
Linear algebra in R

Søren Højsgaard

February 15, 2005

Contents

1 Introduction 1

2 Vectors 1
2.1 Vectors . 1
2.2 Transpose of vectors . 2
2.3 Multiplying a vector by a number . 3
2.4 Sum of vectors . 3
2.5 (Inner) product of vectors . 4
2.6 The length (norm) of a vector . 5
2.7 The 0–vector and 1–vector . 5
2.8 Orthogonal (perpendicular) vectors 5

3 Matrices 6
3.1 Matrices . 6
3.2 Multiplying a matrix with a number 6
3.3 Transpose of matrices . 7
3.4 Sum of matrices . 7
3.5 Multiplication of a matrix and a vector 7
3.6 Multiplication of matrices . 8
3.7 Vectors as matrices . 9
3.8 Some special matrices . 9
3.9 Inverse of matrices . 10
3.10 Solving systems of linear equations 11
3.11 Trace . 12
3.12 Determinant . 12
3.13 Some additional rules for matrix operations 12
3.14 Details on inverse matrices* . 12

3.14.1 Inverse of a 2× 2 matrix* . 12
3.14.2 Inverse of diagonal matrices* 13
3.14.3 Generalized inverse* . 13
3.14.4 Inverting an n× n matrix* 13

4 Least squares 15

5 A neat little exercise – from a bird’s perspective 16

1 Introduction

This note has two goal: 1) Introducing linear algebra (vectors and matrices) and 2)
showing how to work with these concepts in R.

1

2 Vectors

2.1 Vectors

A column vector is a list of numbers stacked on top of each other, e.g.

a =

 2
1
3


A row vector is a list of numbers written one after the other, e.g.

b = (2, 1, 3)

In both cases, the list is ordered, i.e.

(2, 1, 3) 6= (1, 2, 3).

We make the following convention:

• In what follows all vectors are column vectors unless otherwise stated.

• However, writing column vectors takes up more space than row vectors. There-
fore we shall frequently write vectors as row vectors, but with the understand-
ing that it really is a column vector.

A general n–vector has the form

a =


a1

a2

...
an


where the ais are numbers, and this vector shall be written a = (a1, . . . , an).
A graphical representation of 2–vectors is shown Figure 1. Note that row and

−1 0 1 2 3

−1
0

1
2

3

a1 = (2,2)

a2 = (1,−0.5)

Figure 1: Two 2-vectors

column vectors are drawn the same way.

> a <- c(1, 3, 2)

> a

[1] 1 3 2

The vector a is in R printed “in row format” but can really be regarded as a
column vector, cfr. the convention above.

2

2.2 Transpose of vectors

Transposing a vector means turning a column (row) vector into a row (column)
vector. The transpose is denoted by “>”.

Example 1 2
4

1
3
2

3
5
>

= [1, 3, 2] og [1, 3, 2]> =

2
4

1
3
2

3
5

�

Hence transposing twice takes us back to where we started:

a = (a>)>

> t(a)

[,1] [,2] [,3]

[1,] 1 3 2

2.3 Multiplying a vector by a number

If a is a vector and α is a number then αa is the vector

αa =


αa1

αa2

...
αan


See Figure 2.

Example 2

7

 1
3
2

 =

 7
21
14


�

> 7 * a

[1] 7 21 14

3

−1 0 1 2 3

−1
0

1
2

3

a1 = (2,2)

a2 = (1,−0.5)
2a2 = (2,−1)

− a2 = (−1,0.5)

Figure 2: Multiplication of a vector by a number

2.4 Sum of vectors

Let a and b be n–vectors. The sum a + b is the n–vector

a + b =


a1

a2

...
an

 +


b1

b2

...
bn

 =


a1 + b1

a2 + b2

...
an + bn

 = b + a

See Figure 3 and 4. Only vectors of the same dimension can be added.

