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Abstract

There has been a recent burst of activity in the atmosphere-ocean sciences com-
munity in utilizing stable linear Langevin stochastic models for the unresolved
degrees of freedom in stochastic climate prediction. Here a systematic mathe-
matical strategy for stochastic climate modeling is developed, and some of the
new phenomena in the resulting equations for the climate variables alone are
explored. The new phenomena include the emergence of both unstable linear
Langevin stochastic models for the climate mean variables and the need to in-
corporate both suitable nonlinear effects and multiplicative noise in stochastic
models under appropriate circumstances. All of these phenomena are derived
from a systematic self-consistent mathematical framework for eliminating the
unresolved stochastic modes that is mathematically rigorous in a suitable asymp-
totic limit. The theory is illustrated for general quadratically nonlinear equations
where the explicit nature of the stochastic climate modeling procedure can be
elucidated. The feasibility of the approach is demonstrated for the truncated
equations for barotropic flow with topography. Explicit concrete examples with
the new phenomena are presented for the stochastically forced three-mode inter-
action equations. The conjecture of Smith and Wale®fieyfs. Fluidsl1 (1999),
1608-1622] for stochastically forced three-wave resonant equations in a suitable
regime of damping and forcing is solved as a byproduct of the approach. Exam-
ples of idealized climate models arising from the highly inhomogeneous equilib-
rium statistical mechanics for geophysical flows are also utilized to demonstrate
self-consistency of the mathematical approach with the predictions of equilib-
rium statistical mechanics. In particular, for these examples, the reduced sto-
chastic modeling procedure for the climate variables alone is designed to repro-
duce both the climate mean and the energy spectrum of the climate variables.
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1 Introduction

An area with great importance for future developments in climate prediction
involves simplified stochastic modeling of nonlinear features of the coupled atmo-
sphere/ocean system. The practical reasons for such needs are easy to understand.
In the foreseeable future, it will be impossible to resolve the effects of the cou-
pled atmosphere/ocean system through computer models with detailed resolution
of the atmosphere on decadal time scales. However, the questions of interest also
change. For example, for climate prediction, one is not interested in whether there
is a significant deflection of the storm track northward in the Atlantic during a spe-
cific week in January of a given year, but rather, whether the mean and variance
of the storm track are large during several winter seasons and what the impact of
this trend is on the overall poleward transport of heat in both the atmosphere and
ocean. The idea of simplified stochastic modeling for unresolved space-time scales
in climate modeling is over twenty years old and emerged from fundamental pa-
pers by Hasselman [10] and Leith [15]. In the atmosphere/ocean community, there
is a recent flourishing of ideas utilizing simple stable linear Langevin stochastic
eqguations to model and predict short-term and decadal climate changes such as
El Nifio [12, 21], the North Atlantic Oscillation [8, 22], and mid-latitude storm
tracks [1, 3, 5, 23, 25] with notable positive results, but this simplified stochastic
model has also failed in some circumstances [18].

In this paper, we develop a systematic mathematical strategy for stochastic cli-
mate modeling and also explore some of the new phenomena that occur in the re-
sulting stochastic models. The key assumptions in the systematic theory developed
below are that the climate variables in a given nonlinear system necessarily evolve
on longer time scales than the unresolved variables and that the nonlinear inter-
action among unresolved variables can be represented stochastically in a suitable
simplified fashion (see the detailed discussion in Section 2 of this paper). These
two assumptions are implicit in much of the work in stochastic climate modeling
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mentioned above [1, 3, 5, 8, 10, 12, 15, 18, 21, 22, 23, 25]. In the mathematical ap-
proach developed here, once the climate variables are identified via zonal averaging
[5], EOF expansions [1, 12, 21, 23], low-pass filtering in time [3, 18, 25], or some
other procedure, with the above two assumptions, new closed nonlinear stochastic
equations are derived for the climate variables alone on longer time scales. Several
new phenomena occur through this systematic approach including the following:

e Systematic nonlinear corrections to the climate dynamics due to the inter-
action with the unresolved variables.

e The need for multiplicative stochastic noises besides additive noises for
the climate variables. Such noises and their structure are deduced in a
systematic fashion from the theory.

e Mathematical criteria and examples with unstable linear Langevin equa-
tions for the climate variables. Such examples with less stable stochastic
models for the climate variables on a longer time scale indicate that inter-
actions with the unresolved variables can diminish predictability in appro-
priate circumstances.

The theory allows for strong coupling between the climate variables and the
unresolved variables. Furthermore, the predicted stochastic evolution equations
for the climate variables are given quantitatively so the theory is effectively com-
putable but much simpler than turbulence closure. The key mathematical idea in
the systematic theory developed here is to borrow techniques from singular pertur-
bation theory for Markov processes originally developed in the 1970’s for limits
of linear Boltzmann transport theory by Kurtz [13], Ellis and Pinsky [6], and Pa-
panicolaou [19] who combined the methods in [6, 13] with those developed by
Khasminsky [11] to allow for fast averaging. Although the applications to sto-
chastic climate modeling developed here are completely different with several new
phenomena and require several new concrete ideas, this connection to mathemat-
ical theory for stochastic processes guarantees that the results presented here are
mathematically rigorous in a suitable asymptotic limit.

We summarize the contents of the remainder of this paper briefly. In Section 2
we present the basic strategy for stochastic climate modeling, which utilizes the
two assumptions listed earlier for the important example of quadratically nonlin-
ear equations. In Section 3 we introduce the equations for barotropic flow on a
beta plane with topography and mean flow. This idealized climate model due to
Leith [4, 15] provides a simple illustrative example in that section and throughout
the remainder of the paper. In Section 4, we summarize the main results of this
paper involving consistent reduced stochastic equations for the climate variables
alone for the general quadratically nonlinear systems introduced in Section 2. We
emphasize the different general phenomena that occur with wave—mean flow inter-
action or climate scattering interaction alone, which introduce systematic additive
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and multiplicative noises, respectively, as well as their combination through inter-
action. The new features that occur naturally in stochastic modeling with fast-wave
averaging are developed in Section 5.

The implications of the theory for the truncated barotropic flow equations intro-
duced in Section 3 are developed in Section 6. One key result presented there is sys-
tematic self-consistency of the theory developed here with equilibrium statistical
mechanics. Also numerical simulations are presented in Section 6 for truncated ba-
rotropic flow with topography that demonstrate the validity of the key assumptions
in Section 2; another different but related example has already been presented else-
where by the authors [16]. In Section 7, the range of new phenomena are illustrated
in simple explicit examples involving stochastically forced three-mode interaction
equations and related examples, which also provide a pedagogical introduction to
the general theory. In particular, in Sections 7.1 and 7.2, we solve the interesting
conjecture of Smith and Waleffe [24] for stochastically forced three-wave resonant
equations in a suitable regime of damping and forcing. The systematic strategy of
effective calculation for the general theory is presented in two appendices in order
to streamline the presentation.

2 Basic Strategy for Stochastic Climate Modeling

We illustrate the ideas for stochastic climate modeling on an abstract basic
model involving quadratically nonlinear dynamics, which is very appropriate for
modeling many aspects of atmospheric dynamics. In the abstract model, the un-
known variablez, generally complex, evolves in time in response to an external
forcing termF (), a linear operatok z, and a quadratic or bilinear opera®(z, z),
and satisfies

-

dz -
@2.1) d—tz — ft)+ L2+ B@Z3).

An important example of quadratically nonlinear equations of the type as in (2.1)
that will be used as an illustration throughout this paper is given by the equations
for barotropic flow on a beta plane with topography and mean flow:

39 Iy

9
M9 viy . vgrud 182 0, g=ay +h,
2.2) ot aX 0X
' du ][ oYr
— = + h—.
dt X

Hereq(x, vy, t) denotes the small-scale potential vorticit(t) is the mean flow,
¥(X,y,t) is the small-scale stream function, an¢k, y) denotes the underlying
topography, whereg8 approximates the variation of the Coriolis parameter. The
bar across the integral sign indicates normalization by the area of the domain of
integration andv+ = (—dy, dx). The equations in (2.2) are discussed in detail in
Sections 3, 5.1, and 6. A good general reference for the equations in (2.2) and their
geophysical properties is Pedlosky’s book [20]. The effects of an interactive mean
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flow U with topography are discussed in [4] and [17]. Hamiltonian chaos in exact
solutions of (2.2) is discussed by Grote, Raggazzo, and one of the authors in [9].
In stochastic climate modeling, the varialls decomposed into an orthogonal
decomposition through the variablgsy by Z = (X, y). The variablex denotes
the climate state of the system; the climate state necessarily evolves slowly in time
compared to thg-variables, which evolve more rapidly in time and are not re-
solved in detail in the stochastic climate model. In practice, the climate variables
X are determined by a variety of procedures, including leading-order empirical or-
thogonal functions (EOFs) [1, 12, 21, 23], zonal averaging in space [5], low-pass
time filtering [3, 18, 25], or a combination of these procedures. Decomposing the
dynamic equation in (2.1) by projecting on tkeandy-variables yields the equa-
tions

ax _ fa(t) + L1aX + L12¥ + BL(X, X) + BL(X, §) + BL(V, V)

T 11 12Y + B (X, 12X,y 22lY.Y)
(2.3) _

d - S _ . . -

d_i’: fo(t) + LatX + L2y + B (X, X) + BL(X, §) + BE,(V. ¥) .

Generally, stochastic climate modeling amounts to simplifying the dynamic
equations in (2.3) by representing some of the terms involving the varigbles
which are not resolved in detail, by a linear stochastic model. This procedure is
applied implicitly or explicitly in most of the works in the literature [1, 3, 5, 8, 10,
12, 15, 18, 21, 22, 23, 25]. In this paper, we systematically discuss this strategy
so we shall assume that the explicit nonlinear self-interaction thr&gly, y) of
the variables/ can be represented by a linear stochastic operator. More precisely,
we use the following:

Working assumption of stochastic modeling
r o -
2.4 B,(Y, Y)dt ~ ——ydt+ —dW(), O 1.
(2.4) 52(Y: ¥) vt — (t) <<

Herel', o are positive definite matrices, ar\ﬁzl(t) is a vector-valued Wiener pro-
cess. The parametemeasures the ratio of the correlation time of the unresolved
variablesy to the climate variableg, and the requirement < 1 is very natural for
stochastic climate models where the climate variables should change more slowly.

By (2.4), we assume that the nonlinear self-interactions can be modeled by an
Ornstein-Uhlenbeck process. The choice of this particular process is not essential
for the theory but is convenient for the calculations because of the full computabil-
ity of the Ornstein-Uhlenbeck process (see Appendix A). We also note that the
process defined through (2.4) has zero mean; there is no loss of generality in this
assumption, since it can always be enforced by appropriate definition of the vari-
ablesy and the various operators entering the equations in (2.3).

If we coarse-grain the equations in (2.3) with the approximation from (2.4) on
a longer time scald, — ¢t, to measure the slowly evolving climate variables, we
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obtain
L 17/t - o
dX = —(f1<—) + L11X 4+ L1oy
€ )

+ Biy(X, X) + B5(X, ¥) + By(V, )7))dt,
(2.5)
- 1 o t - - 2 /=2 = 2 /3 o
dy = g 1:2 g + I—21X + L22y+ Bll(X, X) + Bl2(xa Y) dt
r -
— S ydt+ ZdW) .
& &

In fact, with a few additional assumptions that are well suited for climate modeling,
which will be explained below, we derive from the equations in (2.5) the following:
Stochastic climate model

- 1./t 1
dxX = F t)dt + - fl(—>dt + DXdt+ = (Lll)_{ + L12)7) dt
& & &

. 1 . o
+ Bl (X, X)dt + - (BL,(X, ) + Bo(¥, V) dt,

1 t

2.6)
> 1 N N oo N
fz(g)dt + ; (L21X + L22y + Bfl(X, X) + B]2_2(X, y)) dt

dy = -
&
r . >
— S ydt+ ZdW) .
& &
To obtain the equations in (2.6), we first made the following modification to ac-
count more appropriately for various climate effects:

AO0. We have included damping and forcing terms acting on the slow time scale
in the equations for the climate variables. Thus, in (2.6) we have added a
term DX and we have set

(2.7) ﬂ(z) — slzl(t) + 1?1(£> .
& I3

We have also made the following additional assumptions:

Al. We assume that the forcing terrs f in the equations in (2.6) have zero
mean with respect to time average

1T 1 Tl
(2.8) T'LTO?/O fl(t)dtlel_r)noo?/o fo(t)dt = 0.

A2. In the equations in (2.6) for the climate variables, we assume that the lin-
ear operatoiL ;X accounts for fast-wave effects only; i.d.;; is skew-
symmetric.

A3. We assume that the nonlinear self-interaction of the climate variables is a
slow-time-scale driving effect, i.e., in (2.6) we have set

(2.9) BL (X, X) — ¢BL (X, X).
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A4. We assume that the nonlinear interactionyirin the equations in (2.6)
for the climate variables has zero expectation with respect to the invariant
measure of the Ornstein-Uhlenbeck process in (2.4), i.e.,

(2.10) PBL (V. ¥) = 0.

The modification in AO and assumption Al for the climate-damping and the cli-
mate-forcing functions are very natural since external solar effects provide a sys-
tematic forcing on the annual cycle and many interesting climate-modeling prob-
lems involve accumulated effects over many decades. In the specific applications
to the barotropic equations in Sections 5.1, 6, and 7, assumption A4 in (2.10) is
trivially satisfied. This is the typical situation for many applications to geophysical
flows.

On the other hand, as will be shown below, it follows from assumptions Al
through A4 that a stochastic model for the climate variables alone can be derived
for e « 1. More precisely, these assumptions ensure the existence of the limit as
¢ — 0 of the equations for the climate variables in (2.6) because they imply that,
asymptotically, there are no effects of ordet on the climate variables induced
by the various driving terms in (2.6) and, in particular, by the terms involving the
unresolved variables. As such, assumptions Al through A4 may be regarded as the
very definition for the distinction between climate and unresolved variables, and
the mathematical framework developed in this work is the effective tool that will
allow us to explicitly derive the stochastic model for the climate variables alone
fore « 1.

