Test 2, Math 3330. Answer Key

You have **80** minutes to complete the test. Each problem is worth **20** points. You cannot use any books or notes.

- 1. Label each of the following statements as either true of false.
 - a. Let a and b be integers, not both zero, such that d = (a, b). Then there exist unique integers x and y such that d = ax + by. F
 - b. Let a and b be integers, not both zero. If a common divisor e of a and of b is of the form e = xa + yb for integers x and y then e must be the greatest common divisor of a and b. T
 - c. Let a be an integer. Then (a,0) = a. T
 - d. If a|c and b|d then ab|cd. T
 - e. Assume (a,b) = 1. Then if a|c and b|c one has that ab|c. T
 - f. The identity element in a group is its own inverse. T
 - g. Let G be a non-abelian group. Then $xy \neq yx$ for all x and y in G. F
 - h. The empty set is a subgroup of any group. F
 - i. For every n, the group Z_n of addition modulo n is a subgroup of the group Z under addition. F
 - j. The set kZ of multiples of k is a group under addition. T
- 2. Prove that the product of the greatest common divisor (a, b) and of the lowest common multiple [a, b] is equal to the product ab of a and b.

multiple
$$[a,b]$$
 is equal to the product ab of a and b .
Proof: $a = p_1^{e_1(a)} p_2^{e_2(a)} \cdots p_k^{e_k(a)}, b = p_1^{e_1(b)} p_2^{e_2(a)} \cdots p_k^{e_k(b)},$

$$ab = p_1^{e_1(a)+e_1(b)} p_2^{e_2(a)+e_2(b)} \cdots p_k^{e_k(a)+e_k(b)},$$

$$(a,b) = p_1^{\min(e_1(a),e_1(b))} p_2^{\min(e_2(a),e_2(b))} \cdots p_k^{\min(e_k(a),e_k(b))}, [a,b] = p_1^{\max(e_1(a),e_1(b))} p_2^{\max(e_2(a),e_2(b))} \cdots p_k^{\max(e_k(a),e_k(b))}$$

and clearly for every i one has that

$$\min(e_i(a), e_i(b)) + \max(e_i(a), e_i(b)) = e_i(a) + e_i(b)$$

which proves the claim.

3. Prove that if (a,b) = 1 then $(a^2,b^2) = 1$.

Proof. (a,b) = 1 means that a and b don't have any common prime divisor. the same then hold for a^2 and b.

4. Let G be a group and assume that for all elements a and b one has that $(ab)^2 = a^2b^2$. Prove that G must be abelian.

Proof. $(ab)^2 = a^2b^2$ means abab = aabb. But then $a^{-1}(abab)b^{-1} = a^{-1}(aabb)b^{-1}$. By associativity we get $(a^{-1}a)(ba)(bb^{-1}) = (a^{-1}a)(ab)(bb^{-1})$ and therefore ba = ab.

5. a. Find the multiplicative inverse of $6 \mod 5$, that is $[6]_{35}^{-1}$.
6 and 35 are relatively prime. Indeed, $1 = 6 \cdot 6 - 1 \cdot 35$ which yields

$$[1]_{35} = [6]_{35} \cdot [6]_{35} \text{ or } [6]_{35}^{-1} = [6]$$

- b. Solve $6x + 3 = 0 \mod 5$
 - 6x + 3 = 0 is the same as 6x = -3 or 6x = 2 (all mod 5). This is $[6]_5[6]_5x = [6]_5[2]_5$ or

$$x = [12]_5 = [2]_5$$
. Indeed $6 \cdot 2 + 3 = 15 = 0 \mod 5$

- 6. a. Prove that for every number n > 0, n 1 has a multiplicative inverse mod n.
 - b. Prove n-1 is its own multiplicative inverse mod n

Proof. (n, n - 1) = 1, there are no common divisors of n and n - 1. Also $1 = 1 \cdot n + (-1) \cdot (n - 1)$. Thus $[-1]_n = [n - 1]_n^{-1}$ and [-1] = [n - 1] Also $(n - 1)(n - 1)_{-} = n^2 - 2n + 1 = 1 \mod n$ shows the same thing.