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1 Introduction

This note has two goal: 1) Introducing linear algebra (vectors and matrices) and 2)
showing how to work with these concepts in R.



2 Vectors

2.1 Vectors
A column vector is a list of numbers stacked on top of each other, e.g.

2

A row vector is a list of numbers written one after the other, e.g.
b=(2,1,3)
In both cases, the list is ordered, i.e.
(2,1,3) #(1,2,3).
We make the following convention:
e In what follows all vectors are column vectors unless otherwise stated.

e However, writing column vectors takes up more space than row vectors. There-
fore we shall frequently write vectors as row vectors, but with the understand-
ing that it really is a column vector.

A general n—vector has the form

ai
a2
a = .
425
where the a;s are numbers, and this vector shall be written a = (ay,...,an).

A graphical representation of 2—vectors is shown Figure 1. Note that row and

a3=(2.2)

Figure 1: Two 2-vectors

column vectors are drawn the same way.

> a<-c(1, 3, 2)
> a

[11 132

The vector a is in R printed “in row format” but can really be regarded as a
column vector, cfr. the convention above.



2.2 Transpose of vectors

Transposing a vector means turning a column (row) vector into a row (column)
vector. The transpose is denoted by “T”.

Example 1

[ N
=[1,3,2] og [1,3,2]  =| 3
L2 g 2]

|
Hence transposing twice takes us back to where we started:
a= (aT)T
> t(a)
(.11 [,2] [,3]
[1,] 1 3 2
2.3 Multiplying a vector by a number
If @ is a vector and « is a number then aa is the vector
aay
aao
aa =
Qay,
See Figure 2.
Example 2
1 7
713 =121
2 14
|
> 7 % a
[11 7 21 14




a1=(2,2)

-a,=(-1,0.5)

a,=(1,-0.5).. 2a0=2-1)

-1

T T T T T
-1 0 1 2 3

Figure 2: Multiplication of a vector by a number

2.4 Sum of vectors

Let a and b be n—vectors. The sum a + b is the n—vector

ay by ay + by
a2 b as + by

at+b=1| . |[+]| . | = . =b+a
a, by, a, + by,

See Figure 3 and 4. Only vectors of the same dimension can be added.

BRHNEARE

Example 3

a;=(2,2)

iy
PR

_-Ta;+a,=(3,15)

Figure 3: Addition of vectors



ay+(-a,) =(1,2.5)
/,l.-‘_.‘,'“
.0 e a=(22)

5y
Pratt
7 -7

- ’ _ - "a,+a,=(3,15)
-2,=(-105) | , .-

-1
|

Figure 4: Addition of vectors and multiplication by a number

> a <-c(1, 3, 2)
> b <- c(2, 8, 9)
>a+b

‘[1] 311 11

2.5 (Inner) product of vectors
Let a = (a1,...,a,) and b = (by,...,b,). The (inner) product of a and b is
a-b=aiby +---+ayb,

Note, that the product is a number — not a vector.

> sum(a * b)

[1] 44

2.6 The length (norm) of a vector

The length (or norm) of a vector a is

lal] = Va-a=

> sqrt(sum(a * a))

[1] 3.741657




2.7 The 0—vector and 1-vector

The 0-vector (1-vector) is a vector with 0 (1) on all entries. The O-vector
(1-vector) is frequently written simply as 0 (1) or as 0, (1,) to emphasize
that its length n.

> rep(0, 5)
[t oo00O00O
> rep(1, 5)

1] 11111

2.8 Orthogonal (perpendicular) vectors
Two vectors v; and vy are orthogonal if their inner product is zero, written

v Lvgo s v -v=0

> vl <-c(1, 1)
> v2 <- c(-1, 1)
> sum(vl * v2)

\[1] 0

3 Matrices

3.1 Matrices

An r x ¢ matrix A (reads “an r times ¢ matrix”) is a table with r rows og ¢ columns

aill a12 e A1e

a1 Q22 e age
A=

Ar1 Aro . Qe

Note that one can regard A as consisting of ¢ columns vectors put after each other:

A=lay:az: - :ac

> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3)
> A

[,11 [,2]1 [,3]
[1,] 1 2 8
(2,1 3 2 9




Note that the numbers 1,3,2,2,8,9 are read into the matrix column—by—
column. To get the numbers read in row—by-row do

> A2 <- matrix(c(1, 3, 2, 2, 8, 9), ncol = 3, byrow = T)
> A2

(.11 [,2]1 [,3]
[1,] 1 3 2
[2,] 2 8 9

3.2 Multiplying a matrix with a number

For a number o and a matrix A, the product a4 is the matrix obtained by
multiplying each element in A by a.

