkxl dt − γj

ε2
yj dt + σj

ε
dWj (t) .

(4.11)
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The equations in (4.11) are a simple model where the climate variablesxj evolve
through nonlinear scattering interaction with the unresolved variables, as is appar-
ent from the term

1

ε

∑
k,l

B112
jkl xkyl dt

in the equation forxj in (4.11). Here the amplitudes of some climate variables
scatter energy into other climate variables through interaction with the unresolved
variables. For illustration, we have assumed that the unresolved variables respond
only to nonlinear driving by the climate variables alone through the term

1

2ε

∑
k,l

B211
jkl xkxl dt

in the equation foryj in (4.11), and we have modeled the nonlinear self-interaction
by the stochastic term

−γj

ε2
yj dt + σj

ε
dWj (t) ,

as dictated by our general strategy.
The asymptotic behavior of the climate variables for smallε is specified by the

following:

THEOREM 4.2 Denote by xεj (t) the solution of the first equation in(4.11). In the
limit as ε → 0, xεj (t) tends to xj (t) where the xj (t) satisfy

dxj = F1
j (t)dt −

∑
k

Djkxk dt

+ 1

2

∑
k,l∈σ1

∑
m∈σ2

σ 2
m

γ 2
m

B112
jkmB112

klmxl dt

+ 1

2

∑
k,l ,m∈σ1

∑
n∈σ2

1

γn
B112

jkn B211
nlmxkxl xm dt

+
∑
k∈σ1

∑
l∈σ2

σl

γl
B112

jkl xk dWl (t) ,

(4.12)

where the Wj ’s are independent Wiener processes satisfying

(4.13) EWj (t)Wk(s) = δjk min(t, s) .

Remark. It follows immediately from the definition ofWk that we have for the
noise term in (4.12)

(4.14)
∑
k∈σ1

∑
l∈σ2

σl

γl
B112

jkl xk dWkl(t)
D=
∑

k,l∈σ1

σ̄jkl xk dWl (t) ,
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where
D= denotes equality in law, theWj (t)’s are independent Wiener processes,

and the matrix̄σjkl satisfies

(4.15)
∑
n∈σ2

σ 2
n

γ 2
n

B112
jkn B112

lmn =
∑
l∈σ1

σ̄jknσ̄lmn .

Thus the noise in (4.12) can be represented withn independent Wiener processes,
with n being the cardinal of the setσ1 corresponding to the climate variables.

Theorem 4.2 follows by application of the asymptotic method of averaging out-
lined in Section 4.4. Alternatively, as will be shown in Section 4.5, the stochastic
model equations in (4.12) can be derived directly from the equation in (4.11).

Theorem 4.2 demonstrates that, generally, the effect of the unresolved variables
on the climate variables has to be accounted for by nonlinear corrections in the
climate variables, as well as multiplicative noises, as is apparent from the last three
terms in (4.11). The effects of climate scattering interaction have been ignored thus
far by researchers in attempting to model stochastically the low-frequency variabil-
ity of the atmosphere [1, 3, 18, 23, 25]. These general examples indicate that other
stochastic models beyond linear Langevin modeling are needed in general and can
be derived systematically. A simple explicit example is discussed in Section 7.2.

4.3 General Case Without Fast Waves

We now turn to the general case where we allow all possible linear and nonlin-
ear interactions between the climate and the unresolved variables in the stochastic
model equations in (4.1), but we still neglect the fast-wave effects (i.e., the term
involving L11

jk in (4.1)). Thus we consider

dxj = F1
j (t)+

∑
k

(
−Djkxk + 1

ε
L12

jk yk

)
dt

+
∑
k,l

(
1

2
B111

jkl xkxl + 1

ε
B112

jkl xkyl dt + 1

2ε
B122

jkl ykyl

)
dt ,

dyj =
∑

k

(
1

ε
L21

jk xk + 1

ε
L22

jk yk

)
dt

+
∑
k,l

(
1

2ε
B211

jkl xkxl + 1

ε
B221

jkl ykxl

)
dt − γj

ε2
yj + σj

ε
dWj (t) .

(4.16)

The following theorem specifies the asymptotic behavior of the climate-vari-
ables solution of the equations in (4.16) for smallε:
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THEOREM 4.3 Denote by xεj (t) the solution of the first equation in(4.16). In the
limit as ε → 0, xεj (t) tends to xj (t) where the xj (t) satisfy

dxj = Fj (t)dt −
∑
k∈σ1

Djkxk dt − 1

2

∑
k,l∈σ1

B111
jkl xkxl dt

+ aj dt −
∑
k∈σ1

γjk xk dt +
∑

k,l∈σ2

σjkl dWkl(t)

+ 1

2

∑
k∈σ1

∑
m∈σ2

σ 2
m

γ 2
m

B112
jkm

(
L12

km +
∑
l∈σ1

B112
klmxl

)
dt

+
∑
l∈σ1

∑
n∈σ2

1

γn

(
L12

jn +
∑
k∈σ1

B112
jkn xk

)(
L21

nl xl + 1

2

∑
m∈σ1

B211
nlmxl xm

)
dt

+
∑
l∈σ2

σl

γl

(
L12

j l +
∑
k∈σ1

B112
jkl xk

)
dWl (t) ,

(4.17)

where Wj , Wjk are independent Wiener processes satisfying

(4.18) EWj (t)Wk(s) = δjk min(t, s) , EWjk(t)Wj̄ k̄(s) = δj j̄ δkk̄ min(t, s) ,

and we defined

(4.19)

aj = 1

2

∑
k,l∈σ2

σ 2
l B122

jkl L22
kl

γl (γk + γl )
, γjk = −1

2

∑
l ,m∈σ2

σ 2
l B122

j lm B221
mlk

γl (γl + γm)
,

σjkl = B122
jkl σkσl

2
√
(γk + γl )γkγl

.

Remark.As in the equations in (4.4) and (4.12), the noises in (4.17) can be rede-
fined so that they involve vector- or matrix-valued Wiener processes defined on the
set of climate variables alone.

The proof of Theorem 4.3 uses the asymptotic procedure for averaging outlined
in Section 4.4. These calculations are presented in Appendix A. The theorem
shows that, generally, all the new phenomena described in Sections 4.1 and 4.2 will
interplay in the stochastic climate model equations in (4.17), with both stable or
unstable Langevin terms, modification of the climate mean, nonlinear corrections
of the climate-variables dynamics, and multiplicative noises. These results will be
applied by the authors to a variety of geophysical applications in the near future.

4.4 Systematic Asymptotic Strategy

We illustrate the method of averaging of the unresolved variables. This is the
major tool that we use to derive stochastic model equations for the climate variables
alone in the limit asε → 0. To this end, we exploit the property that the stochastic
model equations in (4.1) define a Markov process that is singular in the limit as
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ε → 0. Perturbation methods for such processes were developed in the 1970s,
originally for analyzing the linear Boltzmann equation in some asymptotic limit.
We opt for a rather brief presentation of these methods here and refer the reader to
the original papers by Kurtz [13] and Ellis and Pinsky [6] (see also [19]) for details.
Here, we consider the situation with no fast-wave effects on the climate variables;
i.e., we set

(4.20) f 1
j

(
t

ε

)
= f 2

j

(
t

ε

)
= L11

jk = 0

in the stochastic model equations in (4.1). In this case the averaging method of
Kurtz [13] applies. In Section 5, the situation with fast-wave effects is studied, in
which case the averaging method must be modified by combining Kurtz’s method
[13] with a procedure of averaging over fast effects developed by Khasminski [11];
see [19].

The method of averaging exploits the Markov nature of the stochastic model
equations in (4.1) and works with the backward equation associated with (4.1). To
introduce the latter, supposef (Ex) is a suitable scalar-valued function and define

(4.21)
%ε(s, Ex, Ey | t) = E f (Exε(t)) , s ≤ t ,

whereExε(t) solves the stochastic model equations in (4.1)
for the initial conditionExε(s) = Ex, Eyε(s) = Ey .

HereE denotes the expectation with respect to the statistics of the Wiener processes
Wj in (4.1). We wish to determine the asymptotic behavior of%ε asε → 0; this
will specify the limit of Exε(t) asε → 0. The function%ε satisfies the backward
equation associated with the equations in (4.1)

(4.22) −∂%
ε

∂s
= 1

ε2
L1%

ε + 1

ε
L2%

ε + L3%
ε , %ε(t, Ex, Ey | t) = f (Ex) ,

with the operatorsL1, L2, andL3 given by

L1 =
∑

j

(
−γj yj

∂

∂yj

+ σ 2
j

2

∂2

∂y2
j

)
,

L2 =
∑
j,k

(
L12

jk yk + 1

2

∑
l

(
2B112

jkl xkyl + B122
jkl ykyl

)) ∂

∂xj

+
∑
j,k

(
L21

jk xk + L22
jk yk + 1

2

∑
l

(
B211

jkl xkxl + 2B221
jkl ykxl

)) ∂

∂yj

L3 =
∑

j

(
Fj (s)−

∑
k

Djkxk + 1

2

∑
kl

B111
jkl xkxl

)
∂

∂xj

.

(4.23)
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We now derive from the backward equation in (4.22) an equation for the limit
of %ε asε → 0. To this end, let%ε be represented formally as a power series

(4.24) %ε = %0 + ε%1 + ε2%2 + · · · .
We insert this series into (4.22) and equate the coefficients of equal power inε.
This gives the following sequence of equations:

L1%0 = 0 ,(4.25)

L1%1 = −L2%0 ,(4.26)

L1%2 = −∂%0

∂s
− L3%0 − L2%1 ,(4.27)

...

From the structure of these equations we see that each requires as a solvability
condition that its right-hand side belong to the range ofL1 or, equivalently, that
the right-hand sides of the equations in (4.25)–(4.27) have zero expectation with
respect invariant measure of the Ornstein-Uhlenbeck process. The solvability con-
dition is trivially satisfied for the equations in (4.25) and (4.26), but not for the one
in (4.27). In fact, as we show now, the dynamic equation for%0 is determined from
the solvability condition for the equation for%2 in (4.27).

The equation in (4.25) implies that%0 belongs to the null space ofL1, i.e.,

(4.28) P%0 = %0 ,

whereP denotes the expectation with respect to the invariant measure of the Orn-
stein-Uhlenbeck process. This, of course, is not the expected dynamic equation for
%0; (4.25) essentially implies that%0 is independent of the unresolved variablesEy.
Since%0(t | t) = f , we avoid any problem nears = t by assumingP f = f .
Taking next the expectation of the equation in (4.26), we obtain the solvability
condition

(4.29) PL2%0 = PL2P%0 = 0 .

It may be easily checked that this equation is trivially satisfied for our stochastic
model equations in (4.1) forf 1

j (t/ε) = f 2
j (t/ε) = L11

jk = 0, because of (2.10)
in assumption A4. If equation (4.29) were not satisfied, the unresolved variables
would induceO(1/ε) effects on the climate variables, contradicting the very crite-
rion for the distinction between these variables. Since (4.29) holds, the solution of
equation (4.26) is

(4.30) %1 = −L−1
1 L2P%0 .

We insert this expression into the equation in (4.27) and take the expectation on the
resulting equation to get the solvability condition for%2. The latter is the following
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equation for%0:

(4.31) −∂%0

∂s
= PL3P%0 − PL2L

−1
1 L2P%0 , %0(t, Ex | t) = f (Ex) .

Despite the formal character of these manipulations, Kurtz [13] showed that in the
limit as ε → 0, %ε converges to%0, the solution of the equation in (4.31). In fact,
we state this result as the following theorem, which potentially applies to more
general equations than the stochastic model equations in (4.1):

THEOREM 4.4 (Kurtz, 1973)Let%ε(s, Ex, Ey | t) satisfy

(4.32) −∂%
ε

∂s
= 1

ε2
L1%

ε + 1

ε
L2%

ε + L3%
ε , %ε(t, Ex, Ey | t) = f (Ex) ,

whereL1, L2, andL3 are backward Fokker-Planck operators, andL1 generates
a stationary process such that

(4.33) eL1t · → P · as t → ∞ ,

andPL2P = 0. Then, in the limit asε → 0, %ε(s, Ex, Ey | t) tends to%0(s, Ex | t)
for −T < s ≤ t , T < ∞, uniformly in Ex andEy on compact sets, where%0 satisfies
%0 = P%0 and solves the backward equation

(4.34) −∂%0

∂s
= L̄%0 , %0(t, Ex | t) = f (Ex) ,

with

(4.35) L̄ · = PL3P · −PL2L
−1
1 L2P · .

For us, the most important consequence of Theorem 4.4 is that, as applied to
the stochastic model equations in (4.1) with the assumptionf 1

j (t/ε) = f 2
j (t/ε) =

L11
jk = 0, it implies thatL̄ is a Fokker-Planck operator whose actual form is effec-

tively computable. As a direct result, a set of stochastic differential equations can
be associated with̄L (see chapter 9 of [2]): These are the stochastic climate model
equations that were derived for the specific cases of wave–mean flow and climate-
scattering interactions in Theorems 4.1 and 4.2, and for the general case without
fast-wave effects in Theorem 4.3. The actual computation from Theorem 4.4 of the
stochastic climate model equations in Theorem 4.3 is given in Appendix B. Other
examples of applications of Theorem 4.4 on low-order triad models are given in
Section 7.

4.5 Averaging by the Direct Method

The asymptotic strategy presented in Section 4.4 is based on a singular pertur-
bation expansion of the partial differential equation (backward equation) associated
with the stochastic model equations in (4.1). We now show that in the special case
where the equations for the unresolved variablesyj are linear and diagonal inyj ,
the equations for the climate variables alone that are obtained by the method of
Section 4.4 can also be derived directly by working on the stochastic differential
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equations in (4.1). We illustrate the method on the climate scattering equations
equations in (4.11) and derive the equations in (4.12).

Because the equation foryj in (4.11) is linear inyj , this equation with the initial
conditionyj (0) = yj is equivalent to the integral equation

(4.36) yj (t) = e−γj t/ε2
yj + 1

ε

∑
k,l∈σ1

∫ t

0
e−γj (t−s)/ε2

B211
jkl xk(s)xl (s)ds+ 1

ε
gj (t) ,

where

(4.37) gj (t) = σj

∫ t

0
e−γj (t−s)/ε2

dWj (s) .

Inserting (4.36) into (4.11) yields the following closed, non-Markovian stochastic
model equations for the climate variablexj (t) valid for anyε:

(4.38) dxj (t) = F1
j (t)dt −

∑
k

Djkxk(t)dt + 1

2ε

∑
k,l

B112
jkl xk(t)e

−γl t/ε2
yl dt

+ 1

2ε2

∑
k,l ,m∈σ1

∑
n∈σ2

B112
jkn B211

nlmxk(t)

(∫ t

0
e−γn(t−s)/ε2

xl (s)xm(s)ds

)
dt

+ 1

2ε2

∑
k∈σ1

∑
l∈σ2

B112
jkl xk(t)gl (t)dt .

We now show that, in the limit asε → 0, the equation in (4.38) reduces to the ac-
tual stochastic model given by (4.11). We consider successively the various terms
involving ε at the right-hand side of (4.38). First, we have for anyt > 0

(4.39)
1

2ε

∑
k∈σ1

∑
l∈σ2

B112
jkl xk(t)e

−γl t/ε2
yl dt → 0 .

Second,

(4.40)
1

2ε2

∑
k,l ,m∈σ1

∑
n∈σ2

B112
jkn B211

nmlxk(t)

(∫ t

0
e−γn(t−s)/ε2

xl (s)xm(s)ds

)
dt →

1

2

∑
k,l ,m∈σ1

∑
n∈σ2

1

γn
B112

jkn B211
nlmxk(t)xl (t)xm(t)ds.

Finally, we use the Gaussianity ofgj (t) from (4.37) combined with the following
properties for any test functionη:

E
1

ε2

∫ ∞

0
η(t)gj (t)dt = 0 ,(4.41)

E
(

1

ε2

∫ ∞

0
η(t)gj (t)dt

)(
1

ε2

∫ ∞

0
η(t)gk(t)dt

)
→ σ 2

j

γ 2
j

δj,k

∫ ∞

0
η2(t)dt ,(4.42)
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to deduce that the noisegj (t)/ε2 converges in mean square to a white noise, i.e.,

(4.43)
1

ε2
gj (t)dt → σj

γj
dWj (t) ,

asε → 0, whereWj (t) are independent Wiener processes. As the external limit of a
process with finite correlation time, the white noise is interpreted in Stratonovich’s
sense (see, e.g., [2, chapter 10]), i.e.,

(4.44)
1

2ε2

∑
k∈σ1

∑
l∈σ2

B112
jkl xk(t)gl (t)dt →

∑
k∈σ1

∑
l∈σ2

σl

γl
B112

jkl xk(t) ◦ dWl (t) .

Collecting (4.39), (4.40), and (4.44) into (4.11), we obtain

dxj = Fj (t)dt −
∑
k∈σ1

Djkxk dt + 1

2

∑
k,l∈σ1

B111
jkl xkxl dt

+ 1

2

∑
k,l ,m∈σ1

∑
n∈σ2

1

γn
B112

jkn B211
nlmxkxl xm dt

+ 1

2

∑
k∈σ1

∑
l∈σ2

σl

γl
B112

jkl xk ◦ dWl (t) .

(4.45)

This equation is equivalent to Itô’s equation in (4.12).
Summarizing, in the case where the equation for the unresolved variablesyj are

linear and diagonal inyj , the stochastic model for climate variables alone can be
derived by a direct method alternative to the general asymptotic strategy presented
in Section 4.3. It should be stressed that the direct method actually gives more
than the general asymptotic strategy, since it provides us with the non-Markovian
model equations in (4.38), which are valid for anyε. In particular, the equations
in (4.38) can be used as a starting point for a systematic expansion inε that goes
beyond leading order. Results in this direction will be reported elsewhere by the
authors. Finally, we mention that the direct method can be generalized to situations
with fast-wave effects: An example of such calculation is given in the proof of
Theorem 7.6.

5 The Effect of Fast-Wave Averaging in Stochastic Climate Models

In this section, we generalize the result of Section 4 by incorporating the ef-
fects of fast waves to the theory. First in Section 5.1, we consider the important
example of the stochastic model for the truncated barotropic equations in (3.6) in
the absence of mean flow and topography,U = 0, ĥk = 0, but with beta effect,
i.e., the dispersive terms defined by�k in (3.8) and associated with Rossby wave
propagation; see Pedlosky [20]. These beta terms induce fast-wave effects on both
the climate and the unresolved variables, and we show how to handle these effects
in order to get closed equations for the climate variables alone for smallε. By
comparing with the case without beta effect, we demonstrate that the beta effect
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induces a depletion of the effective nonlinear self-interactions in the equations for
the climate variables alone, as well as a reduction of the noise in these equations.
Indeed, in the situation with beta effects, additional resonance conditions between
the various terms need to be satisfied in order that these terms give a nonzero con-
tribution through the averaging procedure.

In Section 5.2, we study the complete stochastic climate equations in (4.1) when
both fast waves and forcing effects are present, and we give the explicit effective
equations that are obtained for the climate variables alone in this case. Finally,
in Section 5.3 we give the details of the asymptotic procedure that allows us to
average both on the unresolved variables and on the fast-wave effects. At the end
of this section, we also give the details of the proof of Theorems 5.1 and 5.2.