Example 3 2
4

1
3
2

3
5+

2
4

2
8
9

3
5 =

2
4

1 + 2
3 + 8
2 + 9

3
5 =

2
4

3
11
11

3
5

�

−1 0 1 2 3

−1
0

1
2

3

a1 = (2,2)

a2 = (1,−0.5)

a1 + a2 = (3,1.5)

Figure 3: Addition of vectors

4

−1 0 1 2 3

−1
0

1
2

3

a1 = (2,2)

a2 = (1,−0.5)

a1 + a2 = (3,1.5)
− a2 = (−1,0.5)

a1 + (− a2) = (1,2.5)

Figure 4: Addition of vectors and multiplication by a number

> a <- c(1, 3, 2)

> b <- c(2, 8, 9)

> a + b

[1] 3 11 11

2.5 (Inner) product of vectors

Let a = (a1, . . . , an) and b = (b1, . . . , bn). The (inner) product of a and b is

a · b = a1b1 + · · ·+ anbn

Note, that the product is a number – not a vector.

> sum(a * b)

[1] 44

2.6 The length (norm) of a vector

The length (or norm) of a vector a is

||a|| =
√

a · a =

√√√√ n∑
i=1

a2
i

> sqrt(sum(a * a))

[1] 3.741657

5

2.7 The 0–vector and 1–vector

The 0-vector (1–vector) is a vector with 0 (1) on all entries. The 0–vector
(1–vector) is frequently written simply as 0 (1) or as 0n (1n) to emphasize
that its length n.

> rep(0, 5)

[1] 0 0 0 0 0

> rep(1, 5)

[1] 1 1 1 1 1

2.8 Orthogonal (perpendicular) vectors

Two vectors v1 and v2 are orthogonal if their inner product is zero, written

v1 ⊥ v2 ⇔ v1 · v2 = 0

> v1 <- c(1, 1)

> v2 <- c(-1, 1)

> sum(v1 * v2)

[1] 0

3 Matrices

3.1 Matrices

An r× c matrix A (reads “an r times c matrix”) is a table with r rows og c columns

A =


a11 a12 . . . a1c

a21 a22 . . . a2c

...
...

. . .
...

ar1 ar2 . . . arc


Note that one can regard A as consisting of c columns vectors put after each other:

A = [a1 : a2 : · · · : ac]

> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3)

> A

[,1] [,2] [,3]

[1,] 1 2 8

[2,] 3 2 9

6

Note that the numbers 1, 3, 2, 2, 8, 9 are read into the matrix column–by–
column. To get the numbers read in row–by–row do

> A2 <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3, byrow = T)

> A2

[,1] [,2] [,3]

[1,] 1 3 2

[2,] 2 8 9

3.2 Multiplying a matrix with a number

For a number α and a matrix A, the product αA is the matrix obtained by
multiplying each element in A by α.

Example 4

7

 1 2
3 8
2 9

 =

 7 14
21 56
14 63


�

> 7 * A

[,1] [,2] [,3]

[1,] 7 14 56

[2,] 21 14 63

3.3 Transpose of matrices

A matrix is transposed by interchanging rows and columns and is denoted by
“>”.

Example 5  1 2
3 8
2 9

> =
[

1 3 2
2 8 9

]
�

Note that if A is an r × c matrix then A> is a c× r matrix.

> t(A)

[,1] [,2]

[1,] 1 3

[2,] 2 2

[3,] 8 9

7

3.4 Sum of matrices

Let A and B be r × c matrices. The sum A + B is the r × c matrix obtained
by adding A and B elementwise.

Only matrices with the same dimensions can be added.

Example 6  1 2
3 8
2 9

 +

 5 4
8 2
3 7

 =

 6 6
11 10
5 16


�

> B <- matrix(c(5, 8, 3, 4, 2, 7), ncol = 3, byrow = T)

> A + B

[,1] [,2] [,3]

[1,] 6 10 11

[2,] 7 4 16

3.5 Multiplication of a matrix and a vector

Let A be an r × c matrix and let b be a c-dimensional column vector. The
product Ab is the r × 1 matrix

Ab=


a11 a12 . . . a1c

a21 a22 . . . a2c

...
...

. . .
...

ar1 ar2 . . . arc




b1

b2

...
bc

=


a11b1 + a12b2 + · · ·+ a1cbc

a21b1 + a22b2 + · · ·+ a2cbc

...
ar1b1 + ar2b2 + · · ·+ arcbc


Example 7  1 2

3 8
2 9

[
5
8

]
=

 1 · 5 + 2 · 8
3 · 5 + 8 · 8
2 · 5 + 9 · 8

 =

 21
79
82


�

> A %*% a

[,1]

[1,] 23

[2,] 27

Note the difference to

> A * a

[,1] [,2] [,3]

[1,] 1 4 24

[2,] 9 2 18

Figure out yourself what goes on!