Example 4
1 2 7 14
713 8| =121 56
29 14 63
O
> 7 % A
(.11 [,2]1 [,3]
[1,1] 7 14 56
[2,] 21 14 63

3.3 Transpose of matrices

A matrix is transposed by interchanging rows and columns and is denoted by
«To

Example 5

N O =
© o N
Il
L —
N =
co W
© N
—_—

Note that if A is an 7 X ¢ matrix then AT is a ¢ X r matrix.

> t(A)

[,11 [,2]
[1,] 1 3




3.4 Sum of matrices

Let A and B be r x ¢ matrices. The sum A + B is the r X ¢ matrix obtained
by adding A and B elementwise.

Only matrices with the same dimensions can be added.

Example 6
1 2 5 4 6 6
3 8|+|8 2 |=|11 10
2 9 3 7 5 16

> B <- matrix(c(5, 8, 3, 4, 2, 7), ncol = 3, byrow = T)
>A + B

[,11 [,2]1 [,3]
[1,] 6 10 11
[2,] 7 4 16

3.5 Multiplication of a matrix and a vector

Let A be an r x ¢ matrix and let b be a c-dimensional column vector. The
product Ab is the r x 1 matrix

aix a2 ... Qe b1 a11b1 4+ a12b2 + - - + arcbe
az; G2 ... Q2 bo a21b1 4 az2b2 + - - + ascbe
Qr1  QAr2 ... Qrc bc arlbl + a'r2b2 +--+ arcbc
Example 7
1 2 5 1-5+2-8 21
3 8 {8}: 3:-54+8-8 | =179
2 9 2-54+9-8 82
O
> A Y%x% a
[,1]
1,1 23
[2,] 27

Note the difference to

> A * a

[,11 [,21 [,3]
[1,] 1 4 24
[2,] 9 2 18

Figure out yourself what goes on!



3.6 Multiplication of matrices

Let A be an r X ¢ matrix and B a ¢ x ¢t matrix, i.e. B=1[by : bg : ---: b]. The
product AB is the r x t matrix given by:

AB = Alby :bg i -+ : by] = [Aby : Abgy i -+ 1 Aby]
Example 8
1 2 (M1 2 1 2
[3 81[2;1}: 3 8 {g} 3 8 {ﬂ
2 9 12 9 2 9
[1-5+2-8 1-442-2 21 8
= | 3:-54+8-8 3-44+8-2 | =179 28
2.54+9-8 2.449.2 82 26

Note that the product AB can only be formed if the number of rows in B and
the number of columns in A are the same. In that case, A and B are said to
be conforme.

In general AB and BA are not identical.
A MNEMONIC FOR MATRIX MULTIPLICATION is :

5 4
1 2 5 4 8 2 21 8
3 8 {8 2} = 1 2|1-542-8 1-442-2 =| 79 28
2 9 3 8[13-54+8-8 3-448-2 82 26
2 912-54+9-8 2-449-2

> A <- matrix(c(1, 3, 2, 2, 8, 9), ncol 2)
> B <- matrix(c(5, 8, 4, 2), ncol = 2)

> A %x% B

[,11 [,2]
(1,1 21 8
[2,1] 79 28
[3,] 82 26

3.7 Vectors as matrices

One can regard a column vector of length r as an r x 1 matrix and a row
vector of length ¢ as a 1 X ¢ matrix.

3.8 Some special matrices

— An n X n matrix is a SQUARE MATRIX
— A matrix A is SYMMETRIC if A = AT.

— A matrix with 0 on all entries is the 0-MATRIX and is often written simply
as 0.



— A matrix consisting of 1s in all entries is of written J.

— A square matrix with 0 on all off-diagonal entries and elements dq, ds, ..., d,

on the diagonal a DIAGONAL MATRIX and is often written diag{dy, da, ..., d,}

— A diagonal matrix with 1s on the diagonal is called the IDENTITY MATRIX
and is denoted I. The identity matrix satisfies that A = Al = A.

e (O-matrix and 1-matrix

> matrix(0, nrow = 2, ncol = 3)
[,11 [,21 [,3]

[1,] 0 0 0

[2,] 0 0 0

> matrix(1, nrow = 2, ncol = 3)

[,11 [,2]1 [,3]
[1,] 1 1 1
[2,] 1 1 1

Diagonal matrix and identity matrix

> diag(c(1, 2, 3))

[,11 [,2]1 [,3]
[1,] 1 0 0
[2,] 0 2 0
[3,] 0 0 3

> diag(1l, 3)

[,11 [,21 [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Note what happens when diag is applied to a matrix:

> diag(diag(c(1, 2, 3)))

[11 123

> diag(4)

[11 18

10



3.9 Inverse of matrices

In general, the inverse of an n x n matrix A is the matrix B (which is also
n X n) which when multiplied with A gives the identity matrix I. That is,

AB=BA=1.