5.1 Truncated Barotropic Equations with the Beta Effect

In this section, we consider the stochastic model for the truncated barotropic
equations in (3.6) under the assumptions that

(1) there is no mean flow and topography. Thus, we setU = ĥk = 0 in the
stochastic model for barotropic equations in (3.17); and

(2) the stochastic model in (3.14) has zero mean. Thus, we setw̄k = 0 in the
stochastic model for barotropic equations in (3.17).

Under the above assumptions, the stochastic model for the truncated barotropic
equations in (3.6) reduce to

dvk = i

ε
�kvk dt + 1

2

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m dt

+ 1

ε

∑
El∈σ1, Em∈σ2Ek+El+ Em=0

Bklmv
∗
l w

∗
m dt + 1

2ε

∑
El , Em∈σ2Ek+El+ Em=0

Bklmw
∗
l w

∗
m dt ,

dwk = i

ε
�kwk dt + 1

2ε

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m dt + 1

ε

∑
El∈σ1, Em∈σ2Ek+El+ Em=0

Bklmv
∗
l w

∗
m dt

− 1

ε2
γkwk dt + σk√

2ε

(
dWk(t)+ dW∗

−k(t)
)
.

(5.1)

In these equations, the beta effects are respectively accounted for by the terms
i�kvk dt/ε andi�kwk dt/ε which obviously induce fast-wave rotation effects on
both the unresolved and the climate variables.

We ask about the asymptotic behavior of the climate variablesvk for small ε.
We have
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THEOREM 5.1 Denote byvεk(t) the solution of(5.1). In the limit asε → 0,
ei�kt/εvεk(t) converges tovk(t) where thevk(t) satisfy

dvk

=
{

1

2

∑
El , Em∈σ1Ek+El+ Em=0

Bklmθklmv
∗
l v

∗
m dt + 1

2

∑
El , Em,En∈σ1, Ep∈σ2Ek+El+ Ep=0

Em+En+ Ep=0

BklpBpmn

γp
θk,l |m,nv∗

l vmvn dt

}
1

+
{ ∑

El , Em∈σ2Ek+El+ Em=0

σ 2
mBklmBlkm

γm(γl + γm)
vk dt

+
∑

El , Em∈σ2Ek+El+ Em=0

σlσmBklm

2(γl + γm)

(
(γl + γm)

γlγm

)1/2

(dWl ,m(t)+ dW∗
−l ,−m(t))

}
2

+
{ ∑

El∈σ1 Em∈σ2Ek+El+ Em=0

σ 2
mBklmBlkm

γ 2
m

vk dt

+
∑

El∈σ1, Em∈σ2Ek+El+ Em=0

σmBklm√
2γm

θ̃klmv
∗
l (dWm(t)+ dW∗

−m(t))

}
3

,

(5.2)

where Wk(t), Wk,l (t) are independent complex Wiener processes satisfying

EWk(t)W
∗
l (s) = 2δk,l min(t, s) ,

EWk(t)Wl (s) = EW∗
k (t)W

∗
l (s) = 0 ,

EWk,l (t)W
∗
m,n(s) = 2δk,l δm,n min(t, s) ,

EWk,l (t)Wm,n(s) = EW∗
k,l (t)W

∗
m,n(s) = 0 ,

(5.3)

the coupling parameter̃θklm satisfies

(5.4)
∑
Em∈σ2

θ̃klmθ̃k′l ′m = θk,l |k′,l ′ ,

and we have defined

θk,l ,m =
{

1 if �k +�l +�m = 0

0 otherwise,

θk,l |m,n =
{

1 if �k +�l −�m −�n = 0

0 otherwise.

(5.5)
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The proof of Theorem 5.1 uses the asymptotic method presented in Section 5.3
and is given at the end of this section.

The conditions in (5.5) are the three-wave and four-wave resonance conditions
for nonlinear wave theory, which might be familiar to the reader. The first terms
in braces,{·}1, in (5.2) represent the depleted and augmented nonlinearities, the
terms in{·}2 are additive noises with related damping, while the terms in{·}3 are
the multiplicative noise contributions in Itô form. It is apparent from the equation
in (5.2) that the effect of the unresolved variables on the climate variables must be
accounted for by nonlinear self-interaction terms in the climate variables, as well as
multiplicative noise. On the other hand, the effects of the fast waves in the original
equations in (5.1) give rise to depletion of nonlinearity and noise weakening in
(5.2). Indeed, the resonance conditions in (5.5) that involve three or four modes
must be satisfied in order for the corresponding terms in (5.1) to give nonzero
contribution in the equation in (5.2). This point can be emphasized even more
upon comparing the results in Theorem 5.1 with those in the following theorem,
which is obtained if the beta effects in the equations in (5.2) are set to zero:

THEOREM 5.2 Set�k = 0 in the equations in(5.1), and denote byvεk(t) the
solution of these equations in this case. In the limit asε → 0, vεk(t) converges to
vk(t) where thevk(t) satisfy

dvk =
{

1

2

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m dt + 1

2

∑
El , Em,En∈σ1, Ep∈σ2Ek+El+ Ep=0

Em+En+ Ep=0

BklpBpmn

γp
v∗

l vmvndt

}
1

+
{ ∑

El , Em∈σ2Ek+El+ Em=0

σ 2
mBklmBlkm

γm(γl + γm)
vk dt

+
∑

El , Em∈σ2Ek+El+ Em=0

σlσmBklm

2(γl + γm)

(
(γl + γm)

γlγm

)1/2

(dWl ,m(t)+ dW∗
−l ,−m(t))

}
2

+
{ ∑

El∈σ1 Em∈σ2Ek+El+ Em=0

σ 2
mBklmBlkm

γ 2
m

vk dt

+
∑

El∈σ1, Em∈σ2Ek+El+ Em=0

σmBklm√
2γm

v∗
l (dWm(t)+ dW∗

−m(t))

}
3

,

(5.6)

where Wk(t), Wk,l (t) are independent complex Wiener processes satisfying(5.3).
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The proof of Theorem 5.2 is a special case of the proof of Theorem 5.1 given
below and is very similar to the proof of the results described in Section 4.

Clearly, equation (5.6) is similar to (5.2) except that all the resonance conditions
induced by the beta effect in the latter equation are absent.

5.2 General Case with Fast Waves

We now turn to the stochastic climate equations in (4.1) and consider first the
situation with fast-wave effects but no forcing. The key assumption which we
utilize here is that the operatorL11 is skew-symmetric so that there is nontrivial
averaging on the climate time scales. In this case, the asymptotic behavior of the
climate variables for smallε is specified by the following:

THEOREM 5.3 Denote by xεj (t) the solution of the first equation in(4.1) with no
fast forcing, f1j = f 2

j = 0, under the assumption inA2 that L11 is skew-symmetric.
In the limit asε → 0,

(5.7)
∑
k∈σ1

(
e−L11t/ε

)
jk

xεk(t) → xj (t) ,

where xj (t) satisfy

dxj = 〈
F̄j (t, τ )

〉
dt −

∑
k∈σ1

〈
D̄jk(τ )Xk(Ex, τ )

〉
dt

− 1

2

∑
k,l∈σ1

〈
B̄111

jkl (τ )Xk(Ex, τ )Xl (Ex, τ )
〉+ aj dt

−
∑
k∈σ1

〈
γjk(τ )Xk(Ex, τ )

〉
dt +

∑
k,l∈σ2

σjkl dWkl(t)

+ 1

2

∑
k∈σ1

∑
m∈σ2

σ 2
m

γ 2
m

〈
B̄112

jkm(τ )

(
L̄12

km(τ )+
∑
l∈σ1

B̄112
klm(τ )Xl (Ex, τ )

)〉
dt

+
∑
l∈σ1

∑
n∈σ2

1

γn

〈(
L̄12

jn(τ )+
∑
k∈σ1

B̄112
jkn (τ )Xk(Ex, τ )

)

×
(

L21
nl Xl (Ex, τ )+ 1

2

∑
m∈σ1

B211
nlmXl (Ex, τ )Xm(Ex, τ )

)〉
dt

+
∑
l∈σ2

σj l dWl (t) .

(5.8)

Here Wj , Wjk are independent Wiener processes satisfying

(5.9) EWj (t)Wk(s) = δjk min(t, s) , EWjk(t)Wj̄ k̄(s) = δj j̄ δkk̄ min(t, s) ,
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and〈g(τ )〉 denotes the(τ -independent) average of any suitable function g(τ )

(5.10) 〈g(τ )〉 = lim
T→∞

1

T

∫ t

t−T
g(τ )dτ .

We also defined

(5.11) aj = 1

2

∑
k,l∈σ2

σ 2
l 〈B̄122

jkl (τ )〉L22
kl

γl (γk + γl )
, γjk(τ ) = −1

2

∑
l ,m∈σ2

σ 2
l B̄122

j lm (τ )B
221
mlk

γl (γl + γm)
,

and the matricesσjk andσjkl satisfy

∑
k,l∈σ2

σjklσj ′kl =
∑

k,l∈σ2

〈B122
jkl (τ )B

122
j ′kl (τ )〉σ 2

k σ
2
l

4(γk + γl )γ
2
k γ

2
l

,

∑
l∈σ2

σj l σj ′l =
∑
l∈σ2

σ 2
l

γ 2
l

〈(
L̄12

j l (τ )+
∑
k∈σ1

B̄112
jkl (τ )Xk(Ex, τ )

)

×
(

L̄12
j ′l (τ )+

∑
k′∈σ1

B̄112
j ′k′l (τ )Xk′(Ex, τ )

)〉
.

(5.12)

Finally, Xj (Ex, τ ) is defined through the exponential of the skew-symmetric opera-
tor L11

(5.13) Xj (Ex, τ ) =
∑
k∈σ1

(
eL11τ

)
jk

xk ,

whereas the operators with a bar are defined from the original ones by action of
e−L11τ . For instance,

(5.14) D̄jk(τ ) =
∑
l∈σ1

(
e−L11τ

)
j l

Dlk ,

and similar relations hold for̄L12
jk (τ ), B̄111

jkl (τ ), . . . .

Theorem 5.3 can be proven using the asymptotic procedure of averaging mod-
ified as to account for fast averaging. In this paper we will only provide a formal
derivation as outlined in Section 5.3. These calculations are similar to the ones
presented in Appendix A.

The stochastic model for climate variables alone in (5.8) is necessarily com-
plicated due to the interplay of the many phenomena associated with driving by
the unresolved variables and the fast-wave effects. In particular, we observe in
the equations in (5.8) both stable and unstable Langevin terms, modification of the
climate mean, nonlinear corrections of the climate variables dynamics, and multi-
plicative noises. Besides the example in Section 5.1, a simple example illustrating
these general features will be described in Section 7.3, and other more complex
examples with nontrivial averaging due to topography, beta effects, and the mean
U are given in the stochastic models in (6.38) and (6.42) in Section 6.
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As explained in Section 5.3, the effects of fast forcing may be more complicated
to account for because resonance phenomena may arise between fast-wave effects
and fast forcing with the result that the time average involved in (5.10) fails to exist.
If, however, we assume that no such resonance phenomena arise, then the results
of Section 5.3 show that in the presence of fast forcing, the solution of the first
equation in (4.1),xεj (t), satisfies

(5.15)
∑
k∈σ1

(
e−L11t/ε

)
jk

xεk(t)−
∫ t

0

(
e−L11s/ε

)
jk

f 1
k (s)ds → xj (t)

asε → 0, wherexj (t) obeys an equation similar to the one in (5.8) withXj (Ex, τ )
replaced by

(5.16) X̂j (Ex, τ )g =
∑
k∈σ1

(
eL11τ

)
jk

xk +
∑
k∈σ1

∫ τ

0

(
eL11(τ−τ ′))

jk
f 1
k (τ

′)dτ ′ .

5.3 Asymptotic Procedure with Fast-Wave Averaging

We now generalize the asymptotic procedure introduced in Section 4.4 in order
to deal with fast-wave effects on the climate variables. We will, however, carefully
distinguish between

(1) the situation where only fast rotation wave effects are present, i.e., the
situation where the term

∑
k L11

jk xk/ε is present in (4.1), but we still assume
f 1
j (t/ε) = f 2

j (t/ε) = 0, and
(2) the complete situation where both fast rotation wave and forcing effects are

present, i.e., the situation where all three terms
∑

k L11
jk xk/ε, f 1

j (t/ε)/ε,
and f 2

j (t/ε) in (4.1) are nonzero.

The reason for this distinction is that, in situation (1), the asymptotic procedure
introduced in Section 4.4 carries over almost completely: We simply combine the
latter method with standard multiple time-scale expansion in order to deal with the
term

∑
k L11

jk xk/ε in (4.1). On the other hand, in situation (2), the same kind of
manipulations can be performed, but one has to assume the absence of resonance
effects between rotation effects and forcing, which would make the averaging pro-
cedure fail. The presence or the absence of such resonance effects is hard to assess
in the general case and will be discussed in specific applications in the future.

The Situation with Fast-Wave Effects But No Fast Forcing

We first consider the situation where we let the term
∑

k L11
jk xk/ε be present

in (4.1), but we assumef 1
j (t/ε) = f 2

j (t/ε) = 0. Let %ε(s, Ex, Ey | t) be defined
as in (4.21). The function%ε satisfies the backward equation associated with the
equations in (4.1),

(5.17) −∂%
ε

∂s
= 1

ε2
L1%

ε+ 1

ε

(
LNS

2 +LS
2

)
%ε+L3%

ε , %ε(t, Ex, Ey | t) = f (Ex) .
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The operatorsL1 andL3 are given as in (4.23), whereas in order to account for
fast-wave effects, we have decomposed the operatorL2 associated with the terms
of orderε−1 in (4.1) into a non-skew-symmetric partLNS

2 (which was the only one
entering the backward equation in (4.22)) and a skew-symmetric partLS

2 account-
ing for the fast-wave effect. They are given by

LNS
2 =

∑
j,k

(
L12

jk yk + 1

2

∑
l

(
2B112

jkl xkyl + B122
jkl ykyl

)) ∂

∂xj

+
∑
j,k

(
L21

jk xk + L22
jk yk + 1

2

∑
l

(
B211

jkl xkxl + 2B221
jkl ykxl

)) ∂

∂yj

LS
2 =

∑
j,k

L11
jk xk

∂

∂xj

.

(5.18)

We seek for a formal asymptotic solution of (5.17) with two time scales (compare
equation (4.24))

(5.19) %ε(s | t) = %0(s, τ | t)+ ε%1(s, τ | t)+ ε2%2(s, τ | t)+ · · · , τ = s

ε
.

Consistent with the separation of scales betweens andτ , we treat these two time
scales as if they were independent. Thus we set

(5.20)
∂

∂s
→ ∂

∂s
+ 1

ε

∂

∂τ
.

We insert (5.19) in (5.17) and use (5.20). Equating equal powers inε gives the
following sequence of equations (compare (4.25)–(4.27)):

L1%0 = 0 ,(5.21)

L1%1 = −∂%0

∂τ
− LNS

2 %0 − LS
2%0 ,(5.22)

L1%2 = −∂%0

∂s
− L3%0 − ∂%1

∂τ
− LNS

2 %1 − LS
2%1 ,(5.23)

...

Like equations (4.25)–(4.27), equations (5.21)–(5.23) require as a solvability con-
dition that their right-hand sides have zero expectation with respect to the invariant
measure of the Ornstein-Uhlenbeck process. The solvability condition is trivially
satisfied for the equation in (5.21), which implies that

(5.24) P%0 = %0 .

Thus to leading order the behavior is independent ofEy,

%0(s, τ, Ex, Ey | t) = %0(s, τ, Ex | t) .
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Taking next the expectation of the equation in (5.23), we obtain the solvability
condition (compare (4.29))

(5.25) 0= −P
∂%0

∂τ
− P(LNS

2 + LS
2)%0 = −∂%0

∂τ
− LS

2%0 .

To derive (5.25) we used (5.24) combined with the property that the expectation
P commutes with∂/∂τ andLS

2P. We have also setPLNS
2 %0 = PLNS

2 P%0 = 0
consistent with (2.10) in assumption A4 in Section 2. The solution of (5.25) can be
expressed as

(5.26) %0(s, τ, Ex | t) = eLS
2 (τ0−τ)%̄0(s, Ex | t) , τ0 = t

ε
.

The action of the operatoreLS
2 (τ0−τ) on a suitable scalar-valued functiong(Ex) is

given by

(5.27) eLS
2 (τ0−τ)g(Ex) = g

((
eL11(τ0−τ)) Ex) .

Since (5.25) holds, the solution of (5.22) is

(5.28) %1 = −L−1
1 LNS

2 eLS
2 (τ0−τ)P%̄0 .

Inserting this expression in the equation in (5.23) and taking the expectation on the
resulting equation to get the solvability condition for%2 yields

(5.29) −eLS
2 (τ0−τ) ∂ %̄0

∂s
= PL3e

LS
2 (τ0−τ)P%̄0 − PLNS

2 L−1
1 LNS

2 eLS
2 (τ0−τ)P%̄0 .

The backward equation for̄%0 given in (5.47) is obtained from (5.29) by applying
e−LS

2 (τ0−τ) on both sides and averaging with respect to time the resulting equation.
This gives

(5.30) −∂ %̄0

∂s
= L̂%̄0 , %̄0(t, Ex | t) = f (Ex) ,

where

(5.31) L̂ · = P
(

lim
T→∞

1

T

∫ t

t−T
e−LS

2 (τ0−τ) (L3 − LNS
2 L−1

1 LNS
2

)
eLS

2 (τ0−τ) dτ

)
P · .

Notice that the time average in (5.31) exists because of the skew-symmetric nature
of L2.

We now show that the operator̂L in (5.31) is a Fokker-Planck operator that
is effectively computable. This essentially amounts to evaluating the action of
the operatorse−LS

2 (τ0−τ) in (5.31). We do so by taking into account the fast-wave
effects in the equations in (4.1) from the very beginning by an appropriate change
of variables in these equations. The key step is to introduce the function

(5.32) %̄ε(s, Ex, Ey | t) = e−LS
2 (t−s)/ε%ε(s, Ex, Ey | t) .

From (5.26), it follows that the function̄%ε is such that, in the limit asε → 0,

(5.33) %̄ε → %̄0 ,
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where%̄0 is the function defined in (5.26) that satisfies the equation in (5.30). On
the other hand, as we now show, working with%̄ε instead of%ε allows us to account
for the fast-wave rotation effects from the very beginning because it amounts to
making an appropriate change of dependent variables in (4.1). More precisely,
%̄ε satisfies the backward equation associated with the equations that are obtained
from (4.1) upon changing dependent variables consistent with the equation of the
operatore−LS

2 (t−s)/ε, namely, upon definingĒx from

(5.34) Ēx(t) = (
e−L11t/ε

) Ex(t) ,
or, with index notation,

(5.35) x̄j (t) =
∑
k∈σ1

(
e−L11t/ε

)
jk

xk(t) .