8

3.6 Multiplication of matrices

Let A be an r× c matrix and B a c× t matrix, i.e. B = [b1 : b2 : · · · : bt]. The
product AB is the r × t matrix given by:

AB = A[b1 : b2 : · · · : bt] = [Ab1 : Ab2 : · · · : Abt]

Example 8[
1 2
3 8
2 9

] [
5 4
8 2

]
=

 1 2
3 8
2 9

[
5
8

]
:

 1 2
3 8
2 9

[
4
2

]
=

 1 · 5 + 2 · 8 1 · 4 + 2 · 2
3 · 5 + 8 · 8 3 · 4 + 8 · 2
2 · 5 + 9 · 8 2 · 4 + 9 · 2

 =

 21 8
79 28
82 26


�

Note that the product AB can only be formed if the number of rows in B and
the number of columns in A are the same. In that case, A and B are said to
be conforme.

In general AB and BA are not identical.

A mnemonic for matrix multiplication is :

 1 2
3 8
2 9

[
5 4
8 2

]
=

5 4
8 2

1 2 1 · 5 + 2 · 8 1 · 4 + 2 · 2
3 8 3 · 5 + 8 · 8 3 · 4 + 8 · 2
2 9 2 · 5 + 9 · 8 2 · 4 + 9 · 2

=

 21 8
79 28
82 26



> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 2)

> B <- matrix(c(5, 8, 4, 2), ncol = 2)

> A %*% B

[,1] [,2]

[1,] 21 8

[2,] 79 28

[3,] 82 26

3.7 Vectors as matrices

One can regard a column vector of length r as an r × 1 matrix and a row
vector of length c as a 1× c matrix.

3.8 Some special matrices

– An n× n matrix is a square matrix

– A matrix A is symmetric if A = A>.

– A matrix with 0 on all entries is the 0–matrix and is often written simply
as 0.

9

– A matrix consisting of 1s in all entries is of written J .

– A square matrix with 0 on all off–diagonal entries and elements d1, d2, . . . , dn

on the diagonal a diagonal matrix and is often written diag{d1, d2, . . . , dn}
– A diagonal matrix with 1s on the diagonal is called the identity matrix

and is denoted I. The identity matrix satisfies that IA = AI = A.

• 0-matrix and 1-matrix

> matrix(0, nrow = 2, ncol = 3)

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

> matrix(1, nrow = 2, ncol = 3)

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1

• Diagonal matrix and identity matrix

> diag(c(1, 2, 3))

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 2 0

[3,] 0 0 3

> diag(1, 3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Note what happens when diag is applied to a matrix:

> diag(diag(c(1, 2, 3)))

[1] 1 2 3

> diag(A)

[1] 1 8

10

3.9 Inverse of matrices

In general, the inverse of an n × n matrix A is the matrix B (which is also
n× n) which when multiplied with A gives the identity matrix I. That is,

AB = BA = I.

One says that B is A’s inverse and writes B = A−1. Likewise, A is Bs inverse.

Example 9 Let

A =
[

1 3
2 4

]
B =

[
−2 1.5

1 −0.5

]
Now AB = BA = I so B = A−1. �

Example 10 If A is a 1 × 1 matrix, i.e. a number, for example A = 4, then
A−1 = 1/4. �

Some facts about inverse matrices are:

– Only square matrices can have an inverse, but not all square matrices
have an inverse.

– When the inverse exists, it is unique.

– Finding the inverse of a large matrix A is numerically complicated (but
computers do it for us).

In Section ?? the issue of matrix inversion is discussed in more detail.