3 Stochastic Modeling for the Truncated Barotropic Equations

In this section we demonstrate the feasibility of the general strategy for stochas-
tic modeling introduced in Section 2 on the idealized climate model equations in
(2.2) for a barotropic flow on a beta plane with topography and mean flow intro-
duced by Leith [15]. These are especially attractive climate models because they
are highly inhomogeneous yet involve both a well-defined mean climate state as
well as an energy spectrum. In spherical geometry such models capture a number
of large-scale features of the atmosphere [7].

We proceed in two steps. We first introduce a finite-dimensional truncation of
the barotropic equations in (2.2), which we call the truncated barotropic equations
and are given in (3.6). These equations are well-suited for numerical simulations
(see Section 6.3) and are readily shown to belong to the class of the abstract model
in (2.1). Next, we introduce a stochastic model approximation for the truncated
barotropic equations by appropriate identification of climate and unresolved vari-
ables and stochastic modeling of the nonlinear self-interaction of the unresolved
variables. The stochastic model for the truncated barotropic equations is given in
(3.17) and belongs to the class of the abstract model in (2.6).

The finite-dimensional truncation of the barotropic equations in (2.2) is ob-
tained by making a Galerkin approximation where the equations are projected
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into a finite-dimensional subspace. Consistent with the two-dimensional periodic
boundary conditions used in the numerical simulations, the truncation is readily
accomplished with the standard Fourier basis. More precisely, we introduce the
Fourier series expansion of the truncated small-scale stream funictiathe trun-
cated vorticityw,, and the truncated topography in the term of the truncated
basisB, = {€KX : k € 0}, Whereo, = {K: 1 < |K| < A},

ED= T B0, = Y R,
1<[k2<A 1<[k12<A

WEH= Y GbE.

1<[k]2<A

(3.1)

For simplicity of notation we omit the arrow for the subscripks= k. We have

also assumed that the topography has zero mean with respect to spatial average;
i.e., we have takeﬁ@,o) = 0. This condition ensures that the solvability condition

for the steady-state equations associated with the equations in (2.2) is automatically
satisfied. The amplitudefzk, O, andhy satisfy the reality conditions

(3.2) U=, of=du, hp=h

Denote byP, the orthogonal projector onto the finite-dimensional spécspan-
ned by the basiB,. The truncated barotropic equations are obtained by projecting
the original barotropic equations in (2.2) ¥R:

0
89 + Pa(VH 9, - Van) +U— +,3ﬂ =0,

ot
YA

(3.3)
—wy +h =A —dU =th
ga = wp As ©pa = AYu, dt_][ Ay

For the remainder of this section, it will be convenient to work with the ampli-
tude associated with velocity rather than witfxt), and we define

(3.4) uk(t) = [k|Pk (),

whereuy satisfiesu; = u_x. The equation for the potential vorticity, in (3.3) is
readily solved in terms aifk as

(3.5) Ge(t) = —[K|uk () + Ay .

Substituting (3.4) and (3.5) into the equations in (3.3)yqarandU, we obtain a
finite-dimensional system of ordinary differential equations for the Fourier coeffi-
cients withk € o,. We will refer to the eqguations in this system as the truncated
barotropic equations.
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Truncated barotropic equations

=Im )" Hyu,

kEUA
(3.6) du
dtk = iHWU —i(kU — Q)ug + Z Ly + = Z Bumuyuy, ,
|EU,\ | meo,\
K+ +m=0
where
(kxly — kylx) 12 — |2
(3.7) L = ——=—=—"h¢, Buam = (Ilymy — Ixmy) ————,
KT} T ki m
and
kx,B kxFlk
(3.8) Q= ——, Hi = —.
k|2 K|
Notice thatL, is skew-symmetric,
(3.9) Lk =—Lj.

Since the terms accounting for linear coupling betwBeanduy are also skew-
symmetric, it follows that assumption A2 is automatically satisfied for the trun-
cated barotropic equations.

The equations in (3.6) can be written as a system of ordinary differential equa-
tions with real coefficients of the type of the equations in (2.1) upon defining

(3.10) 2:(U,ak1,bk1,ak2,bk2,...),

wherea, = Reuy, by = Imuy. TheR 's span the sef, C o,, whereg, is an
arbitrary subset of, such that the set of equations ﬁ)are complete usmg the

reality conditionay = a_, by = —b_x (in other words, |ﬂ< € 7, then— k & o).

With this notation, the equations in (3.6) can be written in more compact form as
dz - .

(3.11) Fri LZ+ B(Z,2).

We now derive a stochastic model for the truncated barotropic equations in
(3.6). Following our general strategy, we assume that the variébleg in the
truncated barotropic equations can be separated into climate variables and unre-
solved variables, depending on the time scale on which they evolve. For simplicity
of presentation, we also assume that the climate variables are the me&h dlow
the u’s with [k| < A, corresponding to the large scales. Numerical support for
these assumptions in some regimes of parameters is given in Section 6.3. For sim-
plicity of identification, we will denote byy theuy declared climate variables, i.e.,

(3.12) w=uc forkeor={Kk:1<|kl <A},
and bywy theuy declared unresolved variables, i.e.,
(3.13) we=Ux forkeo,=1{k:A <|kl <A}.
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The next step is to make a stochastic model assumption as in (2.4) for the nonlinear
self-interaction of the unresolved variabkeg. For the truncated barotropic equa-
tions for the unresolved variables in (3.6), we will use the following stochastic
model assumption, which generalizes to the complex case the model in (2.4):

1 * *
(3.14) ZLk|w|dt+§ > Bymwiwpdt~

|Ec72 |,m€02

1 _ ok
—ng(wk — wy)dt + E(d\/\’{((t) +dW (1)),

wherey, ok are positive real parameters satisfying

(3.15) Yk =V-k> ok =0k,

and theW’s are independent Wiener processes satisfying

(3.16) EW(HW(s) = 28 min(t, s),  EWk(HWi(S) = EWZ(OW'(s) =0,

whereE denotes the expectation over the statistics offis. (We assume that

w Is real for the simplicity of presentation only; the present formalism generalizes
easily to the situation withy complex satisfyingy” = y_k, as will be shown
elsewhere by the authors.) The structure of the approximation in (3.14) together
with the conditions in (3.15), (3.16) guarantee that the reality conditipe; u_y,

is automatically satisfied. Notice that in (3.14) we model both the nonlinear self-
interaction of the unresolved variableg and the interaction between the and

the small-scale topography: The latter is modeled by the fefim, Liiw;. This

is consistent with our general strategy for stochastic modeling since both terms
on the right-hand side of (3.14) account for the nonlinear self-interaction of the
unresolved variables in terms of the original variabjg@sdy, as can be seen from

the first equation in (3.3).

We use assumption (3.14) in the truncated barotropic equation in (3.6) and
coarse-grained timé,— &t. This gives the following:

Stochastic model for the barotropic equations

1 1
3.17 dUu =-1Im Hfvedt + — Im Hwy dt
(3.17) - Z Cuedt+ 5 Z Wi

keo keo
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i 1 1
dog = I—HkUdt — IkX(U — —Qk)vkdt+ —Z Ly dt
& & &

leor

1 1 .
+EZLklwldt+E Z Bk|mv|*vmdt

leoy alq,fneal
k+1+m=0
+ - kimVU; W t+ — kimW; W, t,
s . 28
|q€(7;, rﬁeag . | ,Lﬁeaz
k-+l+m=0 k+l+m=0

i i 1
dwy = -HUdt — —(kyU — Q) w dt + - Z Ly dt
& & & £
|€Ul
1 * ok 1 * *

|,r?1€0'1 |€(71,ﬁ1€02

K+ +m=0 K+ +m=0
1 _ ok
- ?Vk(wk — wy)dt + E(dv\&(t) +dW* (1)),

where consistent with the assumption in A3, we have treated as slow effects the
nonlinear self-interactions of the climate variables by setting

i 1 . x
(3.18) — EkXU vedt + g Z Bk|mU| Uy —>

|,ﬁ’1€o‘1

Kl 4 . 1 * %
k+1+m=0 —ikyUvdt + > AZ Bumv vy, -
|,rﬁ€(71
k+T+m=0

Notice that we can use a compact notation in (3.10) and identify the climate vari-
ablesx as

(3.19) X = (U,Revkl,lm vkl,Revkz,Im vkz,...),

where thek;’s span the sef; = {k : k € 5 and 1< |k| < A}, and the unresolved
variablesy as

(3.20) ¥ = (Rew,, Im iy, Reiy,, Im b, ...),

wherewy = wy — wy and thel;'s span the sef, = {I : I €  andA < |I| < A}. In
terms ofX, y, the stochastic model for barotropic equations in (3.17) fits into the
generic stochastic climate model in (2.6).

In Section 6, we illustrate an important variant of this model that is constrained
through systematic principles to be automatically consistent with equilibrium sta-
tistical mechanics.

To conclude this section, it is worth pointing out that a rigorous derivation of
the stochastic model for the barotropic equations in (3.17) from the original equa-
tions in (3.6) is beyond the scope of the mathematical framework developed in
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the present paper and involves the difficult issues of ergodicity and mixing in dy-
namical systems. The truncated barotropic equations in (3.6) and their associated
stochastic model equations in (3.17) will be studied in more detail in Section 6.
The relevance of the stochastic model for the barotropic equations in (3.17) will
be verified numerically in Section 6.3 where we check the working assumption in
(2.4) or (3.14) for several regimes of parameters. In Section 7, we will also study
the stochastic model for the barotropic equations in (3.17) in some simple settings
that demonstrate the appearance of new phenomena.

4 Consistent Reduced Stochastic Equations
for the Climate Variables Alone

In this section we summarize our main results for stochastic model equations
for the climate variables alone that are derived from the stochastic model equations
in (2.6). In particular, we demonstrate the appearance of new phenomena relevant
to stochastic climate modeling. In Section 4.1, we consider a generic model for
wave—mean flow interaction, and we show that the effect of the unresolved wave
variables on the climate mean flow variables is accounted for by linear Langevin
terms that can be both stabilizing or destabilizing in contrast to what is usually
assumed in the literature. Explicit criteria for instability are given. Furthermore,
we show that the unresolved wave variables can modify the mean of the climate
variables. In Section 4.2, we consider a generic model for climate scattering in-
teraction. We show that, generally, the unresolved variables induce nonlinear cor-
rections in the dynamics for the climate variables, as well as multiplicative noises,
and the structure of these terms is deduced systematically from the theory. In
Section 4.3, we consider the general stochastic model equations in (2.6) without
fast-wave and fast-forcing effects, and we show that, generally, all kinds of ef-
fects as described in Sections 4.1 and 4.2 interact in the stochastic climate model.
Section 4.4 contains the details about the systematic asymptotic strategy for elim-
ination of the fast, unresolved variables in the cases where there are no fast-wave
effects in the climate variables. Finally, in Section 4.5, we give an alternative,
direct method for eliminating the unresolved variables in the special case where
the equations for the unresolved variables are linear and diagogiaFast-wave
effects will be considered in Section 5.

In the developments below, it will be convenient to have a more explicit repre-
sentation for the equations in (2.6). To this end we represent the vazialille an
index notationj running in a set, i.e.,Z(t) = {zj(t) : j € o}. The decomposition
of Zinto climate and unresolved variables then amounts to splittimgo two sub-
setso; ando, such thatr = o1 U 0, and the climate variablegt) are those&(t)
for which j € oy, i.e.,X(t) = {X;(t) : ] € o1}, whereas the unresolved variables
y(t) are those(t) for which j € oo, i.e., Y(t) = {y;(t) : ] € o2}. Usually the
context makes it clear to which set an index belongs in any expression, and we only
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specify it explicitly in case of ambiguity. Thus we represent (2.6) as

1./t 1 1
dx = Fit)dt+ = f( - dt+§ —Diexe + =Ly + 2122y ) dt
J i © 81(8) k< kXt S bk

2 1
+ = Z (B]lk%lxm + - Bjk| XY + — Bjkl yky|> dt,
|

k,
)dt + Z ( szklxk + - szkzyk) dt
k,

(4.1)

f2

J

1
dy, = -
&

+

1 2
32 < Blla XX + szkzll)/kX') dt- _yldt +— Zaw .
|

where theW,;’s are statistically independent Wiener processes satisfying
(4.2) EW, (H)Wk(s) = §jxmin(t, s) .

To simplify the presentation, we have assumed that the stochastic-model term in
the equation for the unresolved variables in (2.6) is diagonal in the representation
for y. The stochastic model for the barotropic equation in (3.17) can be mapped
onto the equations in (4.1). In fact, with appropriate identification, the stochas-

tic model equations in (4.1) can describe a wide variety of situations relevant to

climate modeling, as we demonstrate now.

4.1 Wave—Mean Flow Interaction
We consider the following special setting of the stochastic model equations in
equation (4.1):
de = Fjl(t)dt — Z Djk Xk dt + Z lekz,zykm
(4.3) 1 " o
221 Vi J
dy; = EXK: L2y, dt 4 = Z Biiyioq dt — Sy dt+ —LdW (D).

The equations in (4.3) can be regarded as a generic model for wave—mean flow
interaction. The mean flow is the declared climate variable, hence represented by
the x;’s, whereas the waves are the unresolved variafle€onsistent with this
identification, the mean flow responds to nonlinear driving by the waves through

the terms
Z BiZ2yiyi dt

in the equation fox; in (4.3), and slow forcing and damping through the terms

Fjl(t)dt — Z Dijk dt.
k
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The waves experience back reaction from the mean flow through frequency shift,
as is apparent from the terms

1 1
g Z szkzyk dt + g Z Bj2k2|lka| dt

k kil

in the equation fory; in (4.3), while all nonlinear self-interactions between the
waves are modeled stochastically as

~Bydt+ Ddw ),
& &

consistent with our general strategy.