In terms of( Ēx, Ey) the equations in (4.1) withf 1 = f 2 = 0 become

dx̄j = F̄1
j (t)dt +

∑
k

(
−D̄jk(t)Xk + 1

ε
L̄12

jk (t)yk

)
dt

+ 1

2

∑
k,l

(
B̄111

jkl (t)Xk Xl + 2

ε
B̄112

jkl (t)Xkyl + 1

ε
B̄122

jkl (t)ykyl

)
dt ,

dyj =
∑

k

(
1

ε
L21

jk Xk + 1

ε
L22

jk yk

)
dt

+ 1

2

∑
k,l

(
1

ε
B211

jkl Xk Xl + 2

ε
B221

jkl yk Xl

)
dt − γj

ε2
yj dt + σj

ε
dWj (t) ,

(5.36)

where we defined

(5.37) Xj =
∑
k∈σ1

(
eL11t/ε

)
jk

x̄k ,

and the operators with a bar are defined from the original ones by action ofe−L11t/ε.
For instance,

(5.38) D̄jk(t) =
∑
l∈σ1

(
e−L11t/ε

)
j l

Dlk ,

and similar relations hold for̄L12
jk , B̄111

jkl , . . . . Thus, the backward equation for%̄ε is

given by (omitting now the bar onĒx, i.e., settingĒx → Ex)
(5.39)

−∂ %̄
ε

∂s
= 1

ε2
L1%

ε + 1

ε
L̄NS

2 (τ )%̄
ε + L̄3(s, τ )%̄

ε , %̄ε(t, Ex, Ey | t) = f (Ex) ,
whereτ = s/ε, and we have explicitly distinguished the dependence in slow,s,
and fast,τ = s/ε, time scales in defining the operators̄LNS

2 (τ ) and L̄NS
3 (s, τ ).
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They are given by

L̄NS
2 (τ ) =

∑
j,k

L̄12
jk (τ )yk

∂

∂xj

+ 1

2

∑
j,k,l

(
2B̄112

jkl (τ )Xk(x, τ )yl + B̄122
jkl (τ )ykyl

) ∂

∂xj

+
∑
j,k

(
L21

jk Xk( Ēx, τ )+ L22
jk yk

) ∂
∂yj

+ 1

2

∑
l

(
B211

jkl Xk(Ex, τ )Xl (Ex, τ )+ 2B221
jkl yk Xl ( Ēx, τ )

) ∂
∂yj

L̄3(s, τ ) =
∑

j

(
F̄1

j (s, τ )−
∑

k

D̄jk(τ )Xk(Ex, τ )
)
∂

∂xj

+ 1

2

∑
j,k,l

B̄111
jkl (τ )Xk(Ex, τ )Xl (Ex, τ ) ∂

∂xj

,

(5.40)

where we defined

(5.41) Xj (Ex, τ ) =
∑
k∈σ1

(
eL11τ

)
jk

xk ,

and, similarly to (5.38), the operators with a bar are defined from the original ones
by action ofe−L11τ . For instance,

(5.42) D̄jk(τ ) =
∑
l∈σ1

(
e−L11τ

)
j l

Dlk .

Manipulations similar to the one that led to (5.30) can now be performed for the
backward equation in (5.39). Of course, there are no rotation effects to treat in the
backward equation in (5.39) since these effects were taken into account from the
very beginning by replacing the equations in (4.1) by the equations in (5.36). This
means that by manipulating the backward equation given in (5.39), we obtain an
alternative but, of course, equivalent expression forL̄, or, in short, we have suc-
ceeded in evaluating the action of the operatorse−LS

2 (τ0−τ) in (5.31). The expression
for L̂ equivalent to the one in (5.31) is

(5.43) L̂ · = P
(

lim
T→∞

1

T

∫ t

t−T

(
L̄3(s, τ )− L̄NS

2 (τ )L
−1
1 L̄NS

2 (τ )
)

dτ

)
P · ,

where the integration onτ is performed withs kept fixed.
These manipulations can be summarized into the following formal:

THEOREM 5.4 Let%ε(s, Ex, Ey | t) satisfy

(5.44) −∂%
ε

∂s
= 1

ε2
L1%

ε+ 1

ε

(
LNS

2 +LS
2

)
%ε+L3%

ε , %ε(t, Ex, Ey | t) = f (Ex) ,
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whereL1, LNS
2 , LS

2, andL3 are backward Fokker-Planck operators given in(4.23)
and (5.18). LS

2 is a first-order skew-symmetric transport operator, whereasL1

generates a stationary process such that

(5.45) eL1t · → P · as t → ∞ .

Then,

(5.46) eLS
2(t−s)/ε%ε(s, Ex, Ey | t) → %̄0(s, Ex | t) ,

in the limit asε → 0, for −T < s ≤ t , T < ∞, uniformly in Ex andEy on compact
sets, wherē%0 satisfies̄%0 = P%̄0 and solves the backward equation

(5.47) −∂ %̄0

∂s
= L̂%̄0 , %̄0(t, Ex | t) = f (Ex) ,

where

L̂ · = P
(

lim
T→∞

1

T

∫ t

t−T
e−LS

2(τ0−τ)(L3 − LNS
2 L−1

1 LNS
2

)
eLS

2(τ0−τ) dτ

)
P ·

= P
(

lim
T→∞

1

T

∫ t

t−T

(
L̄3(s, τ )− L̄NS

2 (τ )L
−1
1 L̄NS

2 (τ )
)
dτ

)
P · .

(5.48)

HereL̄3(s, τ ), L̄NS
2 (τ ) are the operators given in(5.40), and the integration onτ

is performed with s kept fixed.

The Situation with Fast-Wave Effects and Fast Forcing

We briefly comment on the complete situation where both fast-wave and forc-
ing effects are present and all three terms

∑
k L11

jk xk/ε, f 1
j (t/ε)/ε, and f 2

j (t/ε) in
(4.1) are nonzero. A backward equation similar to the equation in (5.17) can be
associated with the complete equations in (4.1), but an additional difficulty arises
because the skew-symmetric operatorLS

2 in (5.18) is replaced by

(5.49) L“S”
2 =

∑
j

f 1
j

(
s

ε

)
∂

∂xj

+
∑

j

f 2
j

(
s

ε

)
∂

∂yj

+
∑
j,k

L11
jk xk

∂

∂xj

.

Due to the terms involving forcing, this operator is skew-symmetric at fixed argu-
ment but has time dependence. This implies that all the manipulations we did in
situation (i) can be formally performed in the present situation, and an effective
equation similar to the one in (5.47) witĥL given as in (5.48) but withL“S”

2 given
by (5.49) instead ofLS

2 given by (5.18) can be associated when both fast-rotation-
wave and -forcing effects are present in (4.1). However, these manipulations may
be formal because the time average involved in (5.48) may fail to exist withL“S”

2 .
This will typically be the case if there are resonance effects between rotation waves
and forcing effects. Assuming that no resonance effects arise and the time average
involved exists, the operator̂L entering the backward equation in (5.47) associated
with the complete system of equations in (4.1) is given by

(5.50) L̂ · = P
(

lim
T→∞

1

T

∫ t

t−T

(
L̄3(s, τ )− L̄NS

2 (τ )L
−1
1 L̄NS

2 (τ )
)
dτ

)
P · ,
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where

L̄NS
2 (τ ) =

∑
j,k

L̄12
jk (τ )yk

∂

∂xj

+ 1

2

∑
j,k,l

(
2B̄112

jkl (τ )X̂k(x, τ )yl + B̄122
jkl (τ )ykyl

) ∂
∂xj

+
∑

j

f 2
j (τ )

∂

∂yj

+
∑
j,k

(
L21

jk X̂k( Ēx, τ )+ L22
jk yk

) ∂
∂yj

+ 1

2

∑
l

(
B211

jkl X̂k(Ex, τ )X̂l (Ex, τ )+ 2B221
jkl yk X̂l ( Ēx, τ )

) ∂
∂yj

L̄3(s, τ ) =
∑

j

(
F̄1

j (s, τ )−
∑

k

D̄jk(τ )X̂k(Ex, τ )
)
∂

∂xj

+ 1

2

∑
j,k,l

B̄111
jkl (τ )X̂k(Ex, τ )X̂l (Ex, τ ) ∂

∂xj

.

(5.51)

Here we defined

(5.52) X̂j (Ex, τ ) =
∑
k∈σ1

(
eL11τ

)
jk

xk +
∑
k∈σ1

∫ τ

0

(
eL11(τ−τ ′))

jk
f 1
k (τ

′)dτ ′ ,

and, as in (5.42), operators with a bar are defined from the original ones by action
of e−L11τ . For instance,

(5.53) D̄jk(τ ) =
∑
l∈σ1

(
eL11τ

)
j l

Dlk .

The set of stochastic differential equations associated with the operatorL̂ given in
(5.50) is the stochastic climate model given in Theorem 5.3. Examples with poten-
tial resonance due to climate forcing will be discussed elsewhere by the authors.

PROOF OFTHEOREM 5.1: The proof generalizes to the complex case the pro-
cedure given in Section 5.3, and then uses the results of Appendix A to compute
the operatorL̂ given in (5.48) in a way similar to what is done in Appendix B. Let

(5.54) %ε
(
s, vk, v

∗
k , wk, w

∗
k | t

) = E f
(
vεk(t), w

ε
k(t)

)
,

where f is a suitable scalar-valued function and(vεk(t), w
ε
k(t)) solves the equations

in (5.1) for the initial condition

(5.55) (vεk(s), w
ε
k(s)) = (vk, wk) .

As a function of the independent variables(vk, v
∗
k , wk, w

∗
k), %

ε satisfies the back-
ward equation analog to the equation in (5.44), i.e.,

(5.56) −∂%
ε

∂s
= 1

ε2
L1%

ε + 1

ε

(
LNS

2 + LS
2

)
%ε ,
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where the operatorL1, LNS
2 , LS

2 are identified from equations (5.1) as explained in
Section 5.2:L1 is the Fokker-Planck operator associated with the model in (3.14),
andLNS

2 andLS
2 are the non-skew-symmetric and skew-symmetric operators asso-

ciated with the terms of orderε−1 in (5.1). These operators are given explicitly by

L1 = −
∑

Ek
γk

∂

∂wk

−
∑

Ek
γk

∂

∂w∗
k

+
∑

Ek
σ 2

k

∂2

∂wk∂w
∗
k

+
∑

Ek
σ 2

k

∂2

∂wk∂w−k
+
∑

Ek
σ 2

k

∂2

∂w∗
k∂w

∗
−k

,

LNS
2 = 1

2

∑
Ek,El , Em

(
Bklmv

∗
l v

∗
m + 2Bklmv

∗
l w

∗
m + Bklmw

∗
l w

∗
m

) ∂
∂vk

+ 1

2

∑
Ek,El , Em

(
Bklmvlvm + 2Bklmvlwm + Bklmwlwm

) ∂
∂v∗

k

+ 1

2

∑
Ek,El , Em

(
Bklmv

∗
l v

∗
m + 2Bklmv

∗
l w

∗
m

) ∂

∂wk

+ 1

2

∑
Ek,El , Em

(
Bklmvlvm + 2Bklmvlwm

) ∂

∂w∗
k

,

LS
2 = i

∑
Ek
�k

∂

∂vk
− i

∑
Ek
�k

∂

∂v∗
k

+ i
∑

Ek
�k

∂

∂wk
− i

∑
Ek
�k

∂

∂w∗
k

,

(5.57)

where for simplicity of notation we have omitted the explicit summation sets. To
compute the operator̂L obtained from the equation in (5.48), we need to derive
L̄NS

2 as given in (5.40). This is particularly simple in the present case because
the operatorLS

2 is diagonal. Hence the rotation induced by this operator is easily
accounted for and amounts to setting

(5.58) vk → vke
i�kτ , wk → wke

i�kτ .

It follows that

L̄NS
2 (τ ) = 1

2

∑
Ek,El , Em

(
Bklm(τ )v

∗
l v

∗
m + 2Bklm(τ )v

∗
l w

∗
m + Bklm(τ )w

∗
l w

∗
m

) ∂
∂vk

(5.59)

+ 1

2

∑
Ek,El , Em

(
B∗

klm(τ )vlvm + 2B∗
klm(τ )vlwm + B∗

klm(τ )wlwm
) ∂
∂v∗

k

+ 1

2

∑
Ek,El , Em

(
Bklm(τ )v

∗
l v

∗
m + 2Bklm(τ )v

∗
l w

∗
m

) ∂

∂wk

+ 1

2

∑
Ek,El , Em

(
B∗

klm(τ )vlvm + 2B∗
klm(τ )vlwm

) ∂

∂w∗
k

,
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in which we defined

(5.60) Bklm(τ ) = Bklme−i (�k+�l +�m)τ .

The equation in (5.48) can be written as

(5.61) L̂ · = −P
(

lim
T→∞

1

T

∫ t

t−T
L̄NS

2 (τ )L
−1
1 L̄NS

2 (τ )dτ

)
P · ,

and Theorem 5.1 follows after explicit evaluation of this operator. We skip these
calculations since they are a straightforward generalization of what is done in Ap-
pendix B. �

6 Idealized Climate Models from Equilibrium Statistical Mechanics

In this section we study in more detail the systematic design of stochastic cli-
mate models for the truncated barotropic equations in (3.3), which we recall for the
reader’s convenience:

(3.3)

∂q3
∂t

+ P3
(∇⊥ψ3 · ∇q3

)+ U
∂q3
∂x

+ β
∂ψ3

∂x
= 0 ,

q3 = ω3 + h3 , ω3 = 1ψ3,
dU

dt
=
∫

h3
∂ψ3

∂x
,

whereP3 is the projection operator associated with a defining setσ̄3 (see the dis-
cussion below (3.19)) defined for any suitable functionf as

(6.1) f3(Ex) = P3 f (Ex) =
∑
k∈σ̄3

(
f̂ke

i Ek·Ex + f̂ ∗
k e−i Ek·Ex) .

The equations in (3.3) are an important first test case for stochastic climate model-
ing since they include large- and small-scale inhomogeneity and anisotropy through
the interaction of the geophysical effects fromU , β, and the topography,h. The
systematic approach we develop below can be extended to a number of important
climate models directly such as two-layer models or barotropic flow on the sphere.
These applications will be developed elsewhere.

In this section, we incorporate in the theory the important fact that an equilib-
rium statistical theory can be developed for the truncated barotropic equations in
(3.3). The equilibrium statistical theory is based on the existence of two conserved
quantities—energy and enstrophy—and is presented in Section 6.1. In Section 6.2,
we show that the stochastic model for the truncated barotropic equations can be
made fully consistent with equilibrium statistical theory by appropriate constraints
on the parameters in the stochastic model. In other words, the stochastic model
for the truncated barotropic equations shares the same Gaussian invariant measure
with density in (6.16) as the original truncated barotropic equations. In addition,
we demonstrate that the stochastic model for the climate variables alone that is
derived from the truncated barotropic equations also satisfies an equilibrium sta-
tistical theory. Furthermore, the invariant measure for the effective climate model
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is the projection on the climate variables alone of the invariant measure for the
original system of truncated barotropic equations.

In Section 6.3, we report on numerical simulations of the truncated barotropic
equations in several different parameter regimes that demonstrate effective stochas-
ticity and separation of time scales for the evolution of specific variables. In other
words, we justify numerically the possibility of distinguishing unambiguously be-
tween climate and unresolved variables for the truncated barotropic equations. We
also show that the equilibrium statistical theory is supported by the numerical sim-
ulations.

Finally, in Section 6.4, we show how the numerical simulations can be used to
identify the parameters entering the stochastic model equations. We also indicate
how the numerical results for the climate variables can be compared with the solu-
tions of the equations for these variables alone that are derived by the asymptotic
strategy of Section 4.

6.1 Equilibrium Statistical Theory for Geophysical Models

It can be shown by direct calculation that the dynamics in the truncated ba-
rotropic equations in (3.3) conserves the truncated energyE3 and the truncated
enstrophyE3

E3 = 1

2
U2 + 1

2

∫
|∇ψ3|2 = 1

2
U2 − 1

2

∫
ψ3ω3 ,

E3 = βU + 1

2

∫
q2
3 .

(6.2)

Based on these two conserved quantities, it is possible to construct an equilibrium
statistical theory for the truncated barotropic equations in (3.3), as we show now.
We sketch the argument in a rather heuristic way here; more details can be found
in [4, 17]. We proceed in two steps.

Step1. Consider the truncated barotropic equations written in the compact no-
tation introduced in (3.10) as

(6.3)
dEz
dt

= EF(Ez) ≡ LEz + B(Ez, Ez) .
The vector field EF(Ez) is divergence free, or incompressible, in the phase space
� = {Ez}, i.e.,

(6.4) div EF = 0 or ∇Ez · EF = 0 .

It follows that the flow map{ Eϕt(Ez)} associated with the equations in (3.11) de-
fined by

(6.5)
d

dt
Eϕt(Ez) = EF( Eϕt(Ez)

)
, Eϕ0(Ez) = Ez ,

is volume (or measure) preserving on the phase space, i.e.,

(6.6) det
(∇Ez · Eϕt(Ez)

) = 1 .
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Utilizing the measure-preserving property of the flow map{ Eϕt(Ez)}, it is possible to
define probability measures on the phase space�. Specifically, for any suitable
function A(Ez) defined on�, we can associate an observable as the image value of
A under the map{ Eϕt(Ez)}
(6.7) A

( Eϕt(Ez)
)
.

Let P0(Ez) be a probability density on the phase space�, and define the average
value ofA with respect toP0 at initial timet = 0 as

(6.8) P0A(Ez) =
∫
�

A(Ez)P0(Ez)dEz .

Then, using the measure-preserving property of the flow map{ Eϕt(Ez)}, it follows
that the average value of the observableA( Eϕt(Ez)) is given at timet > 0 by

(6.9) P0A
( Eϕt(Ez)

) =
∫
�

A
( Eϕt(Ez)

)
P0(Ez)dEz =

∫
�

A(Ez)P0
( Eϕ −1

t (Ez))dEz ,

where{ Eϕ −1
t (Ez)} is the flow map inverse to{ Eϕt(Ez)}. It follows from the equation in

(6.9) that

(6.10) P(Ez, t) = P0( Eϕ −1
t (Ez))

is a probability density on� that allows us to compute the average of all observ-
ables on� at timet > 0. Notice also that, from (6.5) and (6.10), the probability
densityP(Ez, t) satisfies the Liouville (or forward) equation

(6.11)
∂ P

∂t
+ EF(Ez) · ∇EzP = 0 .

Step2. By definition, the invariant measures on� are those measures whose
associated densities are preserved by the map{ Eϕ −1

t (Ez)}, i.e., such that for allt > 0

(6.12) P?(Ez) = P?
( Eϕ −1

t (Ez)) .
Equivalently, the probability densities of the invariant measures are steady-state
solutions of the Liouville equation in (6.11)

(6.13) EF(Ez) · ∇EzP? = 0 .

Invariant measures are readily obtained for the truncated barotropic equations in
(3.3). Indeed, by definition of the conserved quantities in (6.2), any function
G(E3, E3) of the energyE3 and enstrophyE3 is preserved by the map{ Eϕ −1

t (Ez)}
or, equivalently, satisfies

(6.14) EF(Ez) · ∇EzG = 0 .

In equilibrium statistical theory, given some conserved quantities, it is postulated
that the actual invariant measure is the canonical measure whose density is given
by

(6.15) P?
C = Ce−θE3−αE3 .
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In fact, the measure with density in (6.16) arises from a maximum entropy principle
as the Gibbs probability measure with the least bias given the information in the
two conserved quantitiesE3, E3 [17]. HereC is a normalization constant andθ , α
are parameters playing the role of the inverse temperature in the usual equilibrium
statistical mechanics theory. The values ofθ , α depend on the actual values ofE3,
E3, and it is customary to introduceµ = θ/α and write the density in (6.15) as

(6.16) P?
C = Ce−α(µE3+E3) .

Equilibrium statistical theory applies under the assumption of ergodicity with re-
spect to time average of the dynamics defined by the truncated barotropic equations
in (3.3). Ergodicity implies that time averaging and ensemble averaging are iden-
tical, i.e.,

(6.17) lim
T→∞

1

T

∫ T

0
A
( Eϕt(Ez)

)
dt =

∫
�

A(Ez)P∗
C(Ez)dEz

for any suitable functionA(Ez). The numerical simulations presented in Section 6.3
support the ergodicity assumption in (6.17) for suitable functionsA(Ez) involving
low-order moments.

