Name:

Test 1 Math 5330

You have **60** minutes to complete the test. Each problem is worth **20** points. You cannot use any books or notes.

- 1. label each of the following statements as either true of false.
 - (a) $A \cup \emptyset = A$ is true for any set A.
 - (b) If $A \cup X = A$ holds for every set A then X must be \emptyset .
 - (c) The set $\{\emptyset\}$ has only \emptyset as a subset.
 - (d) Let $f: A \to B$ be any map. Then $f(f^{-1}(T)) = T$ is true for every subset T of B.
 - (e) Let $f:A\to A$ be an injective map on a finite set. Then f is surjective.
 - (f) Assume that $f:A\to B$ is injective. Then there is a unique map $g:B\to A$ such that $g\circ f=id_A.$
 - (g) Let E be an equivalence relation on a set A. Then any two equivalence classes of E contain the smae number of elements.
 - (h) Let π_1 and pi_2 be the partitions of two equivalence relations E_1 and E_2 on a set A. Then if $\pi_1 = \pi_2$ one has that $E_1 = E_2$
 - (i) If the map $f:A\to B$ is injective then the equivalence kernel for f,\sim_f is the equality relation on A.
 - (j) The equivalence kernel of a function $f: A \to \{c\}$ is $A \times A$.
- 2. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that $g\circ f$ is injective. Prove that f must be injective.
- 3. For the map $f: \mathbb{N} \to \mathbb{N}, n \mapsto 2n$ on the set of natural numbers find a map $g: \mathbb{N} \to \mathbb{N}$ such that $g \circ f = id_N$ and prove that there is no map h such that $f \circ h = id_N$
- 4. In each of the following parts, a relation R is defined on the set \mathbb{R} of all real numbers. Determine in each case whether R is an equivalence relation.
 - (a) xRy iff x = -y
 - (b) $xRy \text{ iff } xy \ge 0$
 - (c) $xRy \text{ iff } \sin(x) = \sin(y)$
 - (d) xRy iff $|x y| \le 1$.
- 5. Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c\}$ and f the map $1 \mapsto a, 2 \mapsto c, 3 \mapsto b, 4 \mapsto c, 4 \mapsto b, 5 \mapsto a$. Find the partition of the equivalence kernel for f.