To illustrate wave—mean flow interaction in a simple situation, we utilize the
stochastic model for the barotropic equations in (3.17) with no beta effect and
mean flow,8 = U = 0. The climate variables in this example are the subspace
of functions with Fourier coefficients = (0, ), with g # 0—these are the zonal
mean flows—and the unresolved variables to be modeled stochastically are the pro-
jection on all the remaining variables. With the standard stochastic approximation
for the nonlinear self-interaction of the unresolved variables, equations with the
structure in (4.3) emerge. A simple example of this sort is presented explicitly in
Section 7.1. Another important case of the system in (4.3) occurs when the climate
variablesx are determined by zonal averaging in baroclinic flows. An illustrative
important example of stochastic modeling in geophysical flows that has the struc-
ture of the system in (4.3) can be found in [5]. The general theory developed below
will be applied to those concrete examples by the authors in the near future.

We consider the asymptotic behavior of the climate variables for smate
have the following:

THEOREM 4.1 Denote by X(t) the solution of the first equation i@.3). In the
limitase — 0, X} (t) converges to xt) where the x(t) satisfy

(4.4) de = Fjl(t)dt + g dt — Z(Djk + Vi) Xk dt + Z Ojkl dWq (1),

kEo‘l k,|€(72

where W, (t) are independent Wiener processes satisfying
(4.5) EW (D)W (S) = 8 kd) rmin(t, s),

and g, yjk, ojx are given by

Lo ly AEAE 1 orBiRe
| P N ] — T A N
(4.6) 2 e, VA1) 2 e, WM+ ¥m)
lek2|20'k0’|
Ojkl =

2V +mrn
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Remark. It follows immediately from the definition of\i, that we have for the
noise termin (4.6)

(4.7) 3 o dWa®) 2 Y G dW(b)

k,lear keo

where2 denotes equality in law, they;(t)’'s are independent Wiener processes,
and the matrix;, satisfies

(4.8) > OjimOum =Y ,Gji5k -
I,meor leoy
In other words, at the price of evaluating the square root of a matrix once and for
all, the noise in (4.4) can be representedchtipdependent Wiener processes, with
n being the cardinal of the set corresponding to the climate variables.

Theorem 4.1 can be proven using the asymptotic procedure outlined in Sec-
tion 4.4, and it tells us two things. First, the effect of the unresolved wave variables
on the climate mean flow variables can be either stabilizing or destabilizing. Stabi-
lization is observed i is a positive definite matrix, i.e., if for ad}, j € o1, such
that)"; &2 # O, one has

(4.9) Z Yik&iék > 0.

j.keo1
If this criterion fails to be satisfied, the unresolved wave variables destabilize the

climate mean flow variables, and overall stability of the climate stochastic model
equation in (4.4) requires

(4.10) > (vik + D& > 0.
j,keor

In particular, the predictability of the climate variables can be diminished through
interaction with the unresolved variables provided the explicit mgjkiis not pos-
itive definite. Explicit examples of these phenomena are presented in Section 7.1.

The other important consequence of Theorem 4.1 is that the linear part of wave-
wave interaction modifies the climate mean. This is apparent from thesjelinm
(4.4), witha; proportional toszk2 as given by the first equation in (4.6).

4.2 Climate Scattering Interaction

As a second illustration consistent with the model equations in (4.1), we con-
sider

de

1

Fjl(t)dt — Z Dijk dt + 2 Z lek:%zxk)ﬂ dt,

(4.11) . L

dy = - > Bl dt — 8—’2y,- dt + ?‘ dWi(t).
kI
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The equations in (4.11) are a simple model where the climate variab®slve
through nonlinear scattering interaction with the unresolved variables, as is appar-
ent from the term

Z Bjlkjl-zxkyl dt

in the equation forx; in (4.11). Here the amplitudes of some climate variables
scatter energy into other climate variables through interaction with the unresolved
variables. For illustration, we have assumed that the unresolved variables respond
only to nonlinear driving by the climate variables alone through the term

1
> Z B dt
€

in the equation fow; in (4.11), and we have modeled the nonlinear self-interaction
by the stochastic term

—Dyidt+ D dw,
& &
as dictated by our general strategy.

The asymptotic behavior of the climate variables for sm#dl specified by the
following:

THEOREM 4.2 Denote by X(t) the solution of the first equation i@.11) In the
limitase — 0, x’(t) tends to x(t) where the x(t) satisfy

de = Fjl(t)dt — Z Dijk dt

+ 5 Z > = o 1 BBy dt

k Jleop meor m

112 211
+— Z Z Bikn BrimXkX Xm dt

k I,meoy neaz

+) Z Bﬁkl.zxk dW(t),

keoq | eaz

(4.12)

where the Ws are independent Wiener processes satisfying
(4.13) EW, (H)Wk(s) = Sk min(t, s) .

Remark. It follows immediately from the definition of\ that we have for the
noise termin (4.12)

(4.14) > Z Bii2xi d Wi (1) 2 > GiaxcdW(D),

keo Ie(rz k,leoq
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where2 denotes equality in law, the/; (t)’s are independent Wiener processes,
and the matrix;, satisfies

2
(4.15) Z )/n leklnz 112 Zajknalmn

neoy leor

Thus the noise in (4.12) can be represented withdependent Wiener processes,
with n being the cardinal of the set corresponding to the climate variables.

Theorem 4.2 follows by application of the asymptotic method of averaging out-
lined in Section 4.4. Alternatively, as will be shown in Section 4.5, the stochastic
model equations in (4.12) can be derived directly from the equation in (4.11).

Theorem 4.2 demonstrates that, generally, the effect of the unresolved variables
on the climate variables has to be accounted for by nonlinear corrections in the
climate variables, as well as multiplicative noises, as is apparent from the last three
termsin (4.11). The effects of climate scattering interaction have been ignored thus
far by researchers in attempting to model stochastically the low-frequency variabil-
ity of the atmosphere [1, 3, 18, 23, 25]. These general examples indicate that other
stochastic models beyond linear Langevin modeling are needed in general and can
be derived systematically. A simple explicit example is discussed in Section 7.2.

4.3 General Case Without Fast Waves

We now turn to the general case where we allow all possible linear and nonlin-
ear interactions between the climate and the unresolved variables in the stochastic
model equations in (4.1), but we still neglect the fast-wave effects (i.e., the term
involving Lt in (4.1)). Thus we consider

1
dx = Fit) + E <— DijkX« + nglkzyk) dt
Blll 1'8_112 d 1 8122 d
+Z 2 JlekX|+8 jki Xk Yl t+2 ik YkY | dt,

1 1
dyj=Z< ijxk+ jKZYk)dt

k

(4.16)

1 Vi Oj
s (28 B2 + Bﬁﬁlykxl> dt— Ly + L aw .
k.l

The following theorem specifies the asymptotic behavior of the climate-vari-
ables solution of the equations in (4.16) for small
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THEOREM 4.3 Denote by k(t) the solution of the first equation i#.16) In the
limitase — 0, x’(t) tends to x(t) where the x(t) satisfy

dx = Fj®dt — Y Djxiedt — > Z Bjia xicxi dt

keo1 k leoy

+adt— Y yiowdt+ Y oju dWa(t)

keo k,leon

o F3T X e el e

kecl meoy leor

Yy L (L12+zs,1kln2 )( 2y 4 . zsz.ﬁxlxm)

leor neaz keoy meal

+ Z (L12 +> B]1k1|2xk> dW(t),

|602 keoy

where W, Wy are independent Wiener processes satisfying
(4.18) EW()Wk(s) = gjxmin(t, s), EWjk(t)Wi(s) = §;d min(t, s),
and we defined

R i
j =5 — ik = —35 SN
4.19 2k’|EU2VI()/k+)/|) 2|,mE(T2)4(J/| + Ym)
(4.19) 122
Ojkl = .
Zx/()/k + W wn

Remark.As in the equations in (4.4) and (4.12), the noises in (4.17) can be rede-
fined so that they involve vector- or matrix-valued Wiener processes defined on the
set of climate variables alone.

The proof of Theorem 4.3 uses the asymptotic procedure for averaging outlined
in Section 4.4. These calculations are presented in Appendix A. The theorem
shows that, generally, all the new phenomena described in Sections 4.1 and 4.2 will
interplay in the stochastic climate model equations in (4.17), with both stable or
unstable Langevin terms, modification of the climate mean, nonlinear corrections
of the climate-variables dynamics, and multiplicative noises. These results will be
applied by the authors to a variety of geophysical applications in the near future.

4.4 Systematic Asymptotic Strategy

We illustrate the method of averaging of the unresolved variables. This is the
major tool that we use to derive stochastic model equations for the climate variables
alone in the limit ag — 0. To this end, we exploit the property that the stochastic
model equations in (4.1) define a Markov process that is singular in the limit as
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¢ — 0. Perturbation methods for such processes were developed in the 1970s,
originally for analyzing the linear Boltzmann equation in some asymptotic limit.
We opt for a rather brief presentation of these methods here and refer the reader to
the original papers by Kurtz [13] and Ellis and Pinsky [6] (see also [19]) for detalils.
Here, we consider the situation with no fast-wave effects on the climate variables;
i.e., we set

(4.20) fﬁ(é) = ff(é) Lik=0

in the stochastic model equations in (4.1). In this case the averaging method of
Kurtz [13] applies. In Section 5, the situation with fast-wave effects is studied, in
which case the averaging method must be modified by combining Kurtz's method
[13] with a procedure of averaging over fast effects developed by Khasminski [11];
see [19].

The method of averaging exploits the Markov nature of the stochastic model
equations in (4.1) and works with the backward equation associated with (4.1). To
introduce the latter, suppodeX) is a suitable scalar-valued function and define

(s X,y It =EfX*(1), s<t,
(4.21) whereX® (t) solves the stochastic model equations in (4.1)
for the initial conditionx®(s) = X, y°(s) =Y.

HereE denotes the expectation with respect to the statistics of the Wiener processes
W, in (4.1). We wish to determine the asymptotic behaviop©hse — 0; this
will specify the limit of X¢(t) ase — 0. The functiono® satisfies the backward
equation associated with the equations in (4.1)

a0° 1

1 o -
4.22) - ryela ?oleS + goﬁzgs + L30°, (X, y|t)y= (X)),

with the operatorst,, .£2, andL3 given by
9 of o2
L1 =
' Z( y’ByJ 2 8y,>

)
L2 = ( Jkyk+ (ZB,lkl.zka + B YKYI)) :
]
(4.23)

d
+> ( X+ LY+ = Z B XX + ZBszllym)) ~
j.k i
( i(S) — Z Djkxx + = Z lek1|leX|>
I
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We now derive from the backward equation in (4.22) an equation for the limit
of o® ase — 0. To this end, leb® be represented formally as a power series

(4.24) 0° =00+ c01+%02+---.

We insert this series into (4.22) and equate the coefficients of equal power in
This gives the following sequence of equations:

(4.25) cC]_.Qo = 0,
(4.26) L101 = —L200,
d
(4.27) L102 = _ 200 L300 — L201,

0s

From the structure of these equations we see that each requires as a solvability
condition that its right-hand side belong to the rangefefor, equivalently, that

the right-hand sides of the equations in (4.25)—(4.27) have zero expectation with
respect invariant measure of the Ornstein-Uhlenbeck process. The solvability con-
dition is trivially satisfied for the equations in (4.25) and (4.26), but not for the one

in (4.27). In fact, as we show now, the dynamic equatiorpfas determined from

the solvability condition for the equation fep in (4.27).

The equation in (4.25) implies thap belongs to the null space dfy, i.e.,
(4.28) Poo = 0o,

whereP denotes the expectation with respect to the invariant measure of the Orn-
stein-Uhlenbeck process. This, of course, is not the expected dynamic equation for
00, (4.25) essentially implies thag is independent of the unresolved variabjes
Sincepp(t | t) = f, we avoid any problem nea = t by assuming®?f = f.
Taking next the expectation of the equation in (4.26), we obtain the solvability
condition

(4.29) P£L200 = P£L2Poo = 0.

It may be easily checked that this equation is trivially satisfied for our stochastic
model equations in (4.1) fof!(t/e) = f?(t/e) = Lf{ = 0, because of (2.10)

in assumption A4. If equation (4.29) were not satisfied, the unresolved variables
would induceO(1/¢) effects on the climate variables, contradicting the very crite-
rion for the distinction between these variables. Since (4.29) holds, the solution of
eqguation (4.26) is

(4.30) 01 = —L57L2Poo.

We insert this expression into the equation in (4.27) and take the expectation on the
resulting equation to get the solvability condition gt The latter is the following
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equation forpg:
9 ; ;
(4.31) —g = PL3Poo — PLaL 1 oPoo, 0ot X | 1) = F(X).

Despite the formal character of these manipulations, Kurtz [13] showed that in the
limit ase — 0, ¢ converges t@y, the solution of the equation in (4.31). In fact,
we state this result as the following theorem, which potentially applies to more
general equations than the stochastic model equations in (4.1):

THEOREM4.4 (Kurtz, 1973)Letof(s, X, ¥ | t) satisfy
a0° 1 1 S oo .
- aQs = 5L10" + —L20" +La0", "X VI =T,

where.Lq, £,, and L3 are backward Fokker-Planck operators, adij generates
a stationary process such that

(4.33) ef'. 5 P. ast— oo,

andPL,P = 0. Then, in the limit ag — 0, p°(s, X, ¥ | t) tends togg(s, X | t)
for —-T <s<t, T < oo, uniformly inX andy on compact sets, whegg satisfies
0o = Poo and solves the backward equation

(4.32)

0 = S -
(4.34) —C=lfeo.  etX|D=T1®,
with
(4.35) L =PLP - —PLoLT LP - .

