Name:

Test 1 Math 5330

You have $\mathbf{6 0}$ minutes to complete the test. Each problem is worth $\mathbf{2 0}$ points. You cannot use any books or notes.

1. label each of the following statements as either true of false.
(a) $A \cup \emptyset=A$ is true for any set A .
(b) If $A \cup X=A$ holds for every set A then X must be \emptyset.
(c) The set $\{\emptyset\}$ has only \emptyset as a subset.
(d) Let $f: A \rightarrow B$ be any map. Then $f\left(f^{-1}(T)\right)=T$ is true for every subset T of B.
(e) Let $f: A \rightarrow A$ be an injective map on a finite set. Then f is surjective.
(f) Assume that $f: A \rightarrow B$ is injective. Then there is a unique map $g: B \rightarrow A$ such that $g \circ f=i d_{A}$.
(g) Let E be an equivalence relation on a set A. Then any two equivalence classes of E contain the smae number of elements.
(h) Let π_{1} and $p i_{2}$ be the partitions of two equivalence relations E_{1} and E_{2} on a set A. Then if $\pi_{1}=\pi_{2}$ one has that $E_{1}=E_{2}$
(i) If the map $f: A \rightarrow B$ is injective then the equivalence kernel for f, \sim_{f} is the equality relation on A.
(j) The equivalence kernel of a function $f: A \rightarrow\{c\}$ is $A \times A$.
2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that $g \circ f$ is injective. Prove that f must be injective.
3. For the map $f: \mathbb{N} \rightarrow \mathbb{N}, n \mapsto 2 n$ on the set of natural numbers find a map $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $g \circ f=i d_{N}$ and prove that there is no map h such that $f \circ h=i d_{N}$
4. In each of the following parts, a relation R is defined on the set \mathbb{R} of all real numbers. Determine in each case whether R is an equivalence relation.
(a) $x R y$ iff $x=-y$
(b) $x R y$ iff $x y \geq 0$
(c) $x R y$ iff $\sin (x)=\sin (y)$
(d) $x R y$ iff $|x-y| \leq 1$.
5. Let $A=\{1,2,3,4,5\}$ and $B=\{a, b, c\}$ and f the map $1 \mapsto a, 2 \mapsto c, 3 \mapsto b, 4 \mapsto c, 4 \mapsto b, 5 \mapsto a$. Find the partition of the equivalence kernel for f.
