Name:

Final Math 3330

You have $\mathbf{1 2 0}$ minutes to complete the test. Each problem is worth $\mathbf{2 0}$ points. You cannot use any books or notes.

1. Label each of the following statements as either true of false.
(a) The integers \mathbb{Z}_{n} form a commutative ring.
(b) If \mathbb{D} is an integral domain then every homomorphic image of \mathbb{D} is an integral domain.
(c) A subring of a domain is a domain.
(d) The ring $\mathbb{Z} \times \mathbb{Z}$ with coordinate wise definition of addition and multiplication is a domain.
(e) A finite integral domain is a field.
(f) For no n the ring \mathbb{Z}_{n} can be a field.
(g) A subring of a field is a field.
(h) A subring of a field is an integral domain.
(i) \mathbb{Z}_{2} is a field.
(j) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a field of four elements.
2. Consider the set $R=\{[0],[3],[6],[9]\} \subseteq \mathbb{Z}_{12}$ with addition and multiplication as defined in \mathbb{Z}_{12}. Prove or disprove that R is an ideal.
3. (a) Explain why [36] cannot have a multiplicative inverse in \mathbb{Z}_{38}.
(b) Find the multiplicative inverse of [35] in \mathbb{Z}_{38}.
4. Let H be a normal subgroup of the group G. If the order of the quotient group G / H is m, prove that $g^{m} \in H$ for all $g \in G$.
5. Prove that every homomorphism from a field \mathbb{F}_{1} to a field \mathbb{F}_{2} is injective.
6. (a) Define that $\mathbb{A}=(A,+,-, 0, \cdot, 1)$ is a ring with unit.
(b) State the definition of a closed subset of a ring.
(c) State the definition of an ideal of a ring.
7. Prove that the set of all complex numbers of the form $m+n i$, where $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$ is a subring of \mathbb{C}. This ring is called the Gaussian integers. What is $(1+2 \mathrm{i})(1-2 \mathrm{i})$?
8. Assume that the ideal I of a ring A contains an invertible element. Prove that $I=A$.
9. Let R_{1} and R_{2} be subrings of the ring A. Prove that $R_{1} \cap R_{2}$ is a subring of A.
10. The polynomials with real coefficients form a ring $\mathbb{R}[x]$. Find all invertible elements of $\mathbb{R}[x]$.