For us, the most important consequence of Theorem 4.4 is that, as applied to
the stochastic model equations in (4.1) with the assumpltfatys) = f2(t/e) =

lel = 0, it implies that is a Fokker-Planck operator whose actual form is effec-
tively computable. As a direct result, a set of stochastic differential equations can
be associated witlf (see chapter 9 of [2]): These are the stochastic climate model
equations that were derived for the specific cases of wave—-mean flow and climate-
scattering interactions in Theorems 4.1 and 4.2, and for the general case without
fast-wave effects in Theorem 4.3. The actual computation from Theorem 4.4 of the
stochastic climate model equations in Theorem 4.3 is given in Appendix B. Other
examples of applications of Theorem 4.4 on low-order triad models are given in
Section 7.

4.5 Averaging by the Direct Method

The asymptotic strategy presented in Section 4.4 is based on a singular pertur-
bation expansion of the partial differential equation (backward equation) associated
with the stochastic model equations in (4.1). We now show that in the special case
where the equations for the unresolved varialyleare linear and diagonal ig,
the equations for the climate variables alone that are obtained by the method of
Section 4.4 can also be derived directly by working on the stochastic differential
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equations in (4.1). We illustrate the method on the climate scattering equations
equations in (4.11) and derive the equations in (4.12).

Because the equation fgyin (4.11) is linear iny;, this equation with the initial
conditiony; (0) = y; is equivalent to the integral equation

(4.36) yj(t) = ey + = Z f e 9/ B ()X (S)ds+ = g, ),

k|€0’1

where
t
(4.37) ) =0 [ &9 aws).

Inserting (4.36) into (4.11) yields the following closed, non-Markovian stochastic
model equations for the climate variablgt) valid for anye:

(4.38) dx(t) = F(t)dt — > Djx(t)dt + o Z BiiA (e ™Yy dt
k

Z ZleklnzBﬁllr%Xk(t) ( / ey”<ts)/€ZX|(s)xm(s)ds> dt
0

k I,meoy Neoy
57 Z Y BiZ(Ha madt.

keoq leon

We now show that, in the limit as — 0, the equation in (4.38) reduces to the ac-
tual stochastic model given by (4.11). We consider successively the various terms
involving ¢ at the right—hand side of (4.38). First, we have for any 0

(4.39) = Z 3 BiiZme Yy dt — 0.

kEO']_ |€O‘2

Second,

t
(4.40) — Z Z Bli2BaTiXic(t) ( /0 g m(t=9/s%y (s)xm(s)ds) dt —

k |,meoy Neor

Z Z ,1k1n2 B2Llx (1) (1) Xm(t)ds.

k I,meoy neaz

Finally, we use the Gaussianity gf(t) from (4.37) combined with the following
properties for any test functiof

(4.41) E8—12 /OOO n(t)g;(t)dt =0
2

1 [e%e} 1 0 . [e%e}
(4.42) E(—2 f n(H)g <t>dt) <—2 / n(t)gka)dt) = Ds f n’(tydt,
€= Jo €= Jo Vi 0
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to deduce that the noigg(t)/s? converges in mean square to a white noise, i.e.,
1 X
(4.43) —gmdt > Tdw ),
& )/j

ase — 0, whereW, (t) are independent Wiener processes. As the external limit of a
process with finite correlation time, the white noise is interpreted in Stratonovich’s
sense (see, e. g [2, chapter 10)), i.e.,

(4.44) 552 Z > B tdt — Y Z Bi3X(t) o dW(1) .

kEO']_ |€(72 kEa‘l |€(72

Collecting (4.39), (4.40), and (4.44) into (4. 11) we obtain

dx = Fj(tdt — Y Djexedt + > Z Bidtix dt

kEUl k |€O‘1

(4.45) + = Z - leklnzBﬁlln}xkxl Xm dt

k I,meoy neoz

+Z Z Z B3 o dW(1) .
kecrl Ieoz

This equation is equivalent to Itd’s equation in (4.12).

Summarizing, in the case where the equation for the unresolved vanglales
linear and diagonal iry;, the stochastic model for climate variables alone can be
derived by a direct method alternative to the general asymptotic strategy presented
in Section 4.3. It should be stressed that the direct method actually gives more
than the general asymptotic strategy, since it provides us with the non-Markovian
model equations in (4.38), which are valid for anyIn particular, the equations
in (4.38) can be used as a starting point for a systematic expansiothat goes
beyond leading order. Results in this direction will be reported elsewhere by the
authors. Finally, we mention that the direct method can be generalized to situations
with fast-wave effects: An example of such calculation is given in the proof of
Theorem 7.6.

5 The Effect of Fast-Wave Averaging in Stochastic Climate Models

In this section, we generalize the result of Section 4 by incorporating the ef-
fects of fast waves to the theory. First in Section 5.1, we consider the important
example of the stochastic model for the truncated barotropic equations in (3.6) in
the absence of mean flow and topograpghly= 0, h, = 0, but with beta effect,

i.e., the dispersive terms defined £y in (3.8) and associated with Rossby wave
propagation; see Pedlosky [20]. These beta terms induce fast-wave effects on both
the climate and the unresolved variables, and we show how to handle these effects
in order to get closed equations for the climate variables alone for smdly
comparing with the case without beta effect, we demonstrate that the beta effect
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induces a depletion of the effective nonlinear self-interactions in the equations for
the climate variables alone, as well as a reduction of the noise in these equations.
Indeed, in the situation with beta effects, additional resonance conditions between
the various terms need to be satisfied in order that these terms give a nonzero con-
tribution through the averaging procedure.

In Section 5.2, we study the complete stochastic climate equations in (4.1) when
both fast waves and forcing effects are present, and we give the explicit effective
equations that are obtained for the climate variables alone in this case. Finally,
in Section 5.3 we give the details of the asymptotic procedure that allows us to
average both on the unresolved variables and on the fast-wave effects. At the end
of this section, we also give the details of the proof of Theorems 5.1 and 5.2.

5.1 Truncated Barotropic Equations with the Beta Effect

In this section, we consider the stochastic model for the truncated barotropic
equations in (3.6) under the assumptions that

(1) there is no mean flow and topography. Thus, welket hy = 0 in the
stochastic model for barotropic equations in (3.17); and

(2) the stochastic model in (3.14) has zero mean. Thus, wg,set 0 in the
stochastic model for barotropic equations in (3.17).

Under the above assumptions, the stochastic model for the truncated barotropic
equations in (3.6) reduce to

dog = —kakdt—i—— Z Bumuy, vy, dt

| mEGj_

K+i+m=0
Z Bimvw dt+ Z Bumw, wy, dt,
leal,meag ) meoz
(5.1) K+ +m=0 K+ +m=0

dwy = —kakdt—i—— Z Buimv v, dt+— Z Bumu wy, dt

| meal
K+ +m=0

1 ok
— —wwk dt + — (dW(t) + dW* (1)) .

82)’k \/zs( k )
In these equations, the beta effects are respectively accounted for by the terms
i Qruk dt/e andi Qgwyg dt/e which obviously induce fast-wave rotation effects on
both the unresolved and the climate variables.

We ask about the asymptotic behavior of the climate varialyder small .
We have

-l
Xl m

02
O

31 3¢
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THEOREM 5.1 Denote byu(t) the solution of(5.1). In the limit ase — O,
gd/eye (t) converges tay (t) where thev(t) satisfy

(5.2)
duy

1 Byin B
= { > Z Bklmeklmvfkv;; dt + > Z Mek,nm,nvrvmvn dt}

Vp 1

2B, mB;
n Z O mBkim Ikmvkdt
- Ym(A + Ym)
|,Meor

K+ +M=0
010mBum (N + J’m))l/2
+ dW m(t) +dW*, _ (t
rgz 2(n + ym) ( NVm ( m® ()
RAT4+M=0
2
+{ Z UmBkImBIkmvkdt

va

2

EEO;]_FT]GO'Q
K-+ +m=0

mB m x5
+ Yy 2 ﬁk' eklmv|*<dwm<t>+dw*m<t))] :

he = m
|€Ul,m€(72 y 3

K++m=0
where W(t), Wk, (t) are independent complex Wiener processes satisfying
EW (W' (S) = 28« min(t, s),
EWL(W () = EW (HW(s) =0,
EWk 1 (Wi, 1 (S) = 26k 16m.n MiN(t, s),
EWii (1) Winn(S) = EW, (W ,(S) = 0,

(5.3)

the coupling parametafﬁdm satisfies
(5.4) > Gamberm = Ok
I"T‘IEUZ

and we have defined

1 if+Q2+Qm=0
Ok.l.m =

0 otherwise
(5.5)

KRIMA =10 otherwise
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The proof of Theorem 5.1 uses the asymptotic method presented in Section 5.3
and is given at the end of this section.

The conditions in (5.5) are the three-wave and four-wave resonance conditions
for nonlinear wave theory, which might be familiar to the reader. The first terms
in braces,{-}1, in (5.2) represent the depleted and augmented nonlinearities, the
terms in{-}, are additive noises with related damping, while the termis}inare
the multiplicative noise contributions in Itd form. It is apparent from the equation
in (5.2) that the effect of the unresolved variables on the climate variables must be
accounted for by nonlinear self-interaction terms in the climate variables, as well as
multiplicative noise. On the other hand, the effects of the fast waves in the original
equations in (5.1) give rise to depletion of nonlinearity and noise weakening in
(5.2). Indeed, the resonance conditions in (5.5) that involve three or four modes
must be satisfied in order for the corresponding terms in (5.1) to give nonzero
contribution in the equation in (5.2). This point can be emphasized even more
upon comparing the results in Theorem 5.1 with those in the following theorem,
which is obtained if the beta effects in the equations in (5.2) are set to zero:

THEOREM 5.2 SetQx = 0 in the equations in5.1), and denote by (t) the
solution of these equations in this case. In the limitas- 0, vy (t) converges to
vk (t) where thev(t) satisfy

(5.6)
1 1 By, B
dog = [é Z Bk|mv|*v;“ndt+§ Z —XpZpmn,, N mvndt}
ﬂlﬂpﬁeol F,ﬁlﬁgol peoz yp 1
K-H +mM=0 k++p=0
M-+ p=
2B mB,
4 Z OmBkim Ikmvkdt
[ e YmA + ¥m)
RAT+M=0
a1omBam (1 + ym) 7
d t) + dW* t
* r% 2(n +Vm)< N¥m (@AW m(®) + dWE) (D)) 5
s 02
K+ +M=0
+{ Z UnquklrgBIkmvkdt
leo1meas Vm
K+ +m=0
omB
+ Y }k'm r<dwm<t>+dW*m<t))} ,
leo1,Meo Ym 3
kil o

where W(t), Wk, (t) are independent complex Wiener processes satis{gidy
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The proof of Theorem 5.2 is a special case of the proof of Theorem 5.1 given
below and is very similar to the proof of the results described in Section 4.

Clearly, equation (5.6) is similar to (5.2) except that all the resonance conditions
induced by the beta effect in the latter equation are absent.

5.2 General Case with Fast Waves

We now turn to the stochastic climate equations in (4.1) and consider first the
situation with fast-wave effects but no forcing. The key assumption which we
utilize here is that the operatdr;; is skew-symmetric so that there is nontrivial
averaging on the climate time scales. In this case, the asymptotic behavior of the
climate variables for smadl is specified by the following:

THEOREM 5.3 Denote by X(t) the solution of the first equation i{#.1) with no
fast forcing, ]’1 = f2 0, under the assumption W2 that L, is skew-symmetric.
In the limit ase — 0

(5.7) Do (e X = X (),

kEO']_

where x(t) satisfy

(5.8)
dx = (F(t, 7)) dt — Y (Dj(r) X(X, 7)) dit
keoy
- Z (BIM (M XX, )X (X, 7)) + a dt
klerrl
- Z Yik(OXi(X, 7)) dt + Z ojk dW (1)
keoy k,l oo
4z Z Z < B12(c (E&%(T)+ZB%IJ£(T)X| (X, r))>dt
keo'l mEaz leor
+Y > = < (Ejlnz(r) + Y BT Xu(X, r))
leor nenz keoy
(LZlXI(X )+ = Z B2HX, (X, z)xm(i,r))>dt
+ ZU“ dW ).

leon

Here W, W, are independent Wiener processes satisfying

(5.9) EW;(HWi(s) = djx min(t, s), EWik (OWji(s) = 30k min(t, s),
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and (g(t)) denotes thér-independentaverage of any suitable functiong

. 1 [t
(5.10) (g(0) = lim = - g(r)dr.
We also defined
1 02(Bi3%(r))LE o2 B122(7) B2
(511) q = é Z %’ VJk(T) _ = Z “1 Zjim A" P mlk
k,leop Nk M) | .mea )/I(VI + )/m)

and the matricesjx andojy satisfy

(BjgA(v) Bi(m)) oo
Z OjklOj’kl = Z J

k.l €o2 P ¢ WYEW
(5.12) > onop =y % <<L12(r> + ) BidAo) XX, r))
leop leor V| keoy
<L1,|2(r) + Y BRG (O X (X, r)>> .
k'eo

Finally, X; (X, t) is defined through the exponential of the skew-symmetric opera-
tor L1

(5.13) X (%, ) =) (€47) %,
kGo‘l

whereas the operators with a bar are defined from the original ones by action of
e~tu, For instance,

(5.14) Dik() = ) (€74%); Dik,

|€01

and similar relations hold foL{2(z), Bii (1), ...

Theorem 5.3 can be proven using the asymptotic procedure of averaging mod-
ified as to account for fast averaging. In this paper we will only provide a formal
derivation as outlined in Section 5.3. These calculations are similar to the ones
presented in Appendix A.