Finding the inverse of a matrix in R is done using the solve() function:

> A <- matrix(c(1, 3, 2, 4), ncol = 2, byrow = T)

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> B <- solve(A)

> B

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

> A %*% B

[,1] [,2]

[1,] 1 0

[2,] 0 1

11

3.10 Solving systems of linear equations

Example 11 Matrices are closely related to systems of linear equations. Con-
sider the two equations

x1 + 3x2 = 7
2x1 + 4x2 = 10

The system can be written in matrix form[
1 3
2 4

] [
x1

x2

]
=

[
7

10

]
i.e. Ax = b

Since A−1A = I and since Ix = x we have

x = A−1b =
[
−2 1.5

1 −0.5

] [
7

10

]
=

[
1
2

]
A geometrical approach to solving these equations is as follows: Isolate x2 in
the equations:

x2 =
7
3
− 1

3
x1 x2 =

1
0
4− 2

4
x1

These two lines are shown in Figure 5 from which it can be seen that the
solution is x1 = 1, x2 = 2.

−1 0 1 2 3

−
1

0
1

2
3

x1

2

Figure 5: Solving two equations with two unknowns.

From the Figure it follows that there are 3 possible cases of solutions to the
system

1. Exactly one solution – when the lines intersect in one point
2. No solutions – when the lines are parallel but not identical
3. Infinitely many solutions – when the lines coincide.

�

> A <- matrix(c(1, 2, 3, 4), ncol = 2)

> b <- c(7, 10)

> x <- solve(A) %*% b

> x

[,1]

[1,] 1

[2,] 2

12

3.11 Trace

Missing

3.12 Determinant

Missing

3.13 Some additional rules for matrix operations

For matrices A,B and C whose dimension match appropriately: the following rules
apply

(A + B)> = A> + B>

(AB)> = B>A>

A(B + C) = AB + AC

AB = AC 6⇒ B = C

In genereal AB 6= BA
AI = IA = A

If α is a number then αAB = A(αB)

3.14 Details on inverse matrices*

3.14.1 Inverse of a 2× 2 matrix*

It is easy find the inverse for a 2× 2 matrix. When

A =
[

a b
c d

]
then the inverse is

A−1 =
1

ad− bc

[
d −b

−c a

]
under the assumption that ab−bc 6= 0. The number ab−bc is called the determinant
of A, sometimes written |A|. If |A| = 0, then A has no inverse.

3.14.2 Inverse of diagonal matrices*

Finding the inverse of a diagonal matrix is easy: Let

A = diag(a1, a2, . . . , an)

where all ai 6= 0. Then the inverse is

A−1 = diag(
1
a1

,
1
a2

, . . . ,
1
an

)

If one ai = 0 then A−1 does not exist.

3.14.3 Generalized inverse*

Not all square matrices have an inverse. However all square matrices have an
infinite number of generalized inverses. A generalized inverse of a square matrix A
is a matrix A− satisfying that

AA−A = A.

For many practical problems it suffice to find a generalized inverse.

13

3.14.4 Inverting an n× n matrix*

In the following we will illustrate one frequently applied methopd for matrix inver-
sion. The method is called Gauss–Seidels method and many computer programs,
including solve() use variants of the method for finding the inverse of an n × n
matrix.
Consider the matrix A:

> A <- matrix(c(2, 2, 3, 3, 5, 9, 5, 6, 7), ncol = 3)

> A

[,1] [,2] [,3]

[1,] 2 3 5

[2,] 2 5 6

[3,] 3 9 7

We want to find the matrix B = A−1. To start, we append to A the identity matrix
and call the result AB:

> AB <- cbind(A, diag(c(1, 1, 1)))

> AB

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 2 3 5 1 0 0

[2,] 2 5 6 0 1 0

[3,] 3 9 7 0 0 1

On a matrix we allow ourselves to do the following three operations (sometimes
called elementary operations) as often as we want:

1. Multiply a row by a (non–zero) constant.

2. Multiply a row by a (non–zero) constant and add the result to another row.

3. Interchange two rows.

The aim is to perform such operations on AB in a way such that one ends up with
a 3 × 6 matrix which has the identity matrix in the three leftmost columns. The
three rightmost columns will then contain B = A−1.
Recall that writing e.g. AB[1,] extracts the enire first row of AB.