The density in (6.16) is a Gaussian density that is completely characterized by
its mean and variance in each Fourier component

(6.18)

Ū = meanU = −β
µ
, varU = 1

αµ
,

ūk = meanuk = |Ek|ĥk

µ+ |Ek|2 , varuk = 1

α(µ+ |Ek|2) ,

with uk = |Ek|ψ̂k. Thus, a nontrivial mean exists that is the idealized climate mean
for nonzero topography,h3. The Gaussian measures with density in (6.16) are
finite and realizable forµ > 0 for generalh3 with β, U nonzero; ifβ = 0 and
U = 0, the measures with density in (6.16) are realizable in the regimeµ > −1
including a “negative temperature” regime [4, 17]. The combinationµE3 + E3 is
called thepseudoenergyassociated with the mean state,Ū , ūk.

6.2 Stochastic Climate Models Consistent
with Equilibrium Statistical Theory

We now develop the stochastic model for the truncated barotropic equations in
(3.3) consistent with the equilibrium statistical theory developed in Section 6.1.
We leave a detailed analysis of the stochastic climate model equations associated
with the stochastic model for a future publication and, in the present section, we
content ourselves with the analysis of some general properties of the stochastic
climate model, which can be summarized in the following statement:
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(S) There is a simple explicit procedure to construct a stochastic model from
the truncated barotropic equations in(3.3) that satisfies the same equilib-
rium statistical theory as the original system. Furthermore, equilibrium
statistical theory for the stochastic model projects into equilibrium statisti-
cal theory for the stochastic model for the climate variables alone. In par-
ticular, the reduced stochastic climate model automatically has the same
mean and energy spectrum as the projection of the nonlinear dynamical
model.

A more precise phrasing of the statement in (S) is given in Propositions 6.5 and 6.6
below. The key idea in these systematic developments involves detailed conserva-
tion of pseudoenergy separately for appropriate parts of the equations in (3.3).

Detailed Balance for Pseudoenergy with a Climate Mean

From (6.18), for a fixed realizable value ofµ, the climate mean state is given by

(6.19) q̄3 = 1ψ̄3 + h3 = µψ̄3 , ω̄3 = 1ψ̄3 , Ū = −β
µ
.

The considerations involving detailed balance are properties of general solutions of
the truncated equations centered on the climate mean in (3.3) and related partitions
of these equations. Once these are developed below, it will be straightforward to
build stochastic models consistent with the predictions from equilibrium statistical
mechanics in Section 6.1. Thus, it is natural to center the variables in (3.3) about
the climate mean in (6.19) through

(6.20) q3 = q̄3 + ω̃3 , 1ψ̃3 = ω̃3 , U = Ū + Ũ .

Within an irrelevant constant that can be absorbed in the normalization con-
stantC, the argument in the Gibbs measure in (6.16) is a positive multiple of the
pseudoenergy.

Pseudoenergy:

(6.21) µE3 + E3 = 1

2
µŨ2 + 1

2

∫ (−µψ̃3 + ω̃3
)
ω̃3 .

The pseudoenergy is conserved by the truncated dynamics in (3.3) since it is a lin-
ear combination of two conserved quantities; it also has the important property that
it is a quadratic form in perturbations about the climate mean state,q̄3, Ū . Further-
more, this quadratic form is positive definite exactly when the Gibbs measure in
(6.16) is realizable, i.e., forµ > 0 for β 6= 0, Ũ 6= 0, and forµ > −1 for β = 0,
Ũ = 0. Notice also that the nontruncated pseudoenergy,

(6.22) µE + E = 1

2
µŨ2 + 1

2

∫ (−µψ̃ + ω̃
)
ω̃

is equivalent to the SobolevH1-norm onω̃ for general (nontruncated) functions.
The conservation of this pseudoenergy implies the nonlinear stability of the climate
mean state [4, 17].
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By rewriting the equation in (3.3) in terms of̃ω3, Ũ in (6.20) and utilizing
the identities in (6.19) for the mean state together with the identity∇⊥ f · ∇g =
−∇⊥g·∇ f and elementary integration by parts, we obtain the following dynamical
equations for̃ω3 andŨ :

∂ ω̃3

∂t
= −{P3

(∇⊥ψ̃3 · ∇ω̃3
)}

1A −
{

Ũ
∂ ω̃3

∂x

}
1B

− {
P3
(∇⊥ψ̄3 · ∇(−µψ̃3 + ω̃3)

)}
2

+
{
β

µ

∂

∂x
(−µψ̃3 + ω̃3)− µŨ

∂ ψ̄3

∂x

}
3

,

dŨ

dt
=
{∫

∂ ψ̄3

∂x
(−µψ̃3 + ω̃3)

}
3

, ω̃3 = 1ψ̃3 .

(6.23)

The terms in{·}2 and{·}3 are linear perturbations about the climate mean, while
the terms in{·}1A and{·}1B are the nonlinear contributions due to small-scale and
mean advection bỹU .

We now show that the dynamics associated with{·}1A + {·}1B, {·}2, and{·}3

separately conserve the pseudoenergy. Considering the linear terms{·}2 and{·}3

first, this result is a consequence of the following:

LEMMA 6.1 The two operators defined by

Lh

(
w

V

)
=
(−∇⊥ψ̄3 · ∇(−µφ + w)

0

)
,

LŪ

(
w

V

)
=

βµ ∂

∂x
(−µφ + w)− µV

∂ ψ̄3

∂x∫
∂ ψ̄3
∂x (−µφ + w)


 ,(6.24)

with w = 1φ are skew-symmetric in the pseudoenergy inner product associated
with (6.21). In particular, the reduced dynamics

(6.25)
∂

∂t

(
ω̃3

Ũ

)
= P3Lh P3

(
ω̃

Ũ

)
,

∂

∂t

(
ω̃3

Ũ

)
= P3LŪ P3

(
ω̃

Ũ

)
,

conserve the pseudoenergy in(6.21).

COROLLARY 6.2 Consider the incompressible vector fields in phase spaceEFh and
EFŪ , defined as in(6.3) and (6.4) and associated with the operators P3Lh P3 and
P3LŪ P3, respectively. Then an arbitrary function of the pseudoenergy, G(µE3+
E3) satisfies

(6.26) EFh · ∇G = 0 , EFŪ · ∇G = 0 ,

i.e., G(µE3 + E3) is a steady-state solution of the Liouville equations associated
with EFh and EFŪ . In particular, the Gibbs measure with density in(6.16) is an
invariant under both of the separate dynamics in(6.25). Furthermore, these results
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remain true if P3 is replaced by any finite-dimensional projection P that projects
on Ũ and a finite number of Fourier components ofw̃ and preserves the reality
condition.

The proof of Lemma 6.1 is a straightforward calculation utilizing the definitions
in (6.21) and (6.24) and explicit integration by parts. Corollary 6.2 is an immediate
consequence of the lemma once it is recognized thatPLh P and PLŪ P are also
skew-symmetric operators in the pseudoenergy inner product for any finite range
orthogonal projectionP.

Next, we need to state a detailed energy balance condition for finite-dimensional
truncation of the nonlinear operator representing two-dimensional inviscid flow in-
volving Galerkin projection byP3 on an arbitrary symmetric subspace of Fourier
coefficients. Consider the equations

(6.27)
∂ ω̃3

∂t
= −P3

(∇⊥ψ̃3 · ∇ω̃3
)
, ω̃3 = 1ψ̃3 .

The standard integration-by-parts argument utilized in proving conservation ofE3
andE3 can also be used to establish that the dynamics in (6.27)conserves the pseu-
doenergy in(6.21)for an arbitrary projection P3. In fact, the nonlinear operator at
the right-hand side of (6.27) can be decomposed into triad interaction terms involv-
ing either climate or unresolved variables such that we have detailed conservation
of pseudoenergy for individual triads separately, as we show now.

Let P3̄ be the projection on the variables withEk ∈ σ̄3 and |Ek| ≤ 3̄ < 3

defining the climate variables. We decompose

P3(∇⊥ψ̃3 · ∇ω̃3)
= {

P3̄
(∇⊥ P̃3̄ψ3 · ∇ P̃3̄ω3

)}
C|CC

+ {
P3̄
(∇⊥(P3 − P3̄)ψ̃3 · ∇(P3 − P3̄)ω̃3

)}
C|UU

+ {
(P3 − P3̄)

(∇⊥ P3̄ψ̃3 · ∇ P3̄ω̃3
)}

U |CC

+ {
(P3 − P3̄)

(∇⊥(P3 − P3̄)ψ̃3 · ∇(P3 − P3̄)ω̃3
)}

U |UU
.

(6.28)

The various terms in brackets at the left-hand side of (6.28) include different types
of nonlinear triad interactions such that

{·}C|CC : two climate variables drive a climate variable,

{·}C|UU : two unresolved variables drive a climate variable,

{·}U |CC : two climate variables drive an unresolved variable,

{·}U |UU : two unresolved variables drive an unresolved variable.

The following lemma shows that the dynamics associated with{·}C|CC, {·}C|UU

+ {·}U |CC, and{·}U |UU separately conserve pseudoenergy.
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LEMMA 6.3 The reduced dynamics in

∂ ω̃3

∂t
= −{P3̄

(∇⊥ P3̄ψ̃3 · ∇ P3̄ω̃3
)}

C|CC
≡ N3̄(ω̃3) ,(6.29)

∂ ω̃3

∂t
= −{P3̄

(∇⊥(P3 − P3̄)ψ̃3 · ∇(P3 − P3̄)ω̃3
)}

C|UU
(6.30)

− {
(P3 − P3̄)

(∇⊥ P3̄ψ̃3 · ∇ P3̄ω̃3
)}

U |CC
≡ N3,3̄(ω̃3) ,

and

∂ ω̃3

∂t
= −{(P3 − P3̄)

(∇⊥(P3 − P3̄)ψ̃3 · ∇(P3 − P3̄)ω̃3
)}

U |UU
,(6.31)

with ω̃3 = 1ψ̃3, conserve the pseudoenergy in(6.21).

Lemma 6.3 follows by a standard integration-by-parts argument. The lemma
also implies the following:

COROLLARY 6.4 Let EF3̄ and EF3,3̄ be the incompressible vector fields associated
with the nonlinear operator N̄3(ω̃) and N3,3̄(ω̃) in (6.29)and(6.30), respectively.
Then any function of the pseudoenergy G(µE3 + E3) satisfies

(6.32) EF3̄ · ∇G = 0 , EF3,3̄ · ∇G = 0 .

In particular, the Gibbs measure with density in(6.16)is a steady solution.

Design of Stochastic Models Consistent
with Geophysical Statistical Mechanics

Finally, with all of the detailed balance conditions for pseudoenergy in Lem-
mas 6.1 and 6.3 and Corollaries 6.2 and 6.4, we design stochastic models consis-
tent with the equilibrium statistical Gibbs ensemble in (6.16) and then show that
the derived stochastic models for the climate variables alone are also consistent
with equilibrium statistical mechanics. Following the stochastic modeling strategy
in Sections 2 and 3 above for the equations in (6.23), we need to make a stochastic
model for the nonlinear interaction of the unresolved scales with themselves

(6.33)
{
(P3 − P3̄)

(∇⊥(P3 − P3̄)ψ̃3 · ∇(P3 − P3̄)ω̃3
)}

U |UU

consistent with the energy spectrum of the Gibbs measure for the pseudoenergy
in (6.16). From (6.18), the mean and variance of the Fourier coefficientˆ̃ωk of ω̃3
need to be constrained to

(6.34) mean̂̃ωk = 0 , var ˆ̃ωk = |Ek|2
α(µ+ |Ek|2) , 3̄ < |Ek| ≤ 3,

so in each Fourier mode of the unresolved variables we approximate (6.33) by

(6.35) −γk

ε
ˆ̃ωk + σk√

2ε
(Ẇk(t)+ Ẇ∗

−k(t)) , 3̄ < |Ek| ≤ 3,
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with

(6.36)
σ 2

k

γk
= |Ek|2
α(µ+ |Ek|2) .

Thus for the nonlinear self-interaction of the unresolved variables we use

(6.37) {·}U |UU ≈ −1

ε
0ω̃3 + 1√

ε
σ Ẇ(t) ,

where the right-hand side denotes the real-space representation of the damping and
stochastic forcing in (6.35).

With the approximation in (6.37) consistent with the constraint in (6.36), we
are ready to develop the stochastic climate models, which we write here in operator
form to clarify the presentation. First, we consider the geophysical case withŨ =
0,β = 0 so that the only nonlinearity is given by the term{·}1A in (6.23). Following
the general strategy from Section 2 with (6.37) yields, after coarse-graining in time,
the stochastic model forβ = 0, Ũ = 0.

Stochastic model forβ = 0, Ũ = 0:

dω̃3 = N3̄(ω̃3)dt + 1

ε

(
L̄hω̃3 + N3,3̄(ω̃3)

)
dt

− 1

ε2
0ω̃3 dt + 1

ε
σdW(t) ,

(6.38)

whereN3̄, N3,3̄ are the operators defined above in (6.29) and (6.30), andL̄h is
defined as (compare (6.24))

(6.39) L̄hω̃3 = −∇⊥ψ̄3 · ∇(−µψ̃3 + ω̃3
)
, ω̃3 = 1ψ̃3 .

Note that consistent with our general strategy we have to assume that the nonlin-
ear driving of the climate variables by nonlinear self-interaction between climate
variables is weak; i.e., we have to set

(6.40) N3̄(ω̃3) → εN3̄(ω̃3) .

The stochastic model in (6.38) satisfies all the basic assumptions in this paper,
since according to Lemma 6.1,P3̄ L̄h P3̄ is skew-symmetric in the pseudoenergy
norm where all the explicit calculations for (6.38) should be developed. The terms
involving L̄hω̃3 are thetopographic beta effectfor those readers familiar with geo-
physical flows and yields fast-wave effects as in Section 5.

The more general stochastic model withŨ 6= 0, β 6= 0 can also be handled
within the framework of this paper wheneverŨ is a climate variable by supple-
menting (6.40) by the assumption that the additional climate nonlinear interaction
involving Ũ P3̄∂ω̃3/∂x from {·}1B in (6.23) is weak of orderε. However, con-
sistency with equilibrium statistical mechanics requires detailed conservation of
pseudoenergy, which in turns requires that thewhole additional nonlinear inter-
action Ũ∂ω̃3/∂x from {·}1B in (6.23) be of orderε. Thus, in the equations for
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perturbations in (6.23), in addition to the assumption in (6.40), we set

(6.41) Ũ
∂ ω̃3

∂x
→ εŨ

∂ ω̃3

∂x
.

With the assumptions in (6.40) and (6.41), we obtain after coarse-graining in time
the following:

Stochastic model forβ 6= 0, Ũ 6= 0:

dω̃3 = N3̄(ω̃3)dt − Ũ
∂ ω̃3

∂x
dt + 1

ε

(
L̄hω̃3 + N3,3̄(ω̃3)

)
dt

+ 1

ε

(
β

µ

∂

∂x
(−µψ̃3 + ω̃)− µŨ

∂ ψ̄3

∂x

)

− 1

ε2
0ω̃3dt + 1

ε
σdW(t) ,

dŨ = 1

ε

(∫
∂ ψ̄3

∂x
(−µψ̃3 + ω̃)

)
dt , ω̃3 = 1ψ̃3 .

(6.42)

Once again this model satisfies the general hypotheses of Section 2 as a conse-
quence of Lemmas 6.1 and 6.3. The extreme special case whereŨ alone is the
single climate variable in the stochastic model does not need the additional as-
sumption in (6.41). This amusing example is analyzed in detail in Section 7.4 of
the present paper.

We claim that the stochastic models in (6.38) and (6.42) are consistent with
geophysical equilibrium statistical mechanics. We have the following:

PROPOSITION6.5 The stochastic climate models in(6.38)and (6.42)have Gibbs
measures from(6.16) involving pseudoenergy as their invariant measure for all
realizable values of the parameterµ, i.e.,µ > −1 for (6.38)andµ > 0 for (6.42).

PROOF: We sketch the proof for the stochastic model in (6.38). We need to
check that the densityP?

C in (6.16) is a steady-state solution for the forward equa-
tion associated with (6.38), i.e.,

(6.43)
1

ε2
L†

1P?
C + 1

ε
L†

2P?
C + L†

3P?
C = 0 .

Here L†
1 is the (forward) Ornstein-Uhlenbeck operator defined through (6.35),

(6.36) so that by construction

(6.44) L†
1P?

C = 0 .

The operatorsL†
2 andL†

3 are the Liouville operators given by

L†
2 = −L2 = −( EF3,3̄ · ∇ + ĒFh · ∇) = (

LNS
2

† + LS
2

†)
,

L†
3 = −L3 = − EF3̄ · ∇ ,

(6.45)

where ĒFh is the incompressible vector field associated with the operator in (6.39).
As a consequence of the detailed balance conditions in Lemmas 6.1 and 6.3 and
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Corollaries 6.2 and 6.4, the operators in (6.45) also annihilateP?
C, so the proof

for (6.38) is complete. The proof for the stochastic model in (6.42) is very similar
where additionally, the property ofLŪ in (6.26) is used. The straightforward details
are left to the reader. �

The stochastic models in (6.38) and (6.42) satisfy all the hypotheses of the for-
malism developed in Sections 2, 4, and 5 above with nontrivial fast-wave averaging
effects. Thus, one can apply Theorem 5.4 to get a self-consistent Fokker-Planck
equation with a reduced stochastic model for the climate variables alone. Are the
reduced stochastic models derived in this fashion consistent with equilibrium sta-
tistical mechanics? For this to be true, the invariant measure for the derived Fokker-
Planck operator for the reduced stochastic model should coincide with the Gibbs
measure with the density from (6.16) projected onto the climate variables alone.
We have the following result confirming this fact:

PROPOSITION6.6 The projection of the density associated with the Gibbs measure
from (6.16)on the climate variables alone,

(6.46) P?,clim
C = Ce−α(µE3̄+E3̄) ,

is the density associated with the invariant measure for the stochastic climate equa-
tions that are obtained from the stochastic models in(6.38)or (6.42)after elimi-
nation of the unresolved variables in the limit asε → 0.

PROOF: We give the details for mode elimination for the stochastic model in
(6.38). There are fast-averaging effects from the operatorLS

2 in (6.45), which is
associated with a skew-symmetric linear operator in the pseudoenergy metric; see
Lemma 6.1. Thus, from Theorem 5.4, the Fokker-Planck operatorL̂ corresponding
to the stochastic climate model that is obtained from the stochastic model in (6.42)
is given by

(6.47) L̂ · = P
(

lim
T→∞

1

T

∫ t

t−T
e− ∫ τ0τ LS

2
(
L3 − LNS

2 L−1
1 LNS

2

)
e
∫ τ0
τ LS

2 dτ

)
P · ,

with the operatorsLNS
2 , LS

2, andL3 given in (6.45) and withL1, the Ornstein-
Uhlenbeck operator defined through (6.35) and (6.36) above. The equation in
(6.47) is, in fact, a slight generalization of Theorem 5.4 since the rotation accounted
for byLS

2 involves the unresolved variables as well. This leads to no difficulty since
the developments of Section 5.3 generalize trivially to the present situation.