The stochastic model for climate variables alone in (5.8) is necessarily com-
plicated due to the interplay of the many phenomena associated with driving by
the unresolved variables and the fast-wave effects. In particular, we observe in
the equations in (5.8) both stable and unstable Langevin terms, modification of the
climate mean, nonlinear corrections of the climate variables dynamics, and multi-
plicative noises. Besides the example in Section 5.1, a simple example illustrating
these general features will be described in Section 7.3, and other more complex
examples with nontrivial averaging due to topography, beta effects, and the mean
U are given in the stochastic models in (6.38) and (6.42) in Section 6.
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As explained in Section 5.3, the effects of fast forcing may be more complicated
to account for because resonance phenomena may arise between fast-wave effects
and fast forcing with the result that the time average involved in (5.10) fails to exist.
If, however, we assume that no such resonance phenomena arise, then the results
of Section 5.3 show that in the presence of fast forcing, the solution of the first
equation in (4.1)x7 (), satisfies

t
(5.15) Do (e o - /0 (e7H7),, fl(®ds — x; (1)

kEGl

ase — 0, wherex; (t) obeys an equation similar to the one in (5.8) wkh(X, 7)
replaced by

(5.16) XX 1g=>_ (eLlﬂ)jkxk + Zfo (eLﬂ(f—”)jk fl(z")dr’.

kE(Tl kecrl

5.3 Asymptotic Procedure with Fast-Wave Averaging

We now generalize the asymptotic procedure introduced in Section 4.4 in order
to deal with fast-wave effects on the climate variables. We will, however, carefully
distinguish between

(1) the situation where only fast rotation wave effects are present, i.e., the
situation where the ter_, leklxk/s is presentin (4.1), but we stillassume
flt/e) = f2(t/e) =0, and

(2) the complete situation where both fast rotation wave and forcing effects are
present, i.e., the situation where all three tefmgLjixc/e, f'(t/e)/e,
and sz(t/e) in (4.1) are nonzero.

The reason for this distinction is that, in situation (1), the asymptotic procedure
introduced in Section 4.4 carries over almost completely: We simply combine the
latter method with standard multiple time-scale expansion in order to deal with the
term ), Lixc/e in (4.1). On the other hand, in situation (2), the same kind of
manipulations can be performed, but one has to assume the absence of resonance
effects between rotation effects and forcing, which would make the averaging pro-
cedure fail. The presence or the absence of such resonance effects is hard to assess
in the general case and will be discussed in specific applications in the future.

The Situation with Fast-Wave Effects But No Fast Forcing

We first consider the situation where we let the teyrp leklxk/g be present
in (4.1), but we assuméjl(t/s) = sz(t/e) = 0. Letp®(s, X,y | t) be defined
as in (4.21). The functiop® satisfies the backward equation associated with the
equations in (4.1),

00° 1

1 N R
(6.17) ——~ = 8—2£1Q8+g(°ﬁys+£§)£)g+£3@8, (L, X, VIt = f(X).
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The operatorst; and L3 are given as in (4.23), whereas in order to account for
fast-wave effects, we have decomposed the operd@ssociated with the terms
of ordere 1 in (4.1) into a non-skew-symmetric pa€l® (which was the only one
entering the backward equation in (4.22)) and a skew-symmetricigaatcount-

ing for the fast-wave effect. They are given by

1 9
L£ys=3" (lekzyk +3 > (2Bi3%y + lek2|2yk)/l)) T

ik I ]

1 Gl
ik | J

0
L3 = L % — .
%; T

We seek for a formal asymptotic solution of (5.17) with two time scales (compare
equation (4.24))

(519) QS(S | t) = QO(S’ T | t) + 8@1(87 T | t) + SZQZ(Sa T | t) + T= g .
Consistent with the separation of scales betweandz, we treat these two time
scales as if they were independent. Thus we set

0 d N 19

— > —+-—.

as ds edrt

We insert (5.19) in (5.17) and use (5.20). Equating equal powetsgines the
following sequence of equations (compare (4.25)—(4.27)):

(5.20)

(5.21) £100 =0,

0
(5.22) L101 = —f — £5%0 — L300,

d0o0 d01 NS S
5.23 L =—— L —— L — L
(5.23) 102 5s 300 — 5 01— L3501,

Like equations (4.25)—(4.27), equations (5.21)—(5.23) require as a solvability con-
dition that their right-hand sides have zero expectation with respect to the invariant
measure of the Ornstein-Uhlenbeck process. The solvability condition is trivially
satisfied for the equation in (5.21), which implies that

(5.24) Poo = 0o -
Thus to leading order the behavior is independent, of

00(S, T, X, ¥ | 1) = 0o(S, T, X | 1).
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Taking next the expectation of the equation in (5.23), we obtain the solvability
condition (compare (4.29))

900 _
T
To derive (5.25) we used (5.24) combined with the property that the expectation
P commutes withd/dz and £3P. We have also se®.L)%0o = PLYPgy = 0
consistent with (2.10) in assumption A4 in Section 2. The solution of (5.25) can be
expressed as

9
(5.25) 0= —P P(LYS + £3)00 = —f — £300.

N _ R t
(5.26) 00(s. 7. % | ) = &2 50(s, X | 1) , =

The action of the operat@“2@-? on a suitable scalar-valued functigx) is
given by

(5.27) 2GR = g (€1 R).
Since (5.25) holds, the solution of (5.22) is
(5.28) 01 = — L7 LYt pg,

Inserting this expression in the equation in (5.23) and taking the expectation on the
resulting equation to get the solvability condition fgryields

(5.29) —ef?“o—f)% = P.L3e 20 Ppy — PLYS LTl LNSe 0T Py

The backward equation f@r given in (5.47) is obtained from (5.29) by applying
e~ 430" on both sides and averaging with respect to time the resulting equation.
This gives

d00

(5.30) — s = L£00, oot, X | t) = f(X),
where
t
531) 7 =P(lim = [ e 5000 (£y— £t pNS) oS0 g7 )\ p.
T—o00 T 2 1 2

Notice that the time average in (5.31) exists because of the skew-symmetric nature
of L£5,.

We now show that the operatat in (5.31) is a Fokker-Planck operator that
is effectively computable. This essentially amounts to evaluating the action of

the operatore“C?(fO*f) in (5.31). We do so by taking into account the fast-wave
effects in the equations in (4.1) from the very beginning by an appropriate change
of variables in these equations. The key step is to introduce the function

(5.32) B %, 1) = e ECI i (s %,y [ 1),
From (5.26), it follows that the functiogf is such that, in the limit as — 0,



922 A.J. MAJDA, |. TIMOFEYEYV, AND E. VANDEN EIJNDEN

wherepy is the function defined in (5.26) that satisfies the equation in (5.30). On
the other hand, as we now show, working withinstead of* allows us to account

for the fast-wave rotation effects from the very beginning because it amounts to
making an appropriate change of dependent variables in (4.1). More precisely,
o° satisfies the backward equation associated with the equations that are obtained
from (4.1) upon changing dependent variables consistent with the equation of the

S P
operatore~£z=9/¢ ‘namely, upon defining from

(5.34) X(t) = (e7H1e) x(t)

or, with index notation,

(5.35) Xt =) (&), x(t).
keal

In terms of(>j<, y) the equations in (4.1) withi! = 2 = 0 become

dx; = FH(Hdt + Z( Dk (t) Xk + = L k(t)yk>
2 1s
+ = Z (Bllk][l(t)XkXI + = B]1k1|2(t)Xky| B (t)yky|)

dyj=Z( L2Xy + = LJkyk>dt

k

2
- Z( B XX + = Bszllykxl) dt — —yJ dt+ 2 — AW,

(5.36)

where we defined

(5.37) Xj = ("), %,

keo

and the operators with a bar are defined from the original ones by actoh@f*.
For instance,

(5.38) Dik(t) = ) (e7-4), D,
leoy

and similar relations hold dejlkz, leklll, .... Thus, the backward equation ot is
given by (omitting now the bar OR, i.€., settin(j — X)
(5.39)

aéa 1 e 1 ~rNS —& r —£ —~& SRy V3

——— = 5L1w" + -L(1)e" + La(s, 0", FEX VI =f(X),
as e €

wheret = s/e, and we have explicitly distinguished the dependence in sipw,
and fast,t = s/e, time scales in defining the operataf§®(r) and L35(s, 7).
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They are given by

L£5%(1) = Z L} (r)yk—
J

ad
+Z Z 2BA0 X0 DY + BIFADNN) -
J k.l X
21 o 22 0
Z( XX, T) + L,-kyk)W
(5.40) :
+

NIl = —

= ad
Z B Xk(X, 1) X (X, 7) + 2By X (X, r))W
|

i
_ B} 9
_ 1 . V]
L3(s, 1) = ij (F, (s.7) — ; Djic(7) Xi(X, r))a—xj
1 - 9
+ = HOXX, DX (X, 1) =—
2 ! e
ikl ]
where we defined
(5.41) X (%, ) =) (8) %,

kEGl

and, similarly to (5.38), the operators with a bar are defined from the original ones
by action ofe~-117, For instance,

(5.42) Di(t) =) (e—Lnf)j| Dik -

leoy
Manipulations similar to the one that led to (5.30) can now be performed for the
backward equation in (5.39). Of course, there are no rotation effects to treat in the
backward equation in (5.39) since these effects were taken into account from the
very beginning by replacing the equations in (4.1) by the equations in (5.36). This
means that by manipulating the backward equation given in (5.39), we obtain an
alternative but, of course, equivalent expressionf£omor, in short, we have suc-
ceeded in evaluating the action of the operaﬁj@(m‘” in (5.31). The expression
for £ equivalent to the one in (5.31) is

A 1t . _ _
(5.43) £ = P(Tlim ?/ (L3(s, 1) — £95(r)£11£93(r))dz> P
t—T
where the integration onis performed withs kept fixed.
These manipulations can be summarized into the following formal:

THEOREM5.4 Letp(s, X, Y | t) satisfy

d0° 1 1 N N
(5.44) —a—QS = 8—2£1Q8+g(°@gs+£§)é’g+£308, X Y|t = f(X),
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whereLy, £35S, L£3, andL3 are backward Fokker-Planck operators given(#23)
and (5.18) L35 is a first-order skew-symmetric transport operator, whergas
generates a stationary process such that

(5.45) ef'. 5 P. ast— oo.
Then,
(5.46) L5(-9)/e 0°(8, X, Y| t) = 0o(s, X | 1),

in the limitass — 0, for =T <s <1t, T < oo, uniformly inX andy on compact
sets, wherg satisfiespg = Pog and solves the backward equation

d00

(5.47) ——5 =400, 2ot X1 =f(),
where
A . 1 [ — £3(10—1) NS p—1 pNS\ oLS(to—1)
L-=P Thm? e 20 (L3 — L0 LN) et dr |P
(5.48) 1 T
= ( lim —/ (£3(s, 7) — LYNT) L7 LY S(r))dr)
T—)OCT t—T

Here £3(s, 1), £55(t) are the operators given i(5.40) and the integration on
is performed with s kept fixed.

The Situation with Fast-Wave Effects and Fast Forcing

We briefly comment on the complete situation where both fast-wave and forc-
ing effects are present and all three tefmg L{gx«/e, fi(t/e)/e, and f2(t/e) in
(4.1) are nonzero. A backward equation similar to the equation in (5.17) can be
associated with the complete equations in (4.1), but an additional difficulty arises
because the skew-symmetric operafigrin (5.18) is replaced by

(5.49) £;S”=ijl(§)i+z () +Y L Xo
j £/ 9% 4 K

Due to the terms involving forcing, this operator is skew—symmetrlc at fixed argu-
ment but has time dependence. This implies that all the manipulations we did in
situation (i) can be formally performed in the present situation, and an effective
equation similar to the one in (5.47) with given as in (5.48) but withes" given

by (5.49) instead of3 given by (5.18) can be associated when both fast-rotation-
wave and -forcing effects are present in (4.1). However, these manipulations may
be formal because the time average involved in (5.48) may fail to existjth

This will typically be the case if there are resonance effects between rotation waves
and forcing effects. Assuming that no resonance effects arise and the time average
involved exists, the operatat entering the backward equation in (5.47) associated
with the complete system of equations in (4.1) is given by

t
(550) L= (Iim %/ (L3(s, r)—iys(r)xgljys(r))dr)P
t—T

T—o0
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where
_ _ 0
NS _ 12
L37(7) = %} ij(f))/ka—xj
1 5112 Y, 5122 0
T3 > (2B Xk(x, DY + B (T)kal)a—
Y X
f2 0 LZlX z L22 0
t2 i(f)a_ijrZ( XX, o)+ jkyk)a—yj
(5.51) ‘ bk

1 S e N
+5 D (B KX, DX (X, ) + 2BIEWKI (X, 7)) -—
|

ay,
_ - - A d
La(s,T) =Y (F,-l(s, ) = Y Dj(m) Xu(X, ”)&
k

J
i ]

1 2111, 1\ o o\ S 9
+ QJXKI: (0 Xk(X, D) X (X, T)a—xj'

Here we defined
(552) XJ ()_{, ‘L’) = Z (eLllT)ijk + Z/ (eLll(T—-[’))jk fkl(f/)dfl,
k€(71 keal 0
and, as in (5.42), operators with a bar are defined from the original ones by action

of e 117, For instance,
(5.53) Djk(t) = Z (eLnf)“ Dy .

|€o‘1

The set of stochastic differential equations associated with the opetagiven in
(5.50) is the stochastic climate model given in Theorem 5.3. Examples with poten-
tial resonance due to climate forcing will be discussed elsewhere by the authors.