• First, we make sure that AB[1,1]=1. Then we subtract a constant times the
first row from the second to obtain that AB[2,1]=0, and similarly for the third
row:

> AB[1,] <- AB[1,]/AB[1, 1]

> AB[2,] <- AB[2,] - 2 * AB[1,]

> AB[3,] <- AB[3,] - 3 * AB[1,]

> AB

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1.5 2.5 0.5 0 0

[2,] 0 2.0 1.0 -1.0 1 0

[3,] 0 4.5 -0.5 -1.5 0 1

14

• Next we ensure that AB[2,2]=1. Afterwards we subtract a constant times the
second row from the third to obtain that AB[3,2]=0:

> AB[2,] <- AB[2,]/AB[2, 2]

> AB[3,] <- AB[3,] - 4.5 * AB[2,]

• Now we rescale the third row such that AB[3,3]=1:

> AB[3,] <- AB[3,]/AB[3, 3]

> AB

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1.5 2.5 0.5000000 0.0000000 0.0000000

[2,] 0 1.0 0.5 -0.5000000 0.5000000 0.0000000

[3,] 0 0.0 1.0 -0.2727273 0.8181818 -0.3636364

Then AB has zeros below the main diagonal.

• We then work our way up to obtain that AB has zeros above the main diagonal:

> AB[2,] <- AB[2,] - 0.5 * AB[3,]

> AB[1,] <- AB[1,] - 2.5 * AB[3,]

> AB

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1.5 0 1.1818182 -2.04545455 0.9090909

[2,] 0 1.0 0 -0.3636364 0.09090909 0.1818182

[3,] 0 0.0 1 -0.2727273 0.81818182 -0.3636364

> AB[1,] <- AB[1,] - 1.5 * AB[2,]

> AB

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 0 0 1.7272727 -2.18181818 0.6363636

[2,] 0 1 0 -0.3636364 0.09090909 0.1818182

[3,] 0 0 1 -0.2727273 0.81818182 -0.3636364

Now we extract the three rightmost columns of AB into the matrix B. We claim that
B is the inverse of A, and this can be verified by a simple matrix multiplication

> B <- AB[, 4:6]

> A %*% B

[,1] [,2] [,3]

[1,] 1.000000e+00 3.330669e-16 1.110223e-16

[2,] -4.440892e-16 1.000000e+00 2.220446e-16

[3,] -2.220446e-16 9.992007e-16 1.000000e+00

So, apart from rounding errors, the product is the identity matrix, and hence B =
A−1. This example illustrates that numerical precision and rounding errors is an
important issue when making computer programs.

15

4 Least squares

Consider the table of pairs (xi, yi) below.

x 1.00 2.00 3.00 4.00 5.00
y 3.70 4.20 4.90 5.70 6.00

A plot of yi against xi is shown in Figure 6.

1 2 3 4 5

4.
0

5.
0

6.
0

x

y

Figure 6: Regression

The plot in Figure 6 suggests an approximately linear relationship between y and
x, i.e.

yi = β0 + β1xi for i = 1, . . . , 5

Writing this in matrix form gives

y =


y1

y2

. . .
y5

 ≈


1 x1

1 x2

...
...

1 x5


[

β0

β1

]
= Xβ

The first question is: Can we find a vector β such that y = Xβ? The answer is
clearly no, because that would require the points to lie exactly on a straight line.
A more modest question is: Can we find a vector β̂ such that Xβ̂ is in a sense “as
close to y as possible”. The answer is yes. The task is to find β̂ such that the length
of the vector

e = y −Xβ

is as small as possible. The solution is

β̂ = (X>X)−1X>y

> y

[1] 3.7 4.2 4.9 5.7 6.0

> X

x

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 1 4

[5,] 1 5

16

> beta.hat <- solve(t(X) %*% X) %*% t(X) %*% y

> beta.hat

[,1]

3.07

x 0.61

5 A neat little exercise – from a bird’s perspective

On a sunny day, two tables are standing in an English country garden. On each
table birds of unknown species are sitting having the time of their lives.
A bird from the first table says to those on the second table: “Hi – if one of you
come to our table then there will be the same number of us on each table”. “Yeah,
right”, says a bird from the second table, “but if one of you comes to our table, then
we will be twice as many on our table as on yours”.
Question: How many birds are on each table? More specifically,

• Write up two equations with two unknowns.

• Solve these equations using the methods you have learned from linear algebra.

• Simply finding the solution by trial–and–error is considered cheating.

17