Let P denote the expectation operator with respect to the invariant measure for
the Ornstein-Uhlenbeck operatorL1. Proposition 6.6 can be rephrased as

(6.48) L̂†PP?
C = L̂†P?,clim

C = 0 ,

whereL̂† is the operator adjoint toL̂. The equality in (6.48) follows immedi-
ately from the definition in (6.47) for̂L, the detailed balance properties in (6.43),



938 A. J. MAJDA, I. TIMOFEYEV, AND E. VANDEN EIJNDEN

Corollary 6.2 and Lemma 6.3 forL2 andL3, and the property that

(6.49) e
∫ τ0
τ LS

2
†

P?,clim
C = P?,clim

C .

The latter follows from the definition ofe
∫ τ0
τ LS

2
†

and Corollary 6.2. The proof for
the stochastic model in (6.42) is similar and utilizes detailed balance from Lem-
mas 6.1 and 6.3 and Corollaries 6.2 and 6.4. �

6.3 Numerical Evidence for Effective Stochastic Dynamics

We present numerical evidence for effective stochastic modeling of the trun-
cated barotropic equations in (3.3) whose explicit form in the Fourier represen-
tation is given in (3.6). We study these equations in several different parameter
regimes that exhibit clear separation of time scales for the evolution of appropri-
ately selected groups of variables and hence justify the possibility of distinguishing
between climate and unresolved variables in stochastic climate modeling for the
truncated barotropic equations in (3.6). Depending on the parameter regimes, we
also show the rich variety of possibilities for selecting climate variables for these
equations.

We consider the truncated barotropic equations in (3.6) for|Ek|2 ≤ 17 and use
a pseudospectral method of integration with fourth-order Runge-Kutta time step-
ping. The total energy and enstrophy are conserved within 0.1% in the simulations,
consistent with (6.2). The initial conditions on a given energy-enstrophy level are
generated in Fourier space. We represent Fourier coefficients through their ampli-
tudes and phasesuEk = |u(Ek)|ei θ(Ek), and we make an additional simplifying assump-
tion that the amplitudes of the Fourier coefficients depend only on the magnitude
of |Ek|2, i.e., |u(Ek)| ≡ f (|Ek|2). We sample all but two amplitudes from a uniform
distribution on[0,1] and use the remaining two amplitudes in order that the pre-
scribed values for the energy and the enstrophy be achieved. We then sample the
phasesθ(Ek) from the uniform distribution on[0,2π). We use averaging with re-
spect to time in the numerical simulations as the probability measure to compute
all statistics reported below and obtain excellent agreement with the predictions of
the equilibrium statistical theory. Since Monte Carlo simulation over an ensemble
of initial data is not considered here but rather only a single initial datum consistent
with the microcanonical ensemble, the numerical experiments below also provide
strong support for the use of the canonical Gibbs ensemble a priori. This gives
strong support to the assumption of ergodicity with respect to time averaging of
the truncated barotropic equations in (3.6). For eachq ≤ 17 fixed we compute the
energy spectrum

(6.50) E(q) =
∑
|Ek|=q

ET|uk(t)− ETuk(t)|2 ,

whereET denotes time averaging. The energy spectrumE(q) gives the average
energy in the fluctuating part of the modes in a given shell of wave numbers.
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Large-Scale Topography,µ = −0.76,α = 1.9

First, we consider the truncated barotropic equations in (3.6) without mean flow
U and beta effect; i.e., we setβ = U = 0. As shown below, this parameter
regime provides a striking example of scale separation between the modesuk with
|Ek|2 = 1 and all other modes. When there is no mean flowU , the parameterµ
in (6.18) is allowed to be negative, which corresponds to the negative temperature
regime. The negative temperature regime is characterized by an energy spectrum
sharply peaked at lower wave numbers. We performed numerical simulations with
µ = −0.76,α = 1.9, which corresponds to the fluctuating energy-enstrophy level
E = 7, E = 20, with the following large-scale topography:

h(x, y) = H cos(x + θ1)+ H cos(y + θ2)

+ H sin(x + y + θ3)+ H sin(x − y + θ4) ,
(6.51)

where the phasesθj are selected at random. Thus, the only nonzero Fourier coeffi-
cients of the topography are the coefficients for modes with|Ek|2 = 1 and|Ek|2 = 2.
For the particular choice of phases we use in the simulation described in this sec-
tion, the maximum height of the topography in (6.51) is

(6.52) max
x,y

|h(x, y)| = 3.5H .

We present the results of the numerical simulations withH = 0.5, but the situation
described below is generic for the parameter regimeµ = −0.76,α = 1.9. We have
verified that the energy spectrum and correlation functions exhibit qualitatively
similar behavior forH = 1 andH = 2.5.

Figure 6.1 shows the temporal convergence of mean values of several low
modesuk. Numerical estimates for the mean values agree very well with the an-
alytical predictions in (6.18) of equilibrium statistical theory. After the transient
interval, 0< t . 5000, the mean values stabilize, and by the end of the simula-
tions (t = 100,000) their relative errors do not exceed 6%.

Figure 6.2 shows numerical estimates and analytical predictions of the equilib-
rium statistical theory for the energy spectrum. About 60% of the energy is con-
tained in modes with|Ek|2 = 1 in this parameter regime. The agreement between
the numerical and analytical estimates is very good, with the largest discrepancy
between them concentrated at|Ek|2 = 1, where the relative errors on the energy
spectrum do not exceed 10%. The agreement between numerical and analytical
estimates for the higher modes is even better.

Note that the simulations utilized here are an especially stringent test since we
calculate both the climate mean state and the fluctuations a priori. One can also
assume perfect knowledge of the climate mean and perform the numerical simu-
lations with the perturbation equations in (6.23); in this setup, the agreement with
the predicted spectrum is even better. Although the Fourier coefficients of the to-
pographyĥ(1,0) = 0.164939+ i 0.18787 andĥ(0,1) = −0.017259− i 0.249404
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FIGURE 6.1. Temporal convergence of the mean values of the real and
imaginary parts ofu1,0, u0,1 andu1,1. Simulations with the large-scale
topographyµ = −0.76,α = 1.9,β = 0.

are different, the correlation functions foru(1,0) andu(0,1) exhibit very similar be-
havior. The anisotropic effects due to the difference in magnitude of the Fourier
coefficients of the topography are very minor in this case. The averaged (with re-
spect to all modes with the same value of|Ek|) correlation functions show that there
is a separation of time scales between the modes with|Ek|2 = 1 and the rest of the
modes.

To characterize the decay rate of the averaged correlation functions, we com-
pute the correlation timesτDNS

k that are proportional to the area underneath the
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FIGURE 6.2. Analytical (circle) and numerical (star) predictions for the
fluctuating part of the energy budget. Simulations with the large-scale
topographyµ = −0.76,α = 1.9,β = 0.
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FIGURE 6.3. Averaged correlation functions for|Ek|2 = 1 (solid),|Ek|2 =
2 (dashed) and|Ek|2 = 4,5 (dotted). Simulations with the large-scale
topographyµ = −0.76,α = 1.9,β = 0.
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|Ek|2 τDNS
k

1 1.72
2 0.76
4 0.32
5 0.28
8 0.18
9 0.24
10 0.16
13 0.2
16 0.1
17 0.33

TABLE 6.1. Correlation times for different spectral bands,µ = −0.76,
α = 1.9.

graph of the correlation functions. Figure 6.3 shows the averaged correlation func-
tions for modes with 1≤ |Ek|2 ≤ 5, and Table 6.1 summarizes the correlation times
τDNS

k for different spectral bands. The correlation function for|Ek|2 = 1 decays
more than twice as slowly as the next correlation function for|Ek|2 = 2, and the
correlation functions for|Ek|2 > 2 decay even faster. Thus, the main assumption
of stochastic climate modeling is clearly satisfied if we select the modesuk with
|Ek|2 = 1 as climate variables and those with|Ek|2 ≥ 2 as unresolved variables.

Summarizing, in the present situation, we can replace the nonlinear system
with 56 degrees of freedom by a four-dimensional stochastic model for the two
complex-valued modesu1,0 andu0,1. Since there is no nonlinear interaction be-
tween the climate variables, this is one of the simplest possible test cases for sto-
chastic climate modeling theory.

Large-Scale Topography,µ = 0.1, α = 1

Next, we describe numerical simulations in a positive temperature regime with
µ = 0.1, α = 1, which corresponds to the fluctuating energyE = 5.56 and the
fluctuating enstrophyE = 27.4. We perform the simulations with the topography
in (6.51) withH = 1. Even though the topography is confined to the wave numbers
|Ek|2 ≤ 2, the correlation times for the modesuk with |Ek|2 = 4,5 are roughly com-
parable with the correlation times for the modes with|Ek|2 = 1,2 in this parameter
regime.

The mean values ofuk converge to the analytical predictions from the equilib-
rium statistical theory. Figure 6.4 shows the energy spectrum. As for the negative-
temperature regime discussed earlier in this section, the numerical estimates agree
very well with the predictions of equilibrium statistical theory. The relative errors
for the mean values of theuk’s and the energy spectrum do not exceed 8% and 6%,
respectively.
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FIGURE 6.4. Analytical (circle) and numerical (star) predictions for the
fluctuating part of the energy budget. Simulations with the large-scale
topographyµ = 0.1,α = 1,β = 0.
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FIGURE 6.5. Averaged correlation functions for|Ek|2 = 1 (solid),|Ek|2 =
2 (dashed), and|Ek|2 = 4,5 (dotted). Simulations with the large-scale
topographyµ = 0.1,α = 1,β = 0.
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|Ek|2 τDNS
k

1 1.18
2 0.69
4 0.46
5 0.4
8 0.27
9 0.25
10 0.26
13 0.26
16 0.18
17 0.29

TABLE 6.2. Correlation times for different spectral bands,µ = 0.1,
α = 1.

Figure 6.5 shows the averaged correlation functions for the modesuk with
1 ≤ |Ek|2 ≤ 5, and Table 6.2 summarizes the correlation timesτDNS

k for averaged
correlation functions. The correlation times for the modes with|Ek|2 = 1,2 are
roughly comparable in this case. Correlation times for spectral bands|k|2 = 1,2
indicate that that the correlation function for the modes with|Ek|2 = 2 decays about
1.5 times faster than the correlation function for the modes with|Ek|2 = 1. Thus,
the modes with|Ek|2 = 2 should be included in the set of climate variables for this
regime. The correlation times for the modes with|Ek|2 = 4 and|Ek|2 = 5 are of
the same order as the correlation time for the modes with|Ek|2 = 2. Therefore, the
time scales for the modes with|Ek|2 = 1,2 and|Ek|2 = 4,5 are not so well sepa-
rated for this regime. This situation presents an interesting test case for stochastic
climate modeling, since there are two possibilities for selecting the climate vari-
ables. The modesuk with |Ek|2 = 4 and|Ek|2 = 5 may or may not be included in the
set of climate variables, and we can compare the results of the mode elimination
procedure in the two cases. The extension of the set of climate variables allows
nonlinear interactions between them, and therefore, the resulting stochastic equa-
tions for the climate variables will necessarily contain nonlinear terms. Detailed
results comparing theory and simulation will be reported elsewhere.

Simulations with Mean Flow and Beta Effect

Another possible test case is when the parameterβ, the mean flowU , and
topography effects are all present in the equations. We describe here numerical
simulations with the two-mode topography

(6.53) h(x, y) = H [cos(x)+ sin(x)+ cos(2x)+ sin(2x)] ,

with β = 0.5 andH = 0.36, so that the height of the topography is equal to 1.
We use the valuesµ = 2 andα = 1 for the canonical measure with density in
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FIGURE 6.6. Analytical (circle) and numerical (star) predictions for the
fluctuating part of the energy budget; estimates for|Ek|2 = 0 correspond
to the mean flowU . Simulations with the two-mode layered topography
and mean flowU with µ = 2,α = 1,β = 0.5.

(6.16) with the truncation|Ek|2 ≤ 17 for theuk’s, so there are 57 active modes. We
have verified that the situation described is similar for a variety of topographies
including single-mode topography; see [16].

The numerical estimates for the mean values and variances of the mean flowU
and the modesuk agree very well with the predictions of the equilibrium statisti-
cal theory. Figure 6.6 shows the numerical and analytical estimates for the energy
spectrum. The theoretical values and numerical predictions for the means and vari-
ances of the modesuk agree within a few percent, while the relative errors for the
mean value and the variance ofU are about 20%.

Figure 6.7 shows the correlation function ofU and the averaged correlation
functions of several low modesuk. The correlation function of the mean flowU
decays much slower than correlation functions of the modesuk.

The main assumption of the stochastic climate modeling strategy is clearly sat-
isfied in this case, and in the truncated barotropic equations in (3.6) we can identify
the mean flowU as the climate variable and the two modesuk with Ek = (1,0) and
Ek = (2,0) as the unresolved variables that couple toU . A detailed study of a
similar example with a priori stochastic climate modeling has been reported by
the authors in [16]. The general stochastic modeling procedure whenU alone is
declared the climate variable is the topic of Section 7.4 below.
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FIGURE 6.7. Averaged correlation functions forU (solid), |Ek|2 = 1,2
(dashed), and|Ek|2 = 4,5 (dotted). Simulations with the two-mode lay-
ered topography and mean flowU with µ = 2,α = 1,β = 0.5.

6.4 Identification of Parameters for Stochastic Modeling

The results of the numerical simulations reported above can be used to answer
the following question that we have left open so far. How do we identify the param-
etersw̄k, γk, ωk, andε in the stochastic model assumption in (3.14)? We discuss
this point now and also indicate how the solution of the stochastic model equations
for the climate variables alone should be compared to the results of the numerical
simulations for those variables.

It is important to point out first that the numerical simulations are of course
performed in the original time scalet , whereas the stochastic model for barotropic
equations in (3.17) is formulated in a coarse-grained time scale obtained by setting
t → εt . For the present discussion it is essential to distinguish the two time scales,
and we will denote byτ = εt the coarse-grained time scale. Thus, we write the
last equation in (3.17), which we will need in a moment, as

dwk = i

ε
HkU dτ − i

ε
(kxU −�k)wk dτ + 1

ε

∑
El∈σ1

Lklvl dτ(6.54)

+ 1

ε

∑
El∈σ2

Lklwl dτ + 1

2ε

∑
El , Em∈σ1Ek+El+ Em=0

Bklmv
∗
l v

∗
m dτ
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+ 1

ε

∑
El∈σ1, Em∈σ2Ek+El+ Em=0

Bklmv
∗
l w

∗
m dτ − 1

ε2
γk(wk − w̄k)dτ

+ σk√
2ε

(
dWk(τ )+ dW∗

−k(τ )
)
.

From this equation, it follows that, to leading order inε, the mean value of the
unresolved modewk is given at statistical steady state by

(6.55) Ewk(t) = w̄k .

Thus, the measurement ofEwk(t) in the experiments provides an estimate for the
parameterw̄k. Similarly, it follows from the equation in (6.54) that, to leading
order inε, the correlation function of the unresolved modewk is given at statistical
steady state by

(6.56) E(wk(τ )− w̄k)
(
w∗

k(τ
′)− w̄∗

k

) = σ 2
k

γk
e−γk|τ−τ ′|/ε2

,

which, in terms of the original time scalet , reads

(6.57) E(wk(t)− w̄k)
(
w∗

k(t
′)− w̄∗

k

) = σ 2
k

γk
e−γk|t−t ′|/ε .

Thus, the ratioσ 2
k /γk can be estimated fromE|wk(t) − w̄k|2. Furthermore, the

measurement of the decay rate of the correlation functions of the unresolved modes
wk, which we will denote byγ DNS

k , gives the value for the ratioγk/ε, i.e.,

(6.58) γ DNS
k = γk

ε
.

Knowing the values forσ 2
k /γk andγk/ε , we immediately obtainσk/

√
ε. It will be

convenient to defineσDNS
k as

(6.59) σDNS
k = σk√

ε
.

(Notice that if the model is taken to be consistent with equilibrium statistical
theory, it follows from the equations in (6.18) that only one parameter amongw̄k,
γk, andωk is free. If we take it to beγk, it means that only this parameter must be
estimated whereas the other two can then be obtained a priori.)

On the other hand, the parameterε can be estimated as the ratio between the
biggest measured decay rate of the climate variables and the smallest decay rate
of the unresolved variables. The parameterε is required to be small in order that
the asymptotic procedure outlined in Section 4 applies. However, as we now show,
theactual value ofε is irrelevant for comparing the solutions of the equations for
the climate variables alone and the results for these variables that are observed
in the (numerical) experiments. In fact, the key observation is that the equations
for the climate variables alone that are provided by the asymptotic procedure of
Section 4 are again given in terms of the coarse-grained time scaleτ = εt instead
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of the original time scale used in the experiments. Furthermore,if we re-express
the equations for the climate variables alone in terms of the original time scale
t instead of the coarse-grained time scaleτ = εt , the parameters entering these
equations becomeγ DNS

k and σDNS
k instead ofγk and σk. This fact can be readily

proven upon verifying that the general equations for the climate variables alone
in (4.17) (without fast-wave effects) or in (5.8) (with fast-wave effects) are left
invariant by the transformation

(6.60) t → t

ε
, γj → γj

ε
, σj → σj√

ε
, j ∈ σ2 .

This transformation amounts to going back to the original time scale and using
γ DNS

k andσDNS
k instead ofγk andσk in the equations.

Here we stop comparing the analytical results with the experiments. A system-
atic comparison between numerical simulations of the truncated barotropic equa-
tions in (3.3) and the solutions of the stochastic climate model equations for the
climate variables alone will be presented elsewhere.

7 New Phenomena in Low-Order Triad Models

In this section, we study the stochastic model for barotropic equations in (3.17)
in special model cases intended to illustrate explicitly various new phenomena pre-
dicted by the theory. A wave–mean flow triad model is considered in Section 7.1.
A climate scattering triad model is studied in Section 7.2. A more general triad
model with fast-wave effects of the type discussed in Section 5.2 is considered in
Section 7.3. Finally, the special case of the stochastic model in (3.17) whereU
alone is the declared climate variable is the topic of Section 7.4. The triad models
discussed below arise systematically when the Galerkin truncation used to derive
the barotropic equations in (3.17) involves a subspace consisting of a defining set
σ̄1 involving only three modes,(Ek, El , Em).

In each case, we consider both situations where the triad models are constrained
or not constrained by equilibrium statistical theory. The constraints in (6.36) ensur-
ing consistency with statistical mechanics that were derived in Section 6.2 translate
in terms of the variables(U, vk, wk) entering stochastic model in (3.17) as

(7.1) w̄k = |Ek|ĥk

µ+ |Ek|2
and

(7.2)
σ 2

k

γk
= 1

α(µ+ |Ek|2) .

The value ofw̄k in (7.1) is the mean value in (6.18) foruk ≡ wk predicted by
equilibrium statistical theory, whereas the ratio in (7.2) is the variance in (6.18) for
uk ≡ wk. As explained before, we study both cases where the equations in (7.1)
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and (7.2) are satisfied or not satisfied based on the following motivation. Equilib-
rium statistical models have nontrivial, well-defined mean states and energy spectra
that can serve as a nontrivial test case for stochastic climate models. In this case,
we check explicitly that, consistent with Theorem 6.6, in the constrained situation
the stochastic climate models also satisfy equilibrium statistical theory. On the
other hand, practical climate models can involve energy spectra for the unresolved
modes that are not given by equilibrium statistical mechanics, so the consequences
of making general assumptions are interesting.