PrROOF OFTHEOREMS.1: The proof generalizes to the complex case the pro-
cedure given in Section 5.3, and then uses the results of Appendix A to compute
the operatotL given in (5.48) in a way similar to what is done in Appendix B. Let
(5.54) 0" (S, Vi v i w | 1) = E T (vE(1), wi()) .
wheref is a suitable scalar-valued function ang(t), wy (t)) solves the equations
in (5.1) for the initial condition
(5.55) (Vg (8), wi(s)) = (vk, wk) -

As a function of the independent variableg, v, wk, wy), o° satisfies the back-
ward equation analog to the equation in (5.44), i.e.,

00° 1 1
_ —_r e - ocNS QCS 8’
9s g2 1+ 8( 2+ 2)Q

(5.56)
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where the operatof;, £3°, £3 are identified from equations (5.1) as explained in
Section 5.2.£; is the Fokker-Planck operator associated with the model in (3.14),
and.£}® and.£3 are the non-skew-symmetric and skew-symmetric operators asso-
ciated with the terms of order in (5.1). These operators are given explicitly by

ow, dwy
2 2 82 2 82
+ Z kK dwdw; ;Gk AWKOW_k Z K dwiow*,
NS 1 ko k k% X, % d

Fold
!

+

+
NIk NI NI -

M =

(5.57) (Brimvivm + 2Bamuiwm + Bimwi wm)

*
vy

b

i
S

0
(Bumvy vy, + ZBkImUrw:n)m

FaX
=
=

+

g

ad
(Biimv1 vm + 2Buimviwm) PR
k

FaX!
_1
=1

£§_|Z

where for S|mpI|C|ty of notation we have omitted the explicit summation sets. To
compute the operataf obtained from the equation in (5.48), we need to derive
OEQS as given in (5.40). This is particularly simple in the present case because
the operatot£s is diagonal. Hence the rotation induced by this operator is easily
accounted for and amounts to setting

(5.58) vk — vce KT wy — wie KT

It follows that

- 1 0
(5.59) £5%(1) = = Z (Bum (D) v + 2Bam(T)vf wiy 4+ Bam(D)wiw *)a—vk

8vk

Wl
_l

,m
9
+ >3 (Bim(T)vivm + 2B (1) viwm + By, (1) w1 wim) o
k

31

P’

Fox!

0
(Bum(D)v v + 2Bam(T)vf w )m

=
=

I\)IH I\JII—‘ I\)II—‘
M 5

Fald

Z Biim (D) vivm + 2By (1)) wm) P
k

Tl

S
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in which we defined
(5.60) Bum(t) = Bime ™ (kAT amT
The equation in (5.48) can be written as
. o1t _
(5.61) L =-P <T||m —f £§S(r)£;1£gs(r)dr) P,
>0 t—T

and Theorem 5.1 follows after explicit evaluation of this operator. We skip these
calculations since they are a straightforward generalization of what is done in Ap-
pendix B. O

6 ldealized Climate Models from Equilibrium Statistical Mechanics

In this section we study in more detail the systematic design of stochastic cli-
mate models for the truncated barotropic equations in (3.3), which we recall for the
reader’s convenience:

0 0 0
89 4 Py (Vi - Vo) +U S 4 g2V g
ot 0X 0X
(3.3) qu 5
gr = wp +ha,  wr =AYy, —:][hA wA,
dt X

whereP, is the projection operator associated with a definingrgesee the dis-
cussion below (3.19)) defined for any suitable functioas

(6.1) fA(X) = Py f(X) = Z (fug ™ + fre kX).

keap
The equations in (3.3) are an important first test case for stochastic climate model-
ing since they include large- and small-scale inhomogeneity and anisotropy through
the interaction of the geophysical effects fraun 8, and the topographyy. The
systematic approach we develop below can be extended to a number of important
climate models directly such as two-layer models or barotropic flow on the sphere.
These applications will be developed elsewhere.

In this section, we incorporate in the theory the important fact that an equilib-
rium statistical theory can be developed for the truncated barotropic equations in
(3.3). The equilibrium statistical theory is based on the existence of two conserved
guantities—energy and enstrophy—and is presented in Section 6.1. In Section 6.2,
we show that the stochastic model for the truncated barotropic equations can be
made fully consistent with equilibrium statistical theory by appropriate constraints
on the parameters in the stochastic model. In other words, the stochastic model
for the truncated barotropic equations shares the same Gaussian invariant measure
with density in (6.16) as the original truncated barotropic equations. In addition,
we demonstrate that the stochastic model for the climate variables alone that is
derived from the truncated barotropic equations also satisfies an equilibrium sta-
tistical theory. Furthermore, the invariant measure for the effective climate model
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is the projection on the climate variables alone of the invariant measure for the
original system of truncated barotropic equations.

In Section 6.3, we report on numerical simulations of the truncated barotropic
equations in several different parameter regimes that demonstrate effective stochas-
ticity and separation of time scales for the evolution of specific variables. In other
words, we justify numerically the possibility of distinguishing unambiguously be-
tween climate and unresolved variables for the truncated barotropic equations. We
also show that the equilibrium statistical theory is supported by the numerical sim-
ulations.

Finally, in Section 6.4, we show how the numerical simulations can be used to
identify the parameters entering the stochastic model equations. We also indicate
how the numerical results for the climate variables can be compared with the solu-
tions of the equations for these variables alone that are derived by the asymptotic
strategy of Section 4.

6.1 Equilibrium Statistical Theory for Geophysical Models

It can be shown by direct calculation that the dynamics in the truncated ba-
rotropic equations in (3.3) conserves the truncated enkrgynd the truncated
enstrophyé,

o £y = 2U24 2 ][|va|2 : ——][wm,

8A:,3U+§][q12\-

Based on these two conserved quantities, it is possible to construct an equilibrium
statistical theory for the truncated barotropic equations in (3.3), as we show now.
We sketch the argument in a rather heuristic way here; more details can be found
in [4, 17]. We proceed in two steps.

Stepl. Consider the truncated barotropic equations written in the compact no-
tation introduced in (3.10) as

dz - I
(6.3) ot =F@ =LZ+B(Z 2.
The vector fieldlf(i) is divergence free, or incompressible, in the phase space
={Z},i.e.,,
(6.4) dvE=0 or V;-F=0.

It follows that the flow map{¢;(Z)} associated with the equations in (3.11) de-
fined by

d. _ =L S
(6.5) 9@ = F(¢(@)., ¢ =12,
is volume (or measure) preserving on the phase space, i.e.,
(6.6) det(Vz- ¢ (2) = 1.
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Utilizing the measure-preserving property of the flow nf@gz)}, it is possible to
define probability measures on the phase sgacepecifically, for any suitable
function A(Z) defined o2, we can associate an observable as the image value of
A under the magp¢; (2)}

(6.7) A(¢(2) .

Let Py(Z) be a probability density on the phase sp&teand define the average
value of A with respect toP, at initial timet = 0 as

6.8) PoAG) = / AG) Po(2)dz.
Q

Then, using the measure-preserving property of the flow fgai@)}, it follows
that the average value of the observaBle; (2)) is given at timet > 0 by

69 PoAG®) = [ AG@)Pi@E = [ ADPF @)dz
Q Q
where{g,"1(2)} is the flow map inverse t@;(2)}. It follows from the equation in
(6.9) that
(6.10) P(Z.t) = Po(¢, " (2)

is a probability density o2 that allows us to compute the average of all observ-
ables o2 at timet > 0. Notice also that, from (6.5) and (6.10), the probability
densityP(Z, t) satisfies the Liouville (or forward) equation

P -

(6.11) E+F(z)-VzP=O.

Step2. By definition, the invariant measures éhare those measures whose
associated densities are preserved by the {ah(2)}, i.e., such that for all > 0
(6.12) P*2) = P*(¢, 1)
Equivalently, the probability densities of the invariant measures are steady-state
solutions of the Liouville equation in (6.11)
(6.13) F(@) - V;P* =0.

Invariant measures are readily obtained for the truncated barotropic equations in
(3.3). Indeed, by definition of the conserved quantities in (6.2), any function
G(E,, &) of the energyE, and enstrophy, is preserved by the majg, 1(2)}

or, equivalently, satisfies

(6.14) F(2) - V;G=0.

In equilibrium statistical theory, given some conserved quantities, it is postulated
that the actual invariant measure is the canonical measure whose density is given
by

(6.15) P =Ce "R,
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In fact, the measure with density in (6.16) arises from a maximum entropy principle

as the Gibbs probability measure with the least bias given the information in the

two conserved quantitids,, &, [17]. HereC is a normalization constant aAdo

are parameters playing the role of the inverse temperature in the usual equilibrium
statistical mechanics theory. The value® p& depend on the actual valueskef,

&4, and it is customary to introduge = 6/« and write the density in (6.15) as

(6.16) Pt = Ce@WEatén),

Equilibrium statistical theory applies under the assumption of ergodicity with re-
spect to time average of the dynamics defined by the truncated barotropic equations
in (3.3). Ergodicity implies that time averaging and ensemble averaging are iden-
tical, i.e.,

(L o
(6.17) TIim ?f A(got(z))dt = / A(2)PE(2)dz
0 Q
for any suitable functiorA(Z). The numerical simulations presented in Section 6.3
support the ergodicity assumption in (6.17) for suitable functi&f® involving

low-order moments.

The density in (6.16) is a Gaussian density that is completely characterized by
its mean and variance in each Fourier component

U=mearld = ——, varU = —,
W o
6.18 N
(6.18) _ L™ 1
Ok = meanuy = ———, varly = —————,
w+ [K|2 a(p + |k[?)

with ug = |R|x&k. Thus, a nontrivial mean exists that is the idealized climate mean
for nonzero topographyh,. The Gaussian measures with density in (6.16) are
finite and realizable for > O for generah, with 8, U nonzero; if3 = 0 and

U = 0, the measures with density in (6.16) are realizable in the regime—1
including a “negative temperature” regime [4, 17]. The combinati@), + &, is
called thepseudoenerggssociated with the mean staltk, Gy.

6.2 Stochastic Climate Models Consistent
with Equilibrium Statistical Theory

We now develop the stochastic model for the truncated barotropic equations in
(3.3) consistent with the equilibrium statistical theory developed in Section 6.1.
We leave a detailed analysis of the stochastic climate model equations associated
with the stochastic model for a future publication and, in the present section, we
content ourselves with the analysis of some general properties of the stochastic
climate model, which can be summarized in the following statement:
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(S) There is a simple explicit procedure to construct a stochastic model from
the truncated barotropic equations {8.3) that satisfies the same equilib-
rium statistical theory as the original system. Furthermore, equilibrium
statistical theory for the stochastic model projects into equilibrium statisti-
cal theory for the stochastic model for the climate variables alone. In par-
ticular, the reduced stochastic climate model automatically has the same
mean and energy spectrum as the projection of the nonlinear dynamical
model.

A more precise phrasing of the statement in (S) is given in Propositions 6.5 and 6.6
below. The key idea in these systematic developments involves detailed conserva-
tion of pseudoenergy separately for appropriate parts of the equations in (3.3).

Detailed Balance for Pseudoenergy with a Climate Mean
From (6.18), for a fixed realizable value @f the climate mean state is given by

(6.19) r = AYa +hpy = pha,  @0p = Aa, Uz—g-
The considerations involving detailed balance are properties of general solutions of
the truncated equations centered on the climate mean in (3.3) and related partitions
of these equations. Once these are developed below, it will be straightforward to
build stochastic models consistent with the predictions from equilibrium statistical
mechanics in Section 6.1. Thus, it is natural to center the variables in (3.3) about
the climate mean in (6.19) through

(6.20) Qr =0a +@x, AVUy=adn, U=U+U.

Within an irrelevant constant that can be absorbed in the normalization con-
stantC, the argument in the Gibbs measure in (6.16) is a positive multiple of the
pseudoenergy.

Pseudoenergy

2 2

The pseudoenergy is conserved by the truncated dynamics in (3.3) since it is a lin-
ear combination of two conserved quantities; it also has the important property that
itis a quadratic form in perturbations about the climate mean siat&] . Further-

more, this quadratic form is positive definite exactly when the Gibbs measure in
(6.16) is realizable, i.e., fqr > 0 for 8 # 0,U # 0, and foru > —1 for 8 = 0,

U = 0. Notice also that the nontruncated pseudoenergy,

1 - 1 ~ .
(6.21) REA+ 6 = 5002+ o (cula + 0n)an

1 - 1 ~ -
(6.22) ME+8:EMU2+§][(—W#+a))a)
is equivalent to the SoboleM -norm ona for general (nontruncated) functions.
The conservation of this pseudoenergy implies the nonlinear stability of the climate
mean state [4, 17].



932 A.J. MAJDA, |. TIMOFEYEYV, AND E. VANDEN EIJNDEN

By rewriting the equation in (3.3) in terms af,, U in (6.20) and utilizing
the identities in (6.19) for the mean state together with the ideRtity - Vg =
—V+g-V f and elementary integration by parts, we obtain the following dynamical
equations for, andU:

96 i Ve 522
a_tl\:_{PA(VLl//A‘VwA)}lA_ {U 3XA}1B
_ {PA(VJ“/_/A V(=pa + CZ)A))}Z
(6.23) /
o - _ad
n {m(‘“‘“ Fon =i, }
dU 0, _ o - } 3 y
du _ _ vanl YN
dt i][ X SCRAS 3 o o

The terms in{-}, and{-}3 are linear perturbations about the climate mean, while
the terms in{-};4 and{-},g are the nonlinear contributions due to small-scale and
mean advection by .

We now show that the dynamics associated Witha + {-}18, {-}2, and{-}3
separately conserve the pseudoenergy. Considering the linear{i¢sraad{-}3
first, this result is a consequence of the following:

LEMMA 6.1 The two operators defined by

L (w) _ (—V%A -V (—pp + w>)
h V - 0 ’

B 0 I
Ly (3) - (;&“{“” TR ) ,
f e (ng+w)

with w = A¢ are skew-symmetric in the pseudoenergy inner product associated
with (6.21) In particular, the reduced dynamics

9 (@r) ) d (DA o, o (@

conserve the pseudoenergy(@21)

(6.24)

COROLLARY 6.2 Consider the incompressible vector fields in phase sﬁa&md
Fg, defined as in(6.3) and (6.4) and associated with the operators, B, P, and
Pa Ly Pa, respectively. Then an arbitrary function of the pseudoenergy, B3 +
8,) satisfies

(6.26) Fr-VG =0, Fj-VG=0

i.e., G(EA + €4) is a steady-state solution of the Liouville equations associated
with F, and Fy. In particular, the Gibbs measure with density (.16) is an
invariant under both of the separate dynamic$6r25) Furthermore, these results
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remain true if R is replaced by any finite-dimensional projection P that projects
on U and a finite number of Fourier componentswfand preserves the reality
condition.

