Name:

Final Math 3330

You have **120** minutes to complete the test. Each problem is worth **20** points. You cannot use any books or notes.

- 1. Label each of the following statements as either true of false.
 - (a) The integers \mathbb{Z}_n form a commutative ring.
 - (b) If \mathbb{D} is an integral domain then every homomorphic image of \mathbb{D} is an integral domain.
 - (c) A subring of a domain is a domain.
 - (d) The ring $\mathbb{Z} \times \mathbb{Z}$ with coordinate wise definition of addition and multiplication is a domain.
 - (e) A finite integral domain is a field.
 - (f) For no n the ring \mathbb{Z}_n can be a field.
 - (g) A subring of a field is a field.
 - (h) A subring of a field is an integral domain.
 - (i) \mathbb{Z}_2 is a field.
 - (j) $\mathbb{Z}_2 \times \mathbb{Z}_2$ is a field of four elements.
- 2. Consider the set $R = \{[0], [3], [6], [9]\} \subseteq \mathbb{Z}_{12}$ with addition and multiplication as defined in \mathbb{Z}_{12} . Prove or disprove that R is an ideal.
- 3. (a) Explain why [36] cannot have a multiplicative inverse in \mathbb{Z}_{38} .
 - (b) Find the multiplicative inverse of [35] in \mathbb{Z}_{38} .
- 4. Let H be a normal subgroup of the group G. If the order of the quotient group G/H is m, prove that $g^m \in H$ for all $g \in G$.
- 5. Prove that every homomorphism from a field \mathbb{F}_1 to a field \mathbb{F}_2 is injective.
- 6. (a) Define that $\mathbb{A} = (A, +, -, 0, \cdot, 1)$ is a ring with unit.
 - (b) State the definition of a closed subset of a ring.
 - (c) State the definition of an ideal of a ring.
- 7. Prove that the set of all complex numbers of the form m + ni, where $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$ is a subring of \mathbb{C} . This ring is called the *Gaussian integers*. What is (1+2i)(1-2i)?
- 8. Assume that the ideal I of a ring A contains an invertible element. Prove that I = A.
- 9. Let R_1 and R_2 be subrings of the ring A. Prove that $R_1 \cap R_2$ is a subring of A.
- 10. The polynomials with real coefficients form a ring $\mathbb{R}[x]$. Find all invertible elements of $\mathbb{R}[x]$.