The triad models confirm the results of Section 4. Generally, the effect of
the unresolved variables on the climate variables must be accounted for by linear
Langevin terms that can be both stabilizing and destabilizing, by nonlinear terms,
and by multiplicative noises. The effect of the unresolved variables can also mod-
ify the climate mean. In each cases, explicit criteria for stability are derived that
illuminate the mechanism for nonlinear energy transfer between the modes in triad
model equations.

7.1 Wave–Mean Flow Triad Equations

We consider the equations in (3.17) under the assumption that

a1. There is no beta effect or topography. Thus, we setβ = ĥk = 0 in the
stochastic model for barotropic equations in (3.17).

By assumption a1 it follows from the first equation in (3.17) that there is no mean
flow, U = 0. In addition:

a2. We identify the modevk with Ek fixed as the climate variable, and all the
other modes as unresolved variables. Furthermore, we assume that there is
only one pair(El , Em) such thatEk + El + Em = 0.

It follows by assumption a2 that the climate modevk is coupled only to the un-
resolved modeswl andwm, and the stochastic model for barotropic equations in
(3.17) reduces to the following triad model equations:

dvk = 1

ε
Bkw

∗
l w

∗
m dt ,

dwl = 1

ε
Blw

∗
mv

∗
k dt − 1

ε2
γlwl dt + σl

ε
dWl (t) ,

dwm = 1

ε
Bmw

∗
l v

∗
k dt − 1

ε2
γmwm dt + σm

ε
dWm(t) ,

(7.3)

where

(7.4) Bk = Bklm , Bl = Blmk , Bm = Bmkl .

From the equation in (3.7) and the constraintEk + El + Em = 0, it follows that

(7.5) Bk + Bl + Bm = 0
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and

(7.6)
Bk

|El |2 − | Em|2 = Bl

| Em|2 − |Ek|2 = Bm

|Ek|2 − |El |2 .
Notice that we have set̄wl = w̄m = 0 in the equations in (7.3). It can be shown that
this constraint is essential in order for the equation in (2.10) to be satisfied for the
triad model equations in (7.3), i.e., in order for the unresolved modeswl ,wm not to
produce effects of orderε−1 on the climate modevk. Notice also that this constraint
is consistent with equilibrium statistical theory since, from the equations in (7.1),
we havew̄l = w̄m = 0 if ĥk = ĥl = 0. The general structure of the equations in
(7.3) together with the condition in (7.5) is that for the damped and stochastically
forced three-wave resonant equations [24]. The barotropic model equations are a
special case.

We now ask about the asymptotic behavior of the climate modevk for smallε.
We have the following:

THEOREM 7.1 Denote byvεk(t) the solution of the first equation in(7.3). In the
limit as ε → 0, vεk(t) tends tovk(t) wherevk(t) satisfies

(7.7) dvk = −γkvk dt + σk dWk(t)

and Wk is a complex-valued Wiener process, and we define

(7.8) γk = Bl + Bm

2(γl + γm)

(
σ 2

l Bm

γl
+ σ 2

mBl

γm

)
, σk =

√
2σlσm(Bl + Bm)

2
√
γlγm(γl + γm)

.

Theorem 7.1 follows from Theorem 4.1 after mapping of the triad model equa-
tions in (7.3) onto the equations in (4.3). Alternatively, Theorem 7.1 can be proven
from Theorem 4.4 by computing the operatorL̄ in (4.35) associated with the equa-
tions in (7.3). Some details of this calculation are given at the end of this section.

Theorem 7.1 tells us that the unresolved modeswl , wm are responsible for all
the driving of the climate modevk, since neglecting the effect ofwl , wl in the first
equation in (7.3) would have left us with the trivial result∂vk/∂t = 0 instead of
the equation in (7.7). This equation predicts that the limitingvk is a Gaussian ran-
dom process of Ornstein-Uhlenbeck type whose solution for the initial condition
vk(t0) = vk is

(7.9) vk(t) = vke−γk(t−t0) + σk

∫ t

t0

e−γk(t−s) dWk(s) .

It follows that a statistical steady state exists if and only if the stability criterion
γk > 0 is satisfied, which, from the the expression forγk in (7.8), requires

(7.10) Bm < − max

(
Bl ,

σ 2
l γmBl

σ 2
mγl

)
or Bm > − min

(
Bl ,

σ 2
l γmBl

σ 2
mγl

)
.

In particular, a statistical steady state always exists if the nonlinear interaction co-
efficients satisfy sgn(Bl Bm) = 1. On the contrary no statistical steady state exists
and instability in the climate model occurs for sgn(Bl Bm) = −1 if the conditions
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in (7.10) are violated. This result can be phrased in terms of the mechanism for
energy transfer between the modes by nonlinear interaction. Typically, each pair
(wl , wm), (wm, vk), or (vk, wl ) transfers a positive or negative amount of energy
with the corresponding modevk, wl , or wm, depending on the amplitude of the
modes and the specific values of the nonlinear interaction coefficientsBk, Bl , and
Bm. In the triad model equations in (7.3) the energy is fed into the unresolved
modeswl , wl by the forcing, then transfered by nonlinear interaction to the cli-
mate modevk. In turn, energy can be back-scattered fromvk towardswl andwm.
Stability or instability tells us about the balance between these two mechanisms.
In particular, in the stable case, the back-scatter energy transfer fromvk towl and
wm is strong enough for dissipation through the damping terms in the equations for
wl andwm to be sufficient for establishing a statistical steady state. In contrast, in
the unstable case, energy piles up in the climate modevk, preventing the existence
of a statistical steady state in the absence of additional dissipation on the modevk

itself. This result generalizes to the random case the observation made by Smith
and Waleffe for a deterministic triad model in [24]. In Section 7.2, we consider
a triad model where the role of climate and unresolved variables are interchanged
compared to (7.3), and we derive an analogous criterion involving the sign of the
interaction coefficients that is consistent with the results obtained here.

It should also be pointed out that a statistical steady state always exists if the
triad model equations in (7.3) are constrained by the results of equilibrium statis-
tical theory, i.e., if we take the ratiosσ 2

l /γl andσ 2
m/γm consistent with the energy

spectrum in (7.2). In this caseγl , γm can be chosen as the only free parameters,
and Theorem 7.1 is changed as follows:

THEOREM 7.2 Let the equations in(7.3) be constrained by(7.2) and denote by
vεk(t) the solution of the first equation in(7.3). In the limit asε → 0, vεk(t) tends to
vk(t) wherevk(t) satisfies

(7.11) dvk = −γkvk dt + σk dWk(t) ,

where Wk is a complex-valued Wiener process and we define

(7.12) γk = (µ+ |Ek|2)Rk , σk =
√

Rk

α
,

with

(7.13) Rk = B2
k

2(γl + γm)|Ek||El || Em|(µ+ |El |2)(µ+ | Em|2) .

Clearly,γk > 0 from the first equation in (7.12) and, consistent with the results
from equilibrium statistical theory in (6.16) and (6.18), the invariant measure for
the processuk defined through the equation in (7.11) has a Gaussian density with
zero mean (sincêhk = 0) and variance

(7.14)
σ 2

k

γk
= 1

α(µ+ |Ek|2) .
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PROOF OFTHEOREM 7.1: We proceed as in the proof of Theorem 5.1 and ex-
plicitly identify the operators enterinḡL in (4.35) associated with triad model
equations in (7.3). The actual computation ofL̄ can be done using the material
in Appendix A. Consistent with the asymptotic procedure outlined in Section 4.4,
we work with the backward equation associated with the Markov process defined
by (7.3). Denote by(vεk(t), w

ε
l (t), w

ε
m(t)) the solution of the equations in (7.3) for

the initial condition(vεk(s), w
ε
l (s), w

ε
m(s)) = (vk, wl , wm), and let

(7.15) %ε
(
s, vk, v

∗
k , w

ε
l , w

∗
l , wm, w

∗
m | t

) = E f
(
vεk(t), w

ε
l (t), w

ε
m(t)

)
.

In this expression and the ones that follow,vk, v∗
k , wl , w∗

l , wm, andw∗
m must be

considered as independent variables.%ε satisfies the backward equation similar to
the one in (4.22):

(7.16) −∂%
ε

∂s
= 1

ε2
L1%

ε + 1

ε
L2%

ε ,

where we defined

L1 = −γlwl
∂

∂wl

− γlw
∗
l

∂

∂w∗
l

− γmwm
∂

∂wm

− γmw
∗
m

∂

∂w∗
m

+ 2σ 2
l

∂

∂wl∂w
∗
l

+ 2σ 2
m

∂

∂wm∂w∗
m

,

L2 = Bkwlwm
∂

∂vk

+ Bkw
∗
l w

∗
m

∂

∂v∗
k

+ Blwmvk
∂

∂wl

+ Blw
∗
mv

∗
k

∂

∂w∗
l

+ Bmwlvk
∂

∂wm

+ Bmw
∗
l v

∗
k

∂

∂w∗
m

.

(7.17)

The invariant measure associated with the operatorL1 in (7.17) has the Gaussian
density given by

(7.18) P? = C exp

(
− γl

2σ 2
l

|wl |2 − γm

2σ 2
m

|wm|2
)
,

and this expression reduces to the density (6.16) if the constraints in (7.1) and (7.2)
are satisfied. The actual computation of the operatorL̄ given in (4.35) can now be
done using the material in Appendix A. �

7.2 Climate Scattering Triad Equations
We consider the equations in (3.17) under the assumption a1, which we recall

for convenience

a1. There is no beta effect or topography. Thus, we setβ = ĥk = 0 in the
stochastic model for barotropic equations in (3.17).

Thus, there is no mean flow,U = 0. In addition, we have the following:

a3. We identify the modesvl , vm with El , Em fixed as climate variables, and
all the other modes as unresolved variables. Furthermore, we assume that
there is only oneEk such thatEk + El + Em = 0.
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It follows by assumption a3 that the climate modesvk, vl are coupled to the single
unresolved modewm, and the stochastic model for barotropic equations in (3.17)
reduces to the following triad model equations

dvl = 1

ε
Blw

∗
kv

∗
m dt , dvm = 1

ε
Bmw

∗
kv

∗
l dt ,

dwk = 1

ε
Bkv

∗
l v

∗
m dt − 1

ε2
γkwk dt + σk

ε
dWk(t) ,

(7.19)

with the condition in (7.5),Bk + Bl + Bm = 0. The equations in (7.19) have the
structure of general three-wave interaction equations where only one of the vari-
ables is strongly damped and stochastically forced. Notice that the model equations
in (7.19) can be obtained from the equations in (7.3) by interchanging the roles of
climate and unresolved variables. Also, we have setw̄k = 0 in the last equation
in (7.19) in order to avoid effects of orderε−1 of the unresolved modewk on the
climate modesvl , vm.

The following theorem specifies the behavior of the climate modes for smallε:

THEOREM 7.3 Denote byvεl (t), v
ε
m(t) the solutions of the first two equations in

(7.19). In the limit asε → 0, (vεl (t), v
ε
m(t)) tends to(vl (t), vm(t)) wherevl (t),

vm(t) satisfy

dvl = σ 2
k Bl Bm

γ 2
k

vl dt + Bk Bl

γk
|vm|2vl dt + σk Bl

γk
v∗

mdW(t) ,

dvm = σ 2
k BmBl

γ 2
k

vm dt + Bk Bm

γk
|vl |2vm dt + σk Bm

γk
v∗

l dW(t) ,

(7.20)

where W(t) is a complex Wiener process.

Theorem 7.3 follows from Theorem 4.2 after mapping of the triad model equa-
tions in (7.19) onto the equations in (4.11). Alternatively, Theorem 7.3 can be es-
tablished by a direct method similar to the one presented in Section 4.5, as shown
at the end of this section.

The equations in (7.20) clearly demonstrate that it may be necessary to account
for the effect of the unresolved modes by nonlinear interaction terms and multi-
plicative noises in the equations for the climate modes. The exact solution of the
equations in (7.20) is not available. However, since these equations are invari-
ant under the transformation(vl , vm) → (−vl ,−vm), it follows that the process
(vl (t), vm(t)) predicted through these equations for the initial condition(0,0) has
zero mean. Thus, we may get some insight if we linearize the equations in (7.20)
around(0,0) and perform the linearized stability analysis of the resulting equa-
tions:

dvl = σ 2
k Bl Bm

γ 2
k

vl dt + σk Bl

γk
v∗

m dW(t) ,

dvm = σ 2
k BmBl

γ 2
k

vm dt + σk Bm

γk
v∗

l dW(t) .

(7.21)
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An exact solution of these equations is available if we artificially force the process
(vl (t), vm(t)) to be real by takingWk(t) to be a real instead of complex Wiener
process. These results were reported in [16]. Here, we focus on the complex case.
We have the following:

PROPOSITION7.4 The equations in(7.21)are stochastically stable around(0,0)
if and only if Bl and Bm have opposite signs. More precisely, if(Vl (t),Vm(t))
denotes the solution of the equations in(7.21)for the initial condition(vl , vm), we
have

(7.22) lim
vl ,vm→0

prob
(

sup
0≤t<∞

(|Vl (t)|2 + |Vm(t)|2
) ≥ ε

)
= 0 for all ε > 0

if and only if sgn(Bl Bm) = −1. In particular, we have exponential instability if
and only if Bl and Bm have the same sign.

Notice that the criterion for stability, sgn(Bl Bm) = −1, will always be satisfied
if |Ek| > |El |, | Em|, i.e., if the unresolved mode has a wave number with higher am-
plitude than that of the climate modes. This follows from the relations in (7.6) and
may also be stated as follows: One resolved mode of shorter wavelength cannot
transfer energy to other two resolved modes for the barotropic equations.

PROOF: It is known [2] that, for an autonomous system of equations, stochastic
stability is implied by stability in the second moment, i.e., by the property that for
everyε > 0 there exists aδ > 0 such that

(7.23) sup
0≤t<∞

E
(|Vl (t)|2 + |Vm(t)|2

) ≤ ε if |vl |2 + |vm|2 ≤ δ .

Thus we demonstrate Proposition 7.4 by verifying the property in (7.23) for the
equations in (7.21). From these equations, by standard application of the Itô calcu-
lus (see, e.g., [2]) we derive

d

dt
E|vl |2 = 2σ 2

k Bl Bm

γ 2
k

E|vl |2 + 2σ 2
k B2

l

γ 2
k

E|vm|2 ,
d

dt
E|vm|2 = 2σ 2

k Bl Bm

γ 2
k

E|vm|2 + 2σ 2
k B2

m

γ 2
k

E|vl |2 .
(7.24)

Hence

E|Vl (t)|2 = Bmv
2
l + Blv

2
m

2Bm
exp

(
4σ 2

k Bl Bmt

γ 2
k

)
+ Bmv

2
l − Blv

2
m

2Bm
,

E|Vm(t)|2 = Bmv
2
l + Blv

2
m

2Bl
exp

(
4σ 2

k Bl Bmt

γ 2
k

)
− Bmv

2
l − Blv

2
m

2Bl
,

(7.25)

and the property in (7.23) holds if sgn(Bl Bm) = −1. Since instability of the second
moments trivially implies stochastic instability, the formula in (7.25) completes the
proof of Proposition 7.4. �
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Proposition 7.4 deserves several comments. First, this result demonstrates that
it is possible to generate significant energy in two components of an interacting
triad by strongly forcing and damping the third component only if these two com-
ponents have the same sign of interaction, as conjectured by Smith and Waleffe
[24]. Furthermore, this result is consistent with what we concluded in Section 7.1
about the mechanism of nonlinear energy transfer between the modes. Recall that
the triad model equations in (7.3) and the ones in (7.26) correspond to opposite
identification of the climate and the unresolved variables. Consistent with the in-
terpretation of stability as the result of the balance between energy transfer rates
between the modes, we generally observe stability of equation (7.7) when the equa-
tion in (7.20) is unstable, and vice versa. Of course, the precise criterion for stabil-
ity or instability in (7.7) or (7.20) may differ slightly since the forcing and damping
in the equations in (7.3) and in (7.26) are different.

Another comment about Proposition 7.4 is that, in contrast to the situations
in Section 7.1, here linear instability can occur even if the parameters in (7.19)
are taken that are consistent with equilibrium statistical mechanics. To discuss this
point in more detail, we state the following result, which follows from Theorem 7.3
if we constrain the ratioσ 2

k /γk consistent with (7.2) and takeγk to be the only free
parameter:

THEOREM 7.5 Let the last equation in(7.19)be constrained by(7.2) and denote
by vεl (t), v

ε
m(t) the solutions of the first two equations in(7.19). In the limit as

ε → 0, (vεl (t), v
ε
m(t)) tends to(vl (t), vm(t)) wherevl (t) andvm(t) satisfy

dvl = c2
k Bl Bm

γk
vl dt + Bk Bl

γk
|vm|2vl dt + ck Bl√

γk
v∗

m dW(t) ,

dvm = c2
k BmBl

γk
vm dt + Bk Bm

γk
|vl |2vm dt + ck Bm√

γk
v∗

l dW(t) ,

(7.26)

where W(t) is a complex Wiener process and ck is the root mean square value for
wk predicted by equilibrium statistical theory

(7.27) ck = 1√
α(µ+ |Ek|2)

.

The condition for linear stability of the equations in (7.26) is the same as the
one for the equations in (7.20): sgn(Bl Bm) = −1. This result should, however,
be balanced with the following remarkable property of the nonlinear equations in
(7.26). Consistent with Theorem 6.6, the invariant measure for the equations in
(7.26) has the following Gaussian density:

(7.28) P?,clim
C = C exp

(
−1

2
α(µ+ |El |2)|vl |2 − 1

2
α(µ+ | Em|2)|vm|2

)
.

This fact can also be verified explicitly by checking that the density in (7.28) is a
statistical steady state solution for the Fokker-Planck equations associated with the
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equations in (7.26), i.e.,

0 =
(

c2
k Bl Bm

γk
+ Bk Bl

γk
|vm|2

)(
∂

∂vl

(vl P
?,clim
C )+ ∂

∂v∗
l

(v∗
l P?,clim

C )

)

+
(

c2
k BmBl

γk
+ Bk Bm

γk
|vl |2

)(
∂

∂vm

(vmP?,clim
C )+ ∂

∂v∗
m

(v∗
mP?,clim

C )

)

+ 2c2
k B2

l

γk
|vm|2∂

2P?,clim
C

∂vl∂v
∗
l

+ 2c2
k B2

m

γk
|vl |2∂

2P?,clim
C

∂vm∂v∗
m

+ 2c2
k Bl Bm

γk

(
v∗

l vm
∂2P?,clim

C

∂vl∂v∗
m

+ vlv
∗
m

∂2P?,clim
C

∂v∗
l ∂vm

)
.

(7.29)

The existence of an invariant measure with density (7.28) for equations in (7.26)
implies that any linear instability of the equations in (7.26) will eventually be sat-
urated by nonlinear effects in a way consistent with the density in (7.28). It would
be interesting to know if a similar mechanism of nonlinear saturation exists for
the equations in (7.20) in certain parameter regimes. Finally, we point out that, in
the stable situation, the present analysis suggests that the actual invariant measure
for the equations in (7.26) will be the point mass measure at(0,0) rather than the
one with density (7.28). The existence of two invariant measures for the equations
in (7.26), one stable and one unstable depending on the parameters, is a kind of
pathology that is made possible by the singular nature of these equations at(0,0),
but is likely to disappear for more general model equations than the ones in (7.19)
because of the appearance of linear random forcing in the climate model equations
as described in Sections 4 and 5 above. For instance, the introduction of fast-wave
effects on the equations in (7.19), as considered in Section 7.3 below, guarantee
that the invariant measure for the resulting equation for the climate variable alone
is always the invariant measure with the Gaussian density in (7.28).