The proof of Lemma 6.1 is a straightforward calculation utilizing the definitions
in (6.21) and (6.24) and explicit integration by parts. Corollary 6.2 is an immediate
consequence of the lemma once it is recognized friatP and PLj P are also
skew-symmetric operators in the pseudoenergy inner product for any finite range
orthogonal projectiorP.

Next, we need to state a detailed energy balance condition for finite-dimensional
truncation of the nonlinear operator representing two-dimensional inviscid flow in-
volving Galerkin projection byP, on an arbitrary symmetric subspace of Fourier
coefficients. Consider the equations
(6.27) %?:—PAWWNV@Q,&AzAW_

The standard integration-by-parts argument utilized in proving conservatigp of
andé, can also be used to establish that the dynamics in (6@¥erves the pseu-
doenergy in(6.21)for an arbitrary projection R. In fact, the nonlinear operator at

the right-hand side of (6.27) can be decomposed into triad interaction terms involv-
ing either climate or unresolved variables such that we have detailed conservation
of pseudoenergy for individual triads separately, as we show now.

Let P; be the projection on the variables wikhe 64 and k| < A < A
defining the climate variables. We decompose

PA(V*a - Vaon)
= {PZ\(VL '5[\¢A : Vﬁz_\“’l\)}c‘cc
(6.28) + {Pa(VH(Ps = P)Via - V(Pa = PR)dn) ) uy
+ {(Px — PR) (V' Piva - VP[\CZ)A)}U\CC
+ {(Pa = Py)(V"(Pa — Py)¥ia - V(P — PA@A) by -

The various terms in brackets at the left-hand side of (6.28) include different types
of nonlinear triad interactions such that

{-}cicc : two climate variables drive a climate variable
{-}cjuu : two unresolved variables drive a climate variable

{-}uicc : two climate variables drive an unresolved variable
{-}ujuu : two unresolved variables drive an unresolved variable

The following lemma shows that the dynamics associated Wightc, {-}cjuu
+ {-}uicc, and{-}yjuu separately conserve pseudoenergy.
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LEMMA 6.3 The reduced dynamics in

629 2% = ~[Py(V-Psdn Vi) e = Na@n).
(6.30) 83% = —{P&(V*(Pa = PO)¥a - V(Pa — PR@a) f oy
— {(Pa = PO(V*Pava - VPi@a) }y oc = Nai(@a)
and
(6.31) aa% = —{(Px = PR)(V(Pa = PO)¥a - V(Pa — PR)@a) }y uy »

with @, = AV, conserve the pseudoenergy(@21)

Lemma 6.3 follows by a standard integration-by-parts argument. The lemma
also implies the following:

COROLLARY 6.4 Let IE,-\ and IEA,,—\ be the incompressible vector fields associated
with the nonlinear operator f(@) and N, z (@) in (6.29)and(6.30) respectively.
Then any function of the pseudoenergyu&, + &,) satisfies

(6.32) Fi-VG=0, F,;-VG=0.
In particular, the Gibbs measure with density(§116)is a steady solution.

Design of Stochastic Models Consistent
with Geophysical Statistical Mechanics

Finally, with all of the detailed balance conditions for pseudoenergy in Lem-
mas 6.1 and 6.3 and Corollaries 6.2 and 6.4, we design stochastic models consis-
tent with the equilibrium statistical Gibbs ensemble in (6.16) and then show that
the derived stochastic models for the climate variables alone are also consistent
with equilibrium statistical mechanics. Following the stochastic modeling strategy
in Sections 2 and 3 above for the equations in (6.23), we need to make a stochastic
model for the nonlinear interaction of the unresolved scales with themselves

(6.33) {(Px = PR)(VH(Ps — Pi)Va - V(Py — P[\)‘bl\)}uwu

consistent with the energy spectrum of the Gibbs measure for the pseudoenergy

in (6.16). From (6.18), the mean and variance of the Fourier coeffiéi;enf p
need to be constrained to

Ik|? .
— . A<k <A,
a(u+ kP2

(6.34) meamy =0, varady, = =<
so in each Fourier mode of the unresolved variables we approximate (6.33) by

Yk 2 Ok : : N o
6.35 — o+ — (W) +W* (1), A<]|kl<A,
(6.35) o Ok @( k(D) k() K]
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with
(6.36) o = “2—'2 .
Y o a(un+ K2

Thus for the nonlinear self-interaction of the unresolved variables we use

1 . 1 .
(6.37) {Jujuu = grwz\ + \/EGW('[),
where the right-hand side denotes the real-space representation of the damping and
stochastic forcing in (6.35).

With the approximation in (6.37) consistent with the constraint in (6.36), we
are ready to develop the stochastic climate models, which we write here in operator
form to clarify the presentation. First, we consider the geophysical caséwith
0, B = 0 so that the only nonlinearity is given by the tefih A in (6.23). Following
the general strategy from Section 2 with (6.37) yields, after coarse-graining in time,
the stochastic model fg¢ = 0,U = 0.

Stochastic model fg8 =0, U = 0:

1 -
dos = Ni(@)dt + E(Lh&)A + Ny i (@4))dt

1 1
— STds dt+ =odW(b),
& &

(6.38)
whereNj, N, ; are the operators defined above in (6.29) and (6.30),Lanid
defined as (compare (6.24))

(6.39) Lh@n = =V Y - V(—pa +@r). @n = A%, .

Note that consistent with our general strategy we have to assume that the nonlin-
ear driving of the climate variables by nonlinear self-interaction between climate
variables is weak; i.e., we have to set

(6.40) Ni (@n) = Nz (@n) .

The stochastic model in (6.38) satisfies all the basic assumptions in this paper,
since according to Lemma 6.P; L, P; is skew-symmetric in the pseudoenergy
norm where all the explicit calculations for (6.38) should be developed. The terms
involving Ly, are thetopographic beta effedor those readers familiar with geo-
physical flows and yields fast-wave effects as in Section 5.

The more general stochastic model with# 0, 8 # 0 can also be handled
within the framework of this paper whenevéris a climate variable by supple-
menting (6.40) by the assumption that the additional climate nonlinear interaction
involving U P; 8, /dx from {-}1 in (6.23) is weak of ordee. However, con-
sistency with equilibrium statistical mechanics requires detailed conservation of
pseudoenergy, which in turns requires that Wiele additional nonlinear inter-
actionUda, /dx from {-}1g in (6.23) be of ordee. Thus, in the equations for
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perturbations in (6.23), in addition to the assumption in (6.40), we set

~ 0 ~ 0
(6.41) gIoa g Zen
aX X
With the assumptions in (6.40) and (6.41), we obtain after coarse-graining in time

the following:
Stochastic model fg # 0,U # O:

doa = Nj(@,)dt — Uaa% dt + %(E.@A + Ny 4 (@4))dt
1/ 8 — < 0Ya
+g (;&(_MVIA‘i‘w)_/‘LU ox )
1

1
— STazdt+ ZodW(t),
& )

(6.42)

di = ( AL N +cb)) dt, @n=A¥,.
€ aX

Once again this model satisfies the general hypotheses of Section 2 as a conse-
quence of Lemmas 6.1 and 6.3. The extreme special case Whatene is the
single climate variable in the stochastic model does not need the additional as-
sumption in (6.41). This amusing example is analyzed in detail in Section 7.4 of
the present paper.

We claim that the stochastic models in (6.38) and (6.42) are consistent with
geophysical equilibrium statistical mechanics. We have the following:

PROPOSITIONG.5 The stochastic climate models(.38)and (6.42) have Gibbs
measures fron{6.16) involving pseudoenergy as their invariant measure for all
realizable values of the parametgri.e.,u > —1for (6.38)andu > Ofor (6.42)

PROOF. We sketch the proof for the stochastic model in (6.38). We need to
check that the densitlZ in (6.16) is a steady-state solution for the forward equa-
tion associated with (6.38), i.e.,

1 1
(6.43) ?ac}Pg + gxgpg + LIPE=0.

Here OCI is the (forward) Ornstein-Uhlenbeck operator defined through (6.35),

(6.36) so that by construction

(6.44) LIPE=0.

The operatorscz andacg are the Liouville operators given by

Gas  Lr= o= —(Fui VHFRv) = (a4,
LI=—L3=—F; -V,

whereF, is the incompressible vector field associated with the operator in (6.39).
As a consequence of the detailed balance conditions in Lemmas 6.1 and 6.3 and
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Corollaries 6.2 and 6.4, the operators in (6.45) also annihRdteso the proof

for (6.38) is complete. The proof for the stochastic model in (6.42) is very similar
where additionally, the property &f; in (6.26) is used. The straightforward details
are left to the reader. O

The stochastic models in (6.38) and (6.42) satisfy all the hypotheses of the for-
malism developed in Sections 2, 4, and 5 above with nontrivial fast-wave averaging
effects. Thus, one can apply Theorem 5.4 to get a self-consistent Fokker-Planck
equation with a reduced stochastic model for the climate variables alone. Are the
reduced stochastic models derived in this fashion consistent with equilibrium sta-
tistical mechanics? For this to be true, the invariant measure for the derived Fokker-
Planck operator for the reduced stochastic model should coincide with the Gibbs
measure with the density from (6.16) projected onto the climate variables alone.
We have the following result confirming this fact:

PROPOSITIONG.6 The projection of the density associated with the Gibbs measure
from (6.16)on the climate variables alone,

(6.46) PLM = Ce MEATED

is the density associated with the invariant measure for the stochastic climate equa-
tions that are obtained from the stochastic model§6i138) or (6.42) after elimi-
nation of the unresolved variables in the limitas> 0.

PROOF. We give the details for mode elimination for the stochastic model in
(6.38). There are fast-averaging effects from the operafpin (6.45), which is
associated with a skew-symmetric linear operator in the pseudoenergy metric; see
Lemma 6.1. Thus, from Theorem 5.4, the Fokker-Planck opegatmrresponding
to the stochastic climate model that is obtained from the stochastic model in (6.42)
is given by

t
6.47) £ = P(Tlim 3/ e JO4F (£ — LYSLTILYS) el 43 dr) P.,
- t-T

with the operatorst)®, £3, and L3 given in (6.45) and with£,, the Ornstein-
Uhlenbeck operator defined through (6.35) and (6.36) above. The equation in
(6.47)is, in fact, a slight generalization of Theorem 5.4 since the rotation accounted
for by £3 involves the unresolved variables as well. This leads to no difficulty since
the developments of Section 5.3 generalize trivially to the present situation.

Let P denote the expectation operator with respect to the invariant measure for
the Ornstein-Uhlenbeck operatd. Proposition 6.6 can be rephrased as

(6.48) L1PPE = LTP2™ =0,

where £ is the operator adjoint ta®. The equality in (6.48) follows immedi-
ately from the definition in (6.47) fai, the detailed balance properties in (6.43),
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Corollary 6.2 and Lemma 6.3 fa€, andL3, and the property that
(6.49) e/rfo £§’T Pé,clim — Pé’dim .

1 T
The latter follows from the definition a8 °<? and Corollary 6.2. The proof for
the stochastic model in (6.42) is similar and utilizes detailed balance from Lem-
mas 6.1 and 6.3 and Corollaries 6.2 and 6.4. O

6.3 Numerical Evidence for Effective Stochastic Dynamics

We present numerical evidence for effective stochastic modeling of the trun-
cated barotropic equations in (3.3) whose explicit form in the Fourier represen-
tation is given in (3.6). We study these equations in several different parameter
regimes that exhibit clear separation of time scales for the evolution of appropri-
ately selected groups of variables and hence justify the possibility of distinguishing
between climate and unresolved variables in stochastic climate modeling for the
truncated barotropic equations in (3.6). Depending on the parameter regimes, we
also show the rich variety of possibilities for selecting climate variables for these
equations.

We consider the truncated barotropic equations in (3.6)&&5 17 and use
a pseudospectral method of integration with fourth-order Runge-Kutta time step-
ping. The total energy and enstrophy are conserved within 0.1% in the simulations,
consistent with (6.2). The initial conditions on a given energy-enstrophy level are
generated in Fourier space. We represent Fourier coefficients through their ampli-
tudes and phaseg = |u(k)|€?®, and we make an additional simplifying assump-
tion that the amplitudes of the Fourier coefficients depend only on the magnitude
of |K|2, i.e., Ju(k)| = f(k|?). We sample all but two amplitudes from a uniform
distribution on[0, 1] and use the remaining two amplitudes in order that the pre-
scribed values for the energy and the enstrophy be achieved. We then sample the
phaseﬁ(lz) from the uniform distribution o0, 27). We use averaging with re-
spect to time in the numerical simulations as the probability measure to compute
all statistics reported below and obtain excellent agreement with the predictions of
the equilibrium statistical theory. Since Monte Carlo simulation over an ensemble
of initial data is not considered here but rather only a single initial datum consistent
with the microcanonical ensemble, the numerical experiments below also provide
strong support for the use of the canonical Gibbs ensemble a priori. This gives
strong support to the assumption of ergodicity with respect to time averaging of
the truncated barotropic equations in (3.6). For eaeh 17 fixed we compute the
energy spectrum

(6.50) E(@) = ) Erluk(t) — Eruc(®)[?,
Ikj=q

whereE; denotes time averaging. The energy spectiifq) gives the average
energy in the fluctuating part of the modes in a given shell of wave numbers.
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Large-Scale Topographyu = —0.76,a = 1.9

First, we consider the truncated barotropic equations in (3.6) without mean flow
U and beta effect; i.e., we sgt = U = 0. As shown below, this parameter
regime provides a striking example of scale separation between the modith
|r<|2 = 1 and all other modes. When there is no mean flbwthe parameten
in (6.18) is allowed to be negative, which corresponds to the negative temperature
regime. The negative temperature regime is characterized by an energy spectrum
sharply peaked at lower wave numbers. We performed numerical simulations with
uw = —0.76,a = 1.9, which corresponds to the fluctuating energy-enstrophy level
E =7, & = 20, with the following large-scale topography:

h(x, y) = Hcogx + 61) + H coqy + 65)

6.51 . .
( ) + HsinX+y+63)+ Hsin(X —y-+6,),

where the phase$ are selected at random. Thus, the only nonzero Fourier coeffi-
cients of the topography are the coefficients for modes u?i?nz 1 and|R|2 = 2.