One says that B is A’s inverse and writes B = A~!. Likewise, A is Bs inverse.

Example 9 Let
1 3 —2 1.5
a=l5 i) == 3]
Now AB=BA=1s0o B=A""% |

Example 10 If A is a 1 x 1 matrix, i.e. a number, for example A = 4, then
A7l =1/4. |

Some facts about inverse matrices are:
— Only square matrices can have an inverse, but not all square matrices
have an inverse.
— When the inverse exists, it is unique.
— Finding the inverse of a large matrix A is numerically complicated (but
computers do it for us).
In Section ?7? the issue of matrix inversion is discussed in more detail.

Finding the inverse of a matrix in R is done using the solve() function:

> A <- matrix(c(1, 3, 2, 4), ncol = 2, byrow = T)
> A

[,11 [,2]
[1,] 1 3
[2,] 2 4

> B <- solve(A)
> B

[,11 [,2]
[1,] -2 1.5
2,1 1-0.5

> A %x% B

[,11 [,2]
[1,] 1 0
[2,] 0 1

11



3.10 Solving systems of linear equations

Example 11 Matrices are closely related to systems of linear equations. Con-
sider the two equations

1 + 3172 = 7
2x1 + 4xo 10

The system can be written in matrix form

1 3 T o 7- . o
{24}[1‘2}_{10 ie. Ax =09

Since A1 A = I and since Iz = x we have
a1, | 2 151 7 |1

v=4 b‘{ 1—0.5]_10}_[2]

A geometrical approach to solving these equations is as follows: Isolate x5 in
the equations:

7 1 1 2
I2:§7§"L‘1 I2:64711}1
These two lines are shown in Figure 5 from which it can be seen that the
solution is x1 = 1,29 = 2.

Figure 5: Solving two equations with two unknowns.

From the Figure it follows that there are 3 possible cases of solutions to the
system

1. Exactly one solution — when the lines intersect in one point

2. No solutions — when the lines are parallel but not identical

3. Infinitely many solutions — when the lines coincide.

> A <- matrix(c(1, 2, 3, 4), ncol = 2)
> b <- ¢c(7, 10)
> x <- solve(A) %*% b

> x

[,1]
[1,] 1
[2,] 2

12



3.11 Trace
Missing

3.12 Determinant
Missing

3.13 Some additional rules for matrix operations

For matrices A, B and C whose dimension match appropriately: the following rules

apply
(A+B)T =AT +B"

(AB)T =BTAT
A(B+C)=AB+ AC
AB=AC# B=C

In genereal AB # BA
Al =TA=A

If o is a number then «AB = A(aB)

3.14 Details on inverse matrices*
3.14.1 Inverse of a 2 X 2 matrix*

It is easy find the inverse for a 2 x 2 matrix. When
a b
a=[ea]

1 d —b
ATl =
ad — bc { —c a}

under the assumption that ab—bc # 0. The number ab—bc is called the determinant
of A, sometimes written |A|. If |A] = 0, then A has no inverse.

then the inverse is

3.14.2 Inverse of diagonal matrices*
Finding the inverse of a diagonal matrix is easy: Let
A =diag(ay,as,...,a,)

where all a; # 0. Then the inverse is

1 1
A7 = diag(—, —,...,—)
ay as QA

If one a; = 0 then A~! does not exist.

3.14.3 Generalized inverse*

Not all square matrices have an inverse. However all square matrices have an
infinite number of generalized inverses. A generalized inverse of a square matrix A
is a matrix A~ satisfying that

AATA = A

For many practical problems it suffice to find a generalized inverse.

13



3.14.4 Inverting an n x n matrix*

In the following we will illustrate one frequently applied methopd for matrix inver-
sion. The method is called Gauss—Seidels method and many computer programs,

including solve() use variants of the method for finding the inverse of an n x n
matrix.

Consider the matrix A:

> A <- matrix(c(2, 2, 3, 3, 5, 9, 5, 6, 7), ncol = 3)
> A

[,11 [,21 [,3]
[1,] 2 3 5
[2,] 2 5 6
[3,] 3 9 7

We want to find the matrix B = A~!. To start, we append to A the identity matrix
and call the result AB:

> AB <- cbind(A, diag(c(1, 1, 1)))
> AB

[,11 [,21 [,3] [,4] [,5] [,6]
[1,] 2 3 5 1 0 0
[2,1 2 5 6 0 1 0
[3,] 3 9 7 0 0 1

On a matrix we allow ourselves to do the following three operations (sometimes
called elementary operations) as often as we want:

1. Multiply a row by a (non-zero) constant.

2. Multiply a row by a (non-zero) constant and add the result to another row.

3. Interchange two rows.

The aim is to perform such operations on AB in a way such that one ends up with
a 3 x 6 matrix which has the identity matrix in the three leftmost columns. The
three rightmost columns will then contain B = A~