PROOF OFTHEOREM 7.3: We use the direct method presented in Section 4.5
and proceed by direct calculation. Because the last equation in (7.19) is linear in
wk, this equation for the initial conditionwk(0) = wk is equivalent to the integral
equation

(7.30) wk(t) = e−γkt/ε2
wk + Bk

ε

∫ t

0
e−γk(t−s)/ε2

v∗
l (s)v

∗
m(s)ds+ 1

ε
gk(t) ,

where

(7.31) gk(t) = σk

∫ t

0
e−γk(t−s)/ε2

dWk(s) .

Inserting (7.30) into the first two equations in (7.19) gives closed, non-Markovian
stochastic model equations for the climate modes(vl (t), vm(t)) valid for any ε.
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These equations are given by

dvl (t) = Bl

ε2
e−γkt/ε2

w∗
kv

∗
m(t)dt

+ Bl Bk

ε2

(∫ t

0
e−γk(t−s)/ε2

vl (s)vm(s)ds

)
v∗

m(t)dt

+ Bl

ε2
g∗

k(t)v
∗
m(t)dt

dvm(t) = Bm

ε2
e−γkt/ε2

w∗
kv

∗
l (t)dt

+ BmBk

ε2

(∫ t

0
e−γk(t−s)/ε2

vl (s)vm(s)ds

)
v∗

l (t)dt

+ Bm

ε2
gk(t)v

∗
l (t)dt .

(7.32)

We now show that, in the limit asε → 0, the equations in (7.32) reduce to the
actual stochastic model given in (7.20). We consider successively the various terms
in (7.32) in the limit asε → 0. We have first

(7.33)
Bl

ε
e−γkt/ε2

w∗
kv

∗
m(t)dt → 0 ,

Bm

ε
e−γkt/ε2

w∗
kv

∗
l (t)dt → 0 .

Second,

Bl Bk

ε2

(∫ t

0
e−γk(t−s)/ε2

vl (s)vm(s)ds

)
v∗

m(t)dt → Bl Bk

γk
vl (t)|vm(t)|2 dt ,

BmBk

ε2

(∫ t

0
e−γk(t−s)/ε2

vl (s)vm(s)ds

)
v∗

l (t)dt → Bl Bk

γk
vm(t)|vl (t)|2 dt .

(7.34)

Finally, a standard argument with test functions similar to the one given in Sec-
tion 4.5 shows that

Bl

ε2
g∗

k(t)v
∗
m(t)dt → σk Bl

γk
v∗

m(t) ◦ dW(t) ,

Bm

ε2
g∗

k(t)v
∗
l (t)dt → σk Bm

γk
v∗

l (t) ◦ dW(t) ,
(7.35)

where, as the external limit of a process with finite correlation time, the white noise
is interpreted in Stratonovich’s sense. Collecting (7.33), (7.34), and (7.35) into the
first two equations in (7.19), we obtain

dvl = Bk Bl

γk
|vm|2vl dt + σk Bl

γk
v∗

m ◦ dW(t) ,

dvm = Bk Bm

γk
|vl |2vm dt + σk Bm

γk
v∗

l ◦ dW(t) .
(7.36)

These equations are equivalent to Itô’s equations in (7.20), which concludes the
proof. �
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7.3 Triad Equations with Fast-Wave Effects

We consider the equations in (3.17) under the following assumptions:

a4. There is no beta effect or mean flow. Thus, we setβ = 0, U = 0 in the
stochastic model for barotropic equations in (3.17).

a5. We identify the modesvl , vm with El , Em fixed as climate variables, and all
the other modes as unresolved variables. We also assume that there is only
one pairEk such thatEk + El + Em = 0.

a6. Finally, we assume that the only nonzero mode of topography isĥl−m ≡ h,
which we take to be real,h = h∗.

Assumption a6 is somewhat artificial but is meant for transparency only, and the
case with all three modes of topography,ĥk, ĥl , andĥm, nonzero and complex, can
easily be handled.

It follows by assumptions a4 through a6 that the climate modesvl , vm are cou-
pled to the single unresolved modewk, and the stochastic model for barotropic
equations in (3.17) reduces to triad model equations that are similar to those in
(7.19) except for the fast-wave effects induced by the topography

dvl = −ω
ε
vm dt + 1

ε
Blw

∗
kv

∗
m dt ,

dvm = ω

ε
vl dt + 1

ε
Bmw

∗
kv

∗
l dt ,

dwk = 1

ε
Bkv

∗
l v

∗
m dt − 1

ε2
γkwk dt + σk

ε
dWk(t) ,

(7.37)

where we defined

(7.38) ω = h

|Ek||El | .

The asymptotic behavior of the climate modes for smallε is specified by the
following:

THEOREM 7.6 Denote byvεl (t) andvεm(t) the solutions of the first two equations
in (7.37), and let

v̄εl (t) = cos

(
ωt

ε

)
vεl (t)+ sin

(
ωt

ε

)
vεm(t) ,

v̄εm(t) = cos

(
ωt

ε

)
vεm(t)− sin

(
ωt

ε

)
vεl (t) .

(7.39)
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In the limit asε → 0, (v̄εl (t), v̄
ε
m(t)) tends to(vl (t), vm(t)) wherevl (t), vm(t)

satisfy

dvl = σ 2
k Bl Bm

γ 2
k

vl dt + Bk(Bl + Bm)

8γk

(
(2|vm|2 + |vl |2)vl − v2

mv
∗
l

)
dt

+ σk

2γk
(Bl − Bm)v

∗
m dW1(t)+ σk

2
√

2γk

(Bl + Bm)v
∗
m dW2(t)

+ σk

2
√

2γk

(Bl + Bm)v
∗
l dW3(t) ,

dvm = σ 2
k Bl Bm

γ 2
k

vm dt + Bk(Bl + Bm)

8γk

(
(2|vl |2 + |vm|2)vl − v2

l v
∗
m

)
dt

+ σk

2γk
(Bm − Bl )v

∗
l dW1(t)+ σk

2
√

2γk

(Bl + Bm)v
∗
l dW2(t)

− σk

2
√

2γk

(Bl + Bm)v
∗
m dW3(t) ,

(7.40)

where W1(t), W2(t), and W3(t) are independent complex Wiener processes.

Theorem 7.6 follows from Theorem 5.3 after mapping of the triad model equa-
tions in (7.37) onto the equations in (4.1). Alternatively, Theorem 7.3 can be es-
tablished by a direct calculation, reported at the end of this section.

The equations in (7.40) should be compared to the equations in (7.20) in Theo-
rem 7.3. We see that the fast-wave effects in the equations in (7.37) are responsible
for isotropization of the modes(vl , vm). If we make the original equations in (7.37)
consistent with equilibrium statistical mechanics by constraining the ratioσ 2

k /γk as
in (7.2) and takingγk as the only free parameters, Theorem 7.6 is changed into the
following:

THEOREM 7.7 Let the last equation in(7.37)be constrained by(7.2), denote by
vεl (t) andvεm(t) the solutions of the first two equations in(7.37), and let

v̄εl (t) = cos

(
ωt

ε

)
vεl (t)+ sin

(
ωt

ε

)
vεm(t) ,

v̄εm(t) = cos

(
ωt

ε

)
vεm(t)− sin

(
ωt

ε

)
vεl (t) .

(7.41)

In the limit asε → 0, (v̄εl (t), v̄
ε
m(t)) tends to(vl (t), vm(t)) wherevl (t) andvm(t)

satisfy

dvl = c2
k Bl Bm

γk
vl dt + Bk(Bl + Bm)

8γk

(
(2|vm|2 + |vl |2)vl − v2

mv
∗
l

)
dt(7.42)

+ ck

2
√
γk
(Bl − Bm)v

∗
m dW1(t)+ ck

2
√

2γk
(Bl + Bm)v

∗
m dW2(t)

+ ck

2
√

2γk
(Bl + Bm)v

∗
l dW3(t) ,
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dvm = c2
k Bl Bm

γk
vm dt + Bk(Bl + Bm)

8γk

(
(2|vl |2 + |vm|2)vl − v2

l v
∗
m

)
dt

+ ck

2γk
(Bm − Bl )v

∗
l dW1(t)+ ck

2
√

2γk
(Bl + Bm)v

∗
l dW2(t)

− ck

2
√

2γk
(Bl + Bm)v

∗
m dW3(t) ,

where W1(t), W2(t), and W3(t) are independent complex Wiener processes and ck

is the root-mean-square value forwk predicted by equilibrium statistical theory

(7.43) ck = 1√
α(µ+ |Ek|2)

.

The equations in (7.42) should be compared to the equations in (7.26) in Theo-
rem 7.5, confirming that the fast-wave effects in the equations in (7.37) are respon-
sible for isotropization of the modes(vl , vm).

We now show that isotropization has a dramatic effect on the linear stability
around(0,0) of the equations in (7.40) and (7.42). In fact, in contrast to the equa-
tions in (7.20), which are linearly stable if the criterion sgn(Bl Bm) = −1 is sat-
isfied (see Proposition 7.8), the equations in (7.40) and (7.42) arealwayslinearly
unstable. More precisely, consider the equations in (7.40) linearized around(0,0):

dvl = σ 2
k Bl Bm

γ 2
k

vl dt + σk

2γk
(Bl − Bm)v

∗
m dW1(t)

+ σk

2
√

2γk

(Bl + Bm)v
∗
m dW2(t)+ σk

2
√

2γk

(Bl + Bm)v
∗
l dW3(t) ,

dvm = σ 2
k Bl Bm

γ 2
k

vm dt + σk

2γk
(Bm − Bl )v

∗
l dW1(t)

+ σk

2
√

2γk

(Bl + Bm)v
∗
l dW2(t)− σk

2
√

2γk

(Bl + Bm)v
∗
m dW3(t) .

(7.44)

The equation obtained by linearizing the equations in (7.42) are similar and can be
obtained from (7.44) by settingσk/

√
γk = ck. We have the following:

PROPOSITION 7.8 The equations in(7.40) are always stochastically unstable
around(0,0).

PROOF: We proceed similarly as in the proof of Proposition 7.4 and verify the
instability in the second moment for the equations in (7.40). From (7.40) it follows
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that (compare (7.24))

d

dt
E|vl |2 = σ 2

k (B
2
l + B2

m + 10Bl Bm)

4γ 2
k

E|vl |2

+ σ 2
k (3B2

l + 3B2
m − 2Bl Bm)

4γ 2
k

E|vm|2 ,
d

dt
E|vm|2 = σ 2

k (B
2
l + B2

m + 10Bl Bm)

4γ 2
k

E|vm|2

+ σ 2
k (3B2

l + 3B2
m − 2Bl Bm)

4γ 2
k

E|vl |2 .

(7.45)

The solution of these equations is

E|vl (t)|2 = 1

2
(|vl |2 + |vm|2)exp

(
σ 2

k (Bl + Bm)
2t

γ 2
k

)

+ 1

2
(|vl |2 − |vm|2)exp

(
−σ

2
k (B

2
l + B2

m − 6Bl Bm)t

2γ 2
k

)
,

E|vm(t)|2 = 1

2
(|vl |2 + |vm|2)exp

(
σ 2

k (Bl + Bm)
2t

γ 2
k

)

− 1

2
(|vl |2 − |vm|2)exp

(
−σ

2
k (B

2
l + B2

m − 6Bl Bm)t

2γ 2
k

)
,

(7.46)

which demonstrates instability. �

It is remarkable that both the equations in (7.40) and the equations in (7.42) that
we obtain by using the constraint in (7.2) from equilibrium statistical mechanics
are always linearly unstable. In the latter case, however, linear instability around
(0,0) should be balanced with the property that the invariant measure for the full
nonlinear equation in (7.42) has the Gaussian density

(7.47) P?,clim
C = C exp

(
−1

2
α
(
µ+ |El |2)|vl |2 − 1

2
α
(
µ+ | Em|2)|vm|2

)
.

This follows from Theorem 6.6; alternatively, this property can be checked explic-
itly by a calculation similar to the one we did in Section 7.2. In other words, linear
instability of the equation in (7.42) will eventually be saturated by nonlinear ef-
fects in a way consistent with the density in (7.47). In contrast, such a nonlinear
saturation mechanism will generally not be present for the equation in (7.40).

PROOF OFTHEOREM 7.6: The proof discussed here uses the direct method
presented in Section 4.5 combined with multiple time-scale expansion to deal with
fast-wave effects. We deal with the rotation first by changing dependent variables
as explained in Section 5.3. Let

(7.48) v̄l (t) = c(t)vl (t)+ s(t)vm(t) , v̄m(t) = c(t)vm(t)− s(t)vl (t) ,
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with c(t) = cos(ωt/ε), s(t) = sin(ωt/ε). In terms of(wk, v̄l , v̄m), the equations
in (7.37) become

dv̄l = 1

ε
Bl cV∗

mw
∗
k dt + 1

ε
BmsV∗

l w
∗
k dt ,

dv̄m = 1

ε
BmcV∗

l w
∗
k dt − 1

ε
Bl sV∗

mw
∗
k dt ,

dwk = 1

ε
BkV∗

l V∗
m dt − 1

ε2
γkwk dt + σk

ε
dWk(t) ,

(7.49)

where we defined

(7.50) Vl = cv̄l − sv̄m , Vm = cv̄m + sv̄l .

The equation forwk in (7.49) for the initial conditionwk(0) = wk can be solved as

(7.51) wk(t) = e−γkt/ε2
wk + Bk

ε

∫ t

0
e−γk(t−s)/ε2

V∗
l (s)V

∗
m(s)ds+ 1

ε
gk(t) ,

where

(7.52) gk(t) = σk

∫ t

0
e−γk(t−s)/ε2

dWk(s) .

Inserting (7.51) into the first two equations in (7.49) gives the following closed,
non-Markovian stochastic model equations for the climate modes(v̄l (t), v̄m(t))
valid for anyε:

dv̄l (t) = Bl

ε
c(t)e−γkt/ε2

w∗
k V∗

m(t)dt + Bm

ε
s(t)e−γkt/ε2

w∗
k V∗

l (t)dt

+ Bl Bk

ε2
c(t)V∗

m(t)

(∫ t

0
e−γk(t−s)/ε2

Vl (s)Vm(s)ds

)
dt

+ BmBk

ε2
s(t)V∗

l (t)

(∫ t

0
e−γk(t−s)/ε2

Vl (s)Vm(s)ds

)
dt

+ Blσk

ε2
c(t)V∗

m(t)g
∗
k(t)dt + Bmσk

ε2
s(t)V∗

l (t)g
∗
k(t)dt ,

dv̄m(t) = Bm

ε
c(t)e−γkt/ε2

w∗
k V∗

l (t)dt − Bl

ε
s(t)e−γkt/ε2

w∗
k V∗

m(t)dt

+ BmBk

ε2
c(t)V∗

l (t)

(∫ t

0
e−γk(t−s)/ε2

Vl (s)Vm(s)ds

)
dt

− Bl Bk

ε2
s(t)V∗

m(t)

(∫ t

0
e−γk(t−s)/ε2

Vl (s)Vm(s)ds

)
dt

+ Bmσk

ε2
c(t)V∗

l (t)g
∗
k(t)dt − Blσk

ε2
s(t)V∗

m(t)g
∗
k(t)dt .

(7.53)

We now show that in the limit asε → 0 the solutions of these non-Markovian
model equations converge to the solutions of the actual stochastic model given
in (7.40). Taking the limit asε → 0 for the equations in (7.53) is an operation
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more complicated than the one we did with the equations in (7.32) because of the
appearance of both time scalest/ε (corresponding to rotation effects) andt/ε2

(corresponding to the fast evolution of the nonlinear self-interaction between un-
resolved variables modeled stochastically in (7.37)). The right way to proceed is
to exploit the separation of scale between the various time scales and use a mul-
tiple time-scale expansion argument to take the limit asε → 0 for the equations
in (7.53). In effect, this amounts to doing the following three operations on these
equations:

(1) Considerc(t), s(t) as functions ofτ = t/ε,
(2) let ε → 0 with τ kept fixed, and
(3) time-average overτ with t kept fixed.

For simplicity, we will skip the tedious calculations involved in justifying steps
(1) through (3) and simply use them as a rule. Step (1) amounts to setting in the
equations in (7.53)

Vl (t) → Vl (t, τ ) = cos(ωτ)v̄l (t)− sin(ωτ)v̄m(t) ,

Vm(t) → Vm(t, τ ) = cos(ωτ)v̄m(t)+ sin(ωτ)v̄l (t) .
(7.54)

The limit asε → 0 involved in step (2) can be obtained by a calculation very
similar to the one we did in the proof of Proposition 7.3. It leads to

dv̄l (t) = Bl Bk

γk
cos(ωτ)|Vm(t, τ )|2Vl (t, τ )dt

+ BmBk

γk
sin(ωτ)|Vl (t, τ )|2Vm(t, τ )dt

+ Blσk

γk
cos(ωτ)V∗

m(t, τ ) ◦ dW(t)

+ Bmσk

γk
sin(ωτ)V∗

l (t, τ ) ◦ dW(t),

dv̄m(t) = BmBk

γk
cos(ωτ)|Vl (t, τ )|2Vm(t, τ )dt

− Bl Bk

γk
sin(ωτ)|Vm(t, τ )|2Vl (t, τ )dt

+ Bmσk

γk
cos(ωτ)V∗

l (t, τ ) ◦ dW(t)

− Blσk

γk
sin(ωτ)V∗

m(t, τ ) ◦ dW(t) ,

(7.55)

whereW(t) is a complex Wiener process. Step (3) now amounts to averaging
these equations overτ with t kept fixed. This operation is straightforward for those
terms in (7.55) that do not involvedW(t). For instance, for the first term on the
right-hand side of the equation forv̄l (t) in (7.55), we obtain
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(7.56) lim
T→∞

1

T

∫ T

0

Bl Bk

γk
cos(ωτ)|Vm(t, τ )|2Vl (t, τ )dτ =

Bl Bk

8γk

(
(2|v̄m(t)|2 + |v̄l (t)|2)v̄l (t)− v̄2

m(t)v̄
∗
l (t)

)
,

and the other terms are treated similarly. The time-averaging of the terms in (7.55)
that involvedW(t) is slightly more tedious since both the terms themselves and
their quadratic variations must be considered. Expanding the terms involving
dW(t), we can express them in terms of linear combination (with factors involving
v̄l (t), v̄m(t)) of

(7.57) cos2(ωτ)dW(t) , sin(ωτ) cos(ωτ)dW(t) , sin2(ωτ)dW(t) .