For the particular choice of phases we use in the simulation described in this sec-
tion, the maximum height of the topography in (6.51) is

(6.52) maxh(x, y)| = 35H.

We present the results of the numerical simulations Witk 0.5, but the situation
described below is generic for the parameter regime —0.76,« = 1.9. We have
verified that the energy spectrum and correlation functions exhibit qualitatively
similar behavior foH = 1 andH = 2.5.

Figure 6.1 shows the temporal convergence of mean values of several low
modesux. Numerical estimates for the mean values agree very well with the an-
alytical predictions in (6.18) of equilibrium statistical theory. After the transient
interval, 0 < t < 5000, the mean values stabilize, and by the end of the simula-
tions ¢ = 100,000) their relative errors do not exceed 6%.

Figure 6.2 shows numerical estimates and analytical predictions of the equilib-
rium statistical theory for the energy spectrum. About 60% of the energy is con-
tained in modes WitHlI2|2 = 1 in this parameter regime. The agreement between
the numerical and analytical estimates is very good, with the largest discrepancy
between them concentrated |&f2 = 1, where the relative errors on the energy
spectrum do not exceed 10%. The agreement between numerical and analytical
estimates for the higher modes is even better.

Note that the simulations utilized here are an especially stringent test since we
calculate both the climate mean state and the fluctuations a priori. One can also
assume perfect knowledge of the climate mean and perform the numerical simu-
lations with the perturbation equations in (6.23); in this setup, the agreement with
the predicted spectrum is even better. Although the Fourier coefficients of the to-
pographyh; o) = 0.164939+ i0.18787 andh g1, = —0.017259— i0.249404
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FIGURE 6.1. Temporal convergence of the mean values of the real and
imaginary parts ofi1 g, Up,1 anduj 1. Simulations with the large-scale
topographyu = —0.76,a = 1.9, 8 = 0.

are different, the correlation functions foy; o) andu 1, exhibit very similar be-
havior. The anisotropic effects due to the difference in magnitude of the Fourier
coefficients of the topography are very minor in this case. The averaged (with re-
spect to all modes with the same valuqlaj correlation functions show that there
is a separation of time scales between the modeslﬁ/lﬁh: 1 and the rest of the
modes.

To characterize the decay rate of the averaged correlation functions, we com-
pute the correlation times?"® that are proportional to the area underneath the
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FIGURE 6.2. Analytical (circle) and numerical (star) predictions for the
fluctuating part of the energy budget. Simulations with the large-scale
topographyu = —0.76,0 = 1.9, 8 = 0.
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FIGURE 6.3. Averaged correlation functions fi12 = 1 (solid),|k|2 =
2 (dashed) antk|?2 = 4,5 (dotted). Simulations with the large-scale
topographyu = —0.76,a¢ = 1.9, 8 = 0.
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|R|2 .[kDNS
1172
2 1076
4 |0.32
5 10.28
8 |0.18
9 10.24
10 | 0.16
13| 0.2
16 | 0.1
17 | 0.33
TABLE 6.1. Correlation times for different spectral bands= —0.76,

a=109.

graph of the correlation functions. Figure 6.3 shows the averaged correlation func-
tions for modes with |I2|2 < 5, and Table 6.1 summarizes the correlation times
NS for different spectral bands. The correlation function fid? = 1 decays
more than twice as slowly as the next correlation function|lf(qﬁ = 2, and the
correlation functions 1‘0|‘E|2 > 2 decay even faster. Thus, the main assumption
of stochastic climate modeling is clearly satisfied if we select the mogdegth
|I2|2 = 1 as climate variables and those W|iEh12 > 2 as unresolved variables.
Summarizing, in the present situation, we can replace the nonlinear system
with 56 degrees of freedom by a four-dimensional stochastic model for the two
complex-valued modes; o andug 1. Since there is no nonlinear interaction be-
tween the climate variables, this is one of the simplest possible test cases for sto-
chastic climate modeling theory.

Large-Scale Topographyu = 0.1, =1

Next, we describe numerical simulations in a positive temperature regime with
uw = 0.1, « = 1, which corresponds to the fluctuating eneiy= 5.56 and the
fluctuating enstrophg = 27.4. We perform the simulations with the topography
in (6.51) withH = 1. Even though the topography is confined to the wave numbers
k|2 < 2, the correlation times for the modeswith |k|2 = 4, 5 are roughly com-
parable with the correlation times for the modes Wﬁﬁ = 1, 2 in this parameter
regime.

The mean values afy converge to the analytical predictions from the equilib-
rium statistical theory. Figure 6.4 shows the energy spectrum. As for the negative-
temperature regime discussed earlier in this section, the numerical estimates agree
very well with the predictions of equilibrium statistical theory. The relative errors
for the mean values of thg’s and the energy spectrum do not exceed 8% and 6%,
respectively.
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FIGURE 6.4. Analytical (circle) and numerical (star) predictions for the
fluctuating part of the energy budget. Simulations with the large-scale
topographyy = 0.1, = 1,8 = 0.
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FIGURE6.5. Averaged correlation functions {2 = 1 (solid), |k|2 =

2 (dashed), anqﬂ|2 = 4,5 (dotted). Simulations with the large-scale
topographyy = 0.1, = 1,8 =0.
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|R|2 .[kDNS
1 |1.18
2 | 0.69
4 | 0.46
5 0.4
8 | 0.27
9 10.25
10 | 0.26
13 | 0.26
16 | 0.18
17 | 0.29
TABLE 6.2. Correlation times for different spectral bangs,= 0.1,

a=1.

Figure 6.5 shows the averaged correlation functions for the mogesith
1< |I2|2 < 5, and Table 6.2 summarizes the correlation tirr]g%'%g for averaged
correlation functions. The correlation times for the modes \Nﬁﬁ = 1,2 are
roughly comparable in this case. Correlation times for spectral biirds= 1, 2
indicate that that the correlation function for the modes \Nﬁﬁ = 2 decays about
1.5 times faster than the correlation function for the modes M?i|fh= 1. Thus,
the modes withl?|2 = 2 should be included in the set of climate variables for this
regime. The correlation times for the modes V\4ﬁlh2 =4 and|l2|2 = 5 are of
the same order as the correlation time for the modes |\F1i?h: 2. Therefore, the
time scales for the modes Witﬁ|2 =12 and|R|2 = 4,5 are not so well sepa-
rated for this regime. This situation presents an interesting test case for stochastic
climate modeling, since there are two possibilities for selecting the climate vari-
ables. The modes with |K|2 = 4 and|k|2 = 5 may or may not be included in the
set of climate variables, and we can compare the results of the mode elimination
procedure in the two cases. The extension of the set of climate variables allows
nonlinear interactions between them, and therefore, the resulting stochastic equa-
tions for the climate variables will necessarily contain nonlinear terms. Detailed
results comparing theory and simulation will be reported elsewhere.

Simulations with Mean Flow and Beta Effect

Another possible test case is when the paramgiethe mean flowJ, and
topography effects are all present in the equations. We describe here numerical
simulations with the two-mode topography
(6.53) h(x, y) = H [cogX) + sin(X) 4+ cog2x) + sin(2x)] ,

with 8 = 0.5 andH = 0.36, so that the height of the topography is equal to 1.
We use the valueg = 2 anda = 1 for the canonical measure with density in
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FIGURE 6.6. Analytical (circle) and numerical (star) predictions for the
fluctuating part of the energy budget; estimates| ket = 0 correspond
to the mean flowJ . Simulations with the two-mode layered topography
and mean flowJ with u =2, = 1,8 = 0.5.

(6.16) with the truncatioﬂiﬂ2 < 17 for theuy's, so there are 57 active modes. We
have verified that the situation described is similar for a variety of topographies
including single-mode topography; see [16].

The numerical estimates for the mean values and variances of the mean flow
and the modesy agree very well with the predictions of the equilibrium statisti-
cal theory. Figure 6.6 shows the numerical and analytical estimates for the energy
spectrum. The theoretical values and numerical predictions for the means and vari-
ances of the modas agree within a few percent, while the relative errors for the
mean value and the varianceldfare about 20%.

Figure 6.7 shows the correlation function @f and the averaged correlation
functions of several low modasg. The correlation function of the mean fldw
decays much slower than correlation functions of the moges

The main assumption of the stochastic climate modeling strategy is clearly sat-
isfied in this case, and in the truncated barotropic equations in (3.6) we can identify
the mean flowJ as the climate variable and the two modgsvith k= (1,0) and
k = (2,0) as the unresolved variables that coupldJto A detailed study of a
similar example with a priori stochastic climate modeling has been reported by
the authors in [16]. The general stochastic modeling procedure Whalone is
declared the climate variable is the topic of Section 7.4 below.
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FIGURE 6.7. Averaged correlation functions for (solid), |I2|2 =12

(dashed), anqj_il2 = 4,5 (dotted). Simulations with the two-mode lay-
ered topography and mean fldwwith © = 2,0 =1, 8 = 0.5.

6.4 ldentification of Parameters for Stochastic Modeling

The results of the numerical simulations reported above can be used to answer
the following question that we have left open so far. How do we identify the param-
eterswy, Y, wk, ande in the stochastic model assumption in (3.14)? We discuss
this point now and also indicate how the solution of the stochastic model equations

for the climate variables alone should be compared to the results of the numerical
simulations for those variables.

It is important to point out first that the numerical simulations are of course
performed in the original time scalewhereas the stochastic model for barotropic
equations in (3.17) is formulated in a coarse-grained time scale obtained by setting
t — et. For the present discussion it is essential to distinguish the two time scales,

and we will denote by = et the coarse-grained time scale. Thus, we write the
last equation in (3.17), which we will need in a moment, as

. . 1
(6.54) dwy = I—HkU dr — I—(kXU — Qwidr + — Z Ly dt
& & &

|€o‘1

1 1 .
+ . Z Lyw dt + % AZ Buimv) vy, dt

|€o‘2 |,I’?‘I€Ul

K+ +m=0
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1 * ok 1 -
+ - ) E Bximy wp, dt — ;yk(wk — wy)dt
|€Ul,rﬁ602
k+i+m=0

%(dwk(r) + AW (1)) .

From this equation, it follows that, to leading ordersanthe mean value of the
unresolved modey is given at statistical steady state by

(6.55) Ewy(t) = wy.

Thus, the measurement Bivk(t) in the experiments provides an estimate for the
parametenvk. Similarly, it follows from the equation in (6.54) that, to leading
order ing, the correlation function of the unresolved madgis given at statistical
steady state by

+

2
(6.56) E(wi(t) — w) (wii(z)) — wg) = "_kefmrfﬂ/eZ’
Yk
which, in terms of the original time scalereads
2
(6.57) E(wi(t) — i) (wit) — w;) = Ok gnlt—t'l/e
Yk

Thus, the ratiar?/y can be estimated fror&|wy(t) — wy|2. Furthermore, the
measurement of the decay rate of the correlation functions of the unresolved modes
wg, which we will denote by,”Ns, gives the value for the ratig/¢, i.e.,

(6.58) yons — Yk
&

Knowing the values fos;?/y« andyk/e , we immediately obtain//c. It will be
convenient to define™* as

bns _ 9k
(6.59) o = NG

(Notice that if the model is taken to be consistent with equilibrium statistical
theory, it follows from the equations in (6.18) that only one parameter ameng
vk, andwy is free. If we take it to bgy, it means that only this parameter must be
estimated whereas the other two can then be obtained a priori.)

On the other hand, the parametecan be estimated as the ratio between the
biggest measured decay rate of the climate variables and the smallest decay rate
of the unresolved variables. The parametés required to be small in order that
the asymptotic procedure outlined in Section 4 applies. However, as we now show,
theactual value ot is irrelevant for comparing the solutions of the equations for
the climate variables alone and the results for these variables that are observed
in the (numerica) experiments In fact, the key observation is that the equations
for the climate variables alone that are provided by the asymptotic procedure of
Section 4 are again given in terms of the coarse-grained time scalet instead
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of the original time scale used in the experiments. Furthernibvee re-express

the equations for the climate variables alone in terms of the original time scale
t instead of the coarse-grained time scale= ¢t, the parameters entering these
equations becomg™s and o>NS instead ofy, and ox. This fact can be readily
proven upon verifying that the general equations for the climate variables alone
in (4.17) (without fast-wave effects) or in (5.8) (with fast-wave effects) are left
invariant by the transformation

t Vi oj .
(6.60) t—>8, yj—>8, oj—>«/§, j €02.
This transformation amounts to going back to the original time scale and using
y2NS ando NS instead ofy, andoy in the equations.

Here we stop comparing the analytical results with the experiments. A system-
atic comparison between numerical simulations of the truncated barotropic equa-
tions in (3.3) and the solutions of the stochastic climate model equations for the
climate variables alone will be presented elsewhere.

7 New Phenomena in Low-Order Triad Models

In this section, we study the stochastic model for barotropic equations in (3.17)
in special model cases intended to illustrate explicitly various new phenomena pre-
dicted by the theory. A wave—mean flow triad model is considered in Section 7.1.
A climate scattering triad model is studied in Section 7.2. A more general triad
model with fast-wave effects of the type discussed