Test 2, Math 3330. Answer Key
You have $\mathbf{8 0}$ minutes to complete the test. Each problem is worth $\mathbf{2 0}$ points. You cannot use any books or notes.

1. Label each of the following statements as either true of false.
a. Let a and b be integers, not both zero, such that $d=(a, b)$. Then there exist unique integers x and y such that $d=a x+b y$. F
b. Let a and b be integers, not both zero. If a common divisor e of a and of b is of the form $e=x a+y b$ for integers x and y then e must be the greatest common divisor of a and b. T
c. Let a be an integer. Then $(a, 0)=a$. T
d. If $a \mid c$ and $b \mid d$ then $a b \mid c d$. T
e. Assume $(a, b)=1$. Then if $a \mid c$ and $b \mid c$ one has that $a b \mid c$. T
f. The identity element in a group is its own inverse. T
g. Let G be a non-abelian group. Then $x y \neq y x$ for all x and y in G. F
h. The empty set is a subgroup of any group. F
i. For every n, the group Z_{n} of addition modulo n is a subgroup of the group Z under addition. F
j. The set $k Z$ of multiples of k is a group under addition. T
k.
2. Prove that the product of the greatest common divisor (a, b) and