Time-averaging overτ can now be performed using a standard test function argu-
ment. For instance, we have

lim
T→∞

1

T
E
∫ T

0

(∫ ∞

0
η(t) cos2(ωτ)dW(t)

)
dτ = 0 ,(7.58)

lim
T→∞

1

T
E
∫ T

0

∣∣∣∣
∫ ∞

0
η(t) cos2(ωτ)dW(t)

∣∣∣∣
2

dτ(7.59)

= 2 lim
T→∞

1

T

∫ T

0

∫ ∞

0
η2(t) cos4(ωτ)dt dτ = 3

4

∫ ∞

0
η2(t)dt ,

whereη is a test function. By such manipulations, it can be concluded that time-
averaging amounts to setting

cos2(ωt)dW(t) → 1

2
dW1(t)+ 1

2
√

2
dW2(t) ,

sin2(ωt)dW(t) → 1

2
dW1(t)− 1

2
√

2
dW2(t) ,

sin(ωt) cos(ωt)dW(t) → 1

2
√

2
dW3(t) ,

(7.60)

whereW1(t), W2(t), andW3(t) are independent, complex white noises. Combin-
ing the results in (7.56) and (7.60), it follows that, in the limit asε → 0, the
equations in (7.53) reduce to the following system of Stratonovitch’s equations for
(vl (t), vm(t)):

dvl = Bk(Bl + Bm)

8γk

(
(2|vm|2 + |vl |2)vm − v2

mv
∗
l

)
dt(7.61)

+ σk

2γk
(Bl − Bm)v

∗
m ◦ dW1(t)+ σk

2
√

2γk

(Bl + Bm)v
∗
m ◦ dW2(t)

+ σk

2
√

2γk

(Bl + Bm)v
∗
l ◦ dW3(t) ,
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dvm = Bk(Bl + Bm)

8γk

(
(2|vl |2 + |vm|2)vl − v2

l v
∗
m

)
dt

+ σk

2γk
(Bm − Bl )v

∗
l ◦ dW1(t)+ σk

2
√

2γk

(Bl + Bm)v
∗
l ◦ dW2(t)

− σk

2
√

2γk

(Bl + Bm)v
∗
m ◦ dW3(t) .

These equations are equivalent to Itô’s equations in (7.40). �

7.4 The MeanU as a Single Climate Variable

As a last special example of the equations in (3.17), we consider that

a7. The mean flowU is identified as the climate variable, and the Fourier
modesuk = wk as the unresolved variables.

By assumption a7, it follows by utilizing the reality condition,w−k = w∗
k , that the

stochastic model for barotropic equations in (3.17) thus reduces to the following
system:

dU = 2

ε

∑
k∈σ̄2

kx Im(Ĥ ∗
kwk)dt ,

dwk = i

ε
HkU dt − i

ε
(kxU −�k)wk dt

− 1

ε2
γk(wk − w̄k)dt + σk

ε
dWk(t) ,

(7.62)

where σ̄2 is an arbitrary subset ofσ2 such that the representation of the modes
wk is complete using the reality condition,w−k = w∗

k (i.e., if k ∈ σ̄2, −k 6∈ σ̄2).
Notice that, consistent with our general strategy, all nonlinear self-interaction terms
between unresolved variables are modeled stochastically in the second equation
in (7.62).

The following theorem specifies the behavior of the climate mean flowU for
smallε:

THEOREM7.9 Denote by Uε(t) the solution of(7.62), and assume that the follow-
ing condition is satisfied:

(7.63)
∑
k∈σ̄2

w̄k

ĥk

∈ R .

Then in the limit asε → 0, Uε(t) tends to U(t) where U(t) satisfies

(7.64) dU = −γu(U − Ū )dt + σu dW(t) ,
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where

(7.65)

γu = 2
∑
k∈σ̄2

k2
x|ĥk|2(ĥk − |Ek|2w̄k)

|Ek|2γkĥk

, Ū = −2β

γu

∑
k∈σ̄2

k2
xw̄k|ĥk|2
|Ek|2γkĥk

,

σu = 2


∑

k∈σ̄2

k2
xσ

2
k |ĥk|2
γ 2

k




1/2

.

Theorem 7.9 follows from Theorem 4.1 after mapping of the triad model equa-
tions in (7.62) onto the equations in (4.3). Alternatively, Theorem 7.9 can be proven
from Theorem 4.4 by computing the operatorL̄ in (4.35) associated with the equa-
tions in (7.62). Some details of this calculation are given below.

We now discuss the content of Theorem 7.9. First, the theorem clearly tells
us that, in the present case, the unresolved modes are responsible forall the driv-
ing of the climate variableU , since neglecting the effect ofwk in the equation for
U in (7.62) would have left us with the trivial resultdU/dt = 0 instead of the
equation in (7.64). This equation predicts that the mean flowU is a Gaussian ran-
dom process of Ornstein-Uhlenbeck type whose solution for the initial condition
U (t0) = U is

(7.66) U (t) = Ue−γu(t−t0) + Ū (1 − e−γu(t−t0))+ σu

∫ t

t0

e−γu(t−s) dW(s) .

It follows that a statistical steady state exists if and only if the following stability
criterion is satisfied:

(7.67) γu = 2
∑
k∈σ̄2

k2
x|ĥk|2(ĥk − |Ek|2w̄k)

|Ek|2γkĥk

> 0 .

As shown below, the criterion in (7.67) is always satisfied if thew̄k are taken con-
sistent with equilibrium statistical theory. On the contrary, instability may occur
and no statistical steady state exists if|ĥk| > |Ek|2|w̄k|.

The requirement in (7.63) also deserves comment. As shown in the sketch of
the proof of Theorem 7.9 given below, this requirement is essential in order for
the solution of the stochastic model equation in (7.62) to have a limit asε → 0.
In other words, the requirement in (7.63) is essential for the very definition of the
mean flowU as the climate variable. What (7.63) actually gives is a rather weak
constraint on our stochastic model in (3.14): The mean value of modesEk andw̄k

must be taken such that they do not introduce global phase shift with respect to
the corresponding modeŝhk of the topography. It is also important to point out
that this constraint is automatically satisfied ifw̄k is taken consistent with equilib-
rium statistical theory, since in this case it follows from the equation in (7.1) that
w̄k/ĥk = (µ+ |Ek|2)−1 ∈ R.

Consider finally the question of how Theorem 7.9 is modified if we take the pa-
rameters in (7.62) consistent with equilibrium statistical theory, i.e., if we account
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for the constraints in (7.1) and (7.2). In this case there is only one free parameter,
which we chose to beγk. The following is an immediate consequence of Theo-
rem 7.9:

THEOREM 7.10 Let the equations in(7.62)be constrained by(7.1)and (7.2), and
denote by Uε(t) the solution of the first equation in(7.62). In the limit asε → 0,
U ε(t) tends to U(t) where U(t) satisfies

(7.68) dU = −γu(U − Ū )dt + σu dW(t) .

Here

(7.69) γu = 2µRu , Ū = −β
µ
, σu = 2

√
Ru

α
,

where

(7.70) Ru =
∑
k∈σ̄2

k2
x|ĥk|2

γk(µ+ |Ek|2) .

It is a simple matter to check that the process defined by (7.68) reaches a sta-
tistical steady state becauseγu > 0 sinceRu > 0 by the equation in (7.70) and
µ > 0 in the presence of a mean flow. Furthermore, consistent with Theorem 6.6,
the invariant measure for (7.68) has a Gaussian density with mean and variance
that agree with the values in (6.18) from equilibrium statistical theory. Indeed, the
mean value ofU predicted through (7.68) is simplȳU ; the variance ofU is given
by the ratio

(7.71)
σ 2

u

2γu
= 1

αµ
.

Of course, Theorem 7.10 gives more than the results of equilibrium statistical the-
ory since it predicts all multiple time statistics ofU . In particular, it follows from
the equation in (7.66) that at statistical steady state we have

(7.72) EU (t)U (s) = e−γu|t−s|

αµ
.

This expression for the correlation ofU agrees well with the results of numerical
simulations that were reported by the authors in [16].

PROOF OFTHEOREM 7.9: We only sketch the calculation and identify explic-
itly the operators enterinḡL in (4.35) associated with triad model equations in
(7.62). The backward equation associated with the Markov process defined by
(7.62) is given by

(7.73) −∂%
ε

∂s
= 1

ε2
L1%

ε + 1

ε
L2%

ε ,
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where we defined

L1 = −
∑
k∈σ̄2

γk(wk − w̄k)
∂

∂wk

−
∑
k∈σ̄2

γk(w
∗
k − w̄∗

k)
∂

∂w∗
k

+ 2
∑
k∈σ̄2

σ 2
k

∂

∂wk∂w
∗
k

,

L2 = i
∑
k∈σ̄2

kx

(
Ĥkw

∗
k − Ĥ ∗

kwk

) ∂
∂U

+ i
∑
k∈σ̄2

(
ĤkU − (kxU −�k)wk

) ∂

∂wk

− i
∑
k∈σ̄2

(
Ĥ ∗

k U − (kxU −�k)w
∗
k

) ∂

∂w∗
k

.

(7.74)

The actual computation of the operatorL̄ given in (4.35) can now be done using
the material in Appendix A. We conclude the proof upon noting that from the
equations in (7.74) and (7.18), it follows that

(7.75) PL2P = i
∑
k∈σ̄2

kx
(
Ĥkw̄

∗
k − Ĥ ∗

k w̄k
) ∂
∂U

P .

In order that the asymptotic method in Section 4.4 applies, it is required that this
operator be zero; this is the content of equation (2.10) in assumption A4 that is
necessary in order for the equation in (4.29) to be satisfied. On the other hand, the
right-hand side of the equation in (7.75) is zero if

(7.76) 0= i
∑
k∈σ̄2

(Ĥkw̄
∗
k − Ĥ ∗

k w̄k) = 2 Im
∑
k∈σ̄2

Ĥ ∗
k w̄k .

This equation yields the constraints in (7.63). �

8 Concluding Discussion

We have developed a systematic mathematical strategy for stochastic climate
modeling based on the following three-step procedure:

(1) Identification of two sets of variables referred to as climate and unresolved
variables. The former are the variables we are ultimately interested in; the
latter are the variables whose dynamics are essential to driving the climate
variables but are irrelevant for a meaningful macroscopic description of the
state of the system.

(2) Stochastic modeling of the nonlinear self-interaction of the unresolved
variables.

(3) Elimination of the unresolved variables by averaging techniques in the
limit of infinite separation between the time scales for the dynamics of
the climate and the unresolved variables.
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Thus, our key assumption is that the climate variables in a given nonlinear sys-
tem necessarily evolve on longer time scales than the unresolved variables. This
assumption justifies the approximation that the nonlinear interaction among unre-
solved variables can be represented stochastically in a suitably simplified fashion.
Despite the relative crudeness of this assumption, we have developed an explicit
and rigorous mathematical strategy for such an approach that is implicit in much
of the work in stochastic climate modeling in the literature [1, 3, 5, 8, 10, 12, 15,
18, 21, 22, 23, 25].

The closed nonlinear stochastic equations are derived for the climate variables
alone on longer time scales in a rigorous fashion that accounts for strong cou-
pling between the climate variables and the unresolved variables. Furthermore, the
predicted stochastic evolution equations for the climate variables are given quanti-
tatively so the theory is effectively computable but much simpler than turbulence
closure. These equations display several potentially important new phenomena
not included in the previous applied efforts in climate modeling. These phenom-
ena include systematic nonlinear corrections to the climate dynamics due to the
interaction with the unresolved variables and the appearance of multiplicative sto-
chastic noises besides additive noises for the climate variables. We also showed
that stochastic equations for climate variables alone can be both linearly stable or
unstable, and we gave explicit mathematical criteria and examples with unstable
linear Langevin equations for the climate variables. Such examples with less sta-
ble stochastic models for the climate variables on a longer time scale indicate that
interactions with the unresolved variables can diminish predictability under appro-
priate circumstances.

Throughout this paper we have used as an illustrative example the idealized cli-
mate model of a barotropic flow on a beta plane with topography and mean flow
introduced by Leith [15]. These are especially attractive climate models because
they are highly inhomogeneous yet involve both a well-defined mean climate state
as well as energy spectrum. In spherical geometry such models capture a number
of large-scale features of the atmosphere [7]. We have demonstrated the feasibility
of our general strategy for this idealized climate model. We have also shown that
the idealized climate model of a barotropic flow can be made fully consistent with
equilibrium statistical theory by appropriate constraints on the parameters in the
stochastic model. Furthermore, we have demonstrated that the stochastic model
for the climate variables alone that is derived from the barotropic flow equations
also satisfies an equilibrium statistical theory. Simpler examples illustrating the
appearance of new phenomena were also given, whereas the general stochastic
model equations for the climate variables alone that are derived from the barotro-
pic flow model will be studied by the authors in the near future as well as other
generalizations of geophysical interest, including baroclinic flows and coupled at-
mosphere/ocean systems.
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Appendix A: Explicit Properties of the Ornstein-Uhlenbeck Operator

In this appendix we consider the Ornstein-Uhlenbeck operator

(A.1) L1 = −
∑
j ∈σ2

γj yj
∂

∂yj

+ 1

2

∑
j ∈σ2

σ 2
j

∂2

∂y2
j

,

and give some properties of this operator useful for evaluating the operatorL̄ de-
fined in (4.35).

The basic idea is to consider the properties ofL1 in a Fourier representation
defined for any suitable functionf (Ey) as

(A.2) f̂ ( Ep) =
∫
Rn

ei Ep·Ey f (Ey)dEy , f (Ey) = 1

(2π)n

∫
Rn

e−i Ep·Ey f̂ ( Ep)d Ep ,

wheren is the cardinal of the setσ2. In the Fourier representation (A.1) becomes

(A.3) L̂1 =
∑
j ∈σ2

γj +
∑
j ∈σ2

γj pj
∂

∂pj

− 1

2

∑
j ∈σ2

σ 2
j p2

j .

The following two lemmas allow for explicit evaluation of the expectationP and
the action ofL−1

1 .

LEMMA A.1 We have

(A.4) P f (Ey) = 1

(2π)n

∫
Rn

P̂?( Ep) f̂ ( Ep)d Ep ,

where

(A.5) P̂?( Ep) = exp

(
−1

4

∑
j ∈σ2

σ 2
j p2

j

γj

)
.

LEMMA A.2 AssumingP f = 0, we have

(A.6) L̂−1
1 f̂ ( Ep) = −

∫ ∞

0
exp

(∑
j ∈σ2

γj t − 1

4

∑
j ∈σ2

σ 2
j p2

j

γj

(
e2γj t − 1

))
f̂ ( Ep(t))dt ,

where

(A.7) pj (t) = eγj t pj .

PROOF OFLEMMA A.1: (A.4) follows from Parseval’s identity upon noting
that (A.5) is the Fourier representation of the invariant measure for the Ornstein-
Uhlenbeck process. �

PROOF OFLEMMA A.2: Consider the following equation for̂g( Ep, t)
(A.8)

∂ ĝ

∂t
= L̂1ĝ − f̂ , ĝ( Ep,0) = 0 .
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Then

(A.9) ĝ → L̂−1
1 f̂ ,

ast → ∞, and the limit exists sinceP f = 0 by assumption. Since the equation in
(A.8) is linear, this equation can be solved by the method of characteristics:

(A.10) ĝ( Ep, t) = −
∫ t

0
exp

(∑
j ∈σ2

γj s − 1

4

∑
j ∈σ2

σ 2
j p2

j

γj

(
e2γj s − 1

))
f̂ ( Ep(s))ds.

(A.6) follows in the limit ast → ∞. �

Appendix B: The General Derivation

In this appendix we derive the stochastic model equations in (4.17). The sit-
uation with fast-wave effects can be treated in a similar way after an appropriate
change of dependent variables, as explained in Section 5.3.

The calculation amounts to evaluating the operatorL̄ defined in (4.35) asso-
ciated with the equations in (4.16). The corresponding operatorsL1, L2, L3 are
given in (4.23). In order to use the results of Appendix A, it will be convenient to
have the Fourier representations ofL2, L3. They are given by

L̂2 =
∑
j,k

(
i L 12

jk

∂

∂pk

+ 1

2

∑
l

(
2i B112

jkl xk
∂

∂pl

− B122
jkl

∂2

∂pk∂pl

))
∂

∂xj

+ i
∑
j,k

(
L21

jk xk + i L 22
jk

∂

∂pk

+ 1

2

∑
l

(
B211

jkl xkxl + 2i B221
jkl xl

∂

∂pl

))
pj

L̂3 ≡ L3 =
∑

j

(
Fj (s)−

∑
k

Djkxk + 1

2

∑
kl

B111
jkl xkxl

)
∂

∂xj

.

(B.1)

We now evaluate the operator̄L defined in (4.35), i.e.,

(B.2) L̄ g(Ex) = PL3Pg(Ex)− PL2L
−1
1 L2Pg(Ex) .

By definition ofL3 we obtain

(B.3) PL3Pg(Ex) = L3g(Ex) ,
whereas from the Parseval identity and using the results in Lemmas A.1 and A.2,
it follows that for any suitable functiong(Ex) we have

(B.4) − PL2L
−1
1 L2Pg(Ex) =∫

Rn

P̂?( Ep)L̂2

∫ ∞

0
exp

(∑
j ∈σ2

γj t − 1

4

∑
j ∈σ2

σ 2
j p2

j

γj

(
e2γj t − 1

))

× [
L̂2g(Ex)δ( Ep)] Ep= Ep(t) dt d Ep .
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The action of the rightmost̂L2 is easily accounted for. Using the property of
the delta function as well as the definition forEp(t) in (A.7), we obtain

exp

(∑
j ∈σ2

γj t

)[
L̂2g(Ex)δ( Ep)] Ep= Ep(t) =

i
∑
j,k

L12
jk e−γkt ∂δ( Ep)

∂pk

∂g

∂xj

+ 1

2

∑
j,k,l

(
2i B112

jkl e−γl t xk
∂δ( Ep)
∂pl

− B122
jkl e−(γk+γl )t

∂2δ( Ep)
∂pk∂pl

)
∂g

∂xj

.

(B.5)

The sequel of the calculation is now tedious but straightforward and based on the
property of the delta function that

(B.6)
∫
Rn

f ( Ep)∂δ( Ep)
∂pj

d Ep = −
∫
Rn

∂ f ( Ep)
∂pj

δ( Ep) f Ep =
[
∂ f ( Ep)
∂pj

]
Ep=0

.

A similar relation holds for higher derivatives. Thus, the calculation essentially
amounts to integrating by parts inEp the various terms in (B.4) as many times as
necessary in order that no derivative acts on the delta functions in (B.4). Once
this operation has been done, the integration onEp is trivial, since it amounts to
evaluating the factor of the delta function in the integrand atEp = 0. Finally, the
last integration ont can be performed. This way we obtain

L̄ =
∑
j ∈σ1

(
Fj (t)−

∑
k∈σ1

Djkxk − 1

2

∑
k,l∈σ1

B111
jkl xkxl

)
∂

∂xj

+ 1

2

∑
j ∈σ1

( ∑
k,l∈σ2

σ 2
l B122

jkl L22
kl

γl (γk + γl )
+
∑
k∈σ1

∑
l ,m∈σ2

σ 2
l B122

j lm B221
mlk

γl (γl + γm)
xk

)
∂

∂xj

+ 1

8

∑
j,k∈σ1

∑
l ,m∈σ2

B122
j lm B122

klmσ
2
l σ

2
m

(γl + γm)γ
2
l γ

2
m

∂2

∂xj ∂xk

+ 1

2

∑
j,k∈σ1

∑
m∈σ2

σ 2
m

γ 2
m

B112
jkm

(
L12

km +
∑
l∈σ1

B112
klmxl

)
∂

∂xj

+
∑
j,l∈σ1

∑
n∈σ2

1

γn

(
L12

jn +
∑
k∈σ1

B112
jkn xk

)(
L21

nl xl + 1

2

∑
m∈σ1

B211
nlmxl xm

)
∂

∂xj

+ 1

2

∑
j,k∈σ1

∑
n∈σ2

σ 2
n

γ 2
n

(
L12

jn +
∑
l∈σ1

B112
j ln xl

)(
L12

kn +
∑
m∈σ1

B112
kmnxm

)
∂2

∂xj ∂xk
.

(B.7)
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The system of stochastic differential equations associated with this operator are the
equations in (4.17).
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