Recall that writing e.g. AB[1,] extracts the enire first row of AB.

e First, we make sure that AB[1,1]=1. Then we subtract a constant times the

first row from the second to obtain that AB[2,1]=0, and similarly for the third
row:

> AB[1, 1 <- AB[1, 1/ABI[1, 1]

> AB[2, ] <- AB[2, ] - 2 * AB[1, ]
> AB[3, ] <- AB[3, ] - 3 * AB[1, ]
> AB

(,11 [,21 [,3]1 [,41 [,5] [,6]

[1,] 1 1.5 2.5 0.5 0 0
[2,] 0 2.0 1.0 -1.0 1 0
s 0 4.5 -0.5-1.5 0 1

14



o Next we ensure that AB[2,2]=1. Afterwards we subtract a constant times the
second row from the third to obtain that AB[3,2]=0:

> AB[2, ] <- AB[2, 1/AB[2, 2]
> AB[3, ] <- AB[3, 1 - 4.5 x AB[2, ]

e Now we rescale the third row such that AB[3,3]=1:

> AB[3, ] <- AB[3, 1/AB[3, 3]
> AB

(,11 [,2] [,3] [,4] [,5] [.6]
[1,] 1 1.5 2.5 0.5000000 0.0000000 0.0000000
0 0.5 -0.5000000 0.5000000 0.0000000
0 1

1.
[3,] 0 0. .0 -0.2727273 0.8181818 -0.3636364

Then AB has zeros below the main diagonal.

e We then work our way up to obtain that AB has zeros above the main diagonal:

> AB[2, ] <- AB[2, ] - 0.5 * AB[3, ]
> AB[1, ] <- AB[1, ] - 2.5 * AB[3, ]
> AB

(,11 [,21 [,3] [,4] [,5] [,6]
[1,] 1 1.5 0 1.1818182 -2.04545455 0.9090909
(2,1 0 1.0 0 -0.3636364 0.09090909 0.1818182
(3,1 0 0.0 1 -0.2727273 0.81818182 -0.3636364

> AB[1, 1 <- AB[1, ] - 1.5 * AB[2, ]
> AB

[,11 [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 1.7272727 -2.18181818 0.6363636
[2,1] 0 1 0 -0.3636364 0.09090909 0.1818182
(3,1 0 0 1 -0.2727273 0.81818182 -0.3636364

Now we extract the three rightmost columns of AB into the matrix B. We claim that
B is the inverse of A, and this can be verified by a simple matrix multiplication

> B <- AB[, 4:6]
> A x% B

[,1] [,2] [,3]
[1,1 1.000000e+00 3.330669e-16 1.110223e-16
[2,] -4.440892e-16 1.000000e+00 2.220446e-16
[3,] -2.220446e-16 9.992007e-16 1.000000e+00

So, apart from rounding errors, the product is the identity matrix, and hence B =
A1, This example illustrates that numerical precision and rounding errors is an
important issue when making computer programs.

15



4 Least squares

Consider the table of pairs (x;,y;) below.

x 1.00 2.00 3.00 4.00 5.00
y 3.70 420 490 5.70 6.00

A plot of y; against x; is shown in Figure 6.

40 50 6.0

Figure 6: Regression

The plot in Figure 6 suggests an approximately linear relationship between y and
x, i.e.
yi = PBo+ Pra; fori=1,...,5

Writing this in matrix form gives

Y 1 11
)
Y2 Bo
= ~ = X
= L [ By } B
Ys 1 T5

The first question is: Can we find a vector 3 such that y = X387 The answer is
clearly no, because that would require the points to lie exactly on a straight line.
A more modest question is: Can we find a vector B such that XB is in a sense “as
close to y as possible”. The answer is yes. The task is to find B such that the length
of the vector

e=y—Xp

is as small as possible. The solution is

B=(XTX)"'XTy

>y

[1] 3.7 4.2 4.9 5.7 6.0

> X

X
[1,7 11
[2,] 12
[3,1] 13
[4,] 14
[6,] 15

16



> beta.hat <- solve(t(X) %*% X) %*% t(X) %*% y
> beta.hat

O W M
o O -
= N

5 A neat little exercise — from a bird’s perspective

On a sunny day, two tables are standing in an English country garden. On each
table birds of unknown species are sitting having the time of their lives.

A bird from the first table says to those on the second table: “Hi — if one of you
come to our table then there will be the same number of us on each table”. “Yeah,
right”, says a bird from the second table, “but if one of you comes to our table, then
we will be twice as many on our table as on yours”.

Question: How many birds are on each table? More specifically,

e Write up two equations with two unknowns.
e Solve these equations using the methods you have learned from linear algebra.

e Simply finding the solution by trial-and—error is considered cheating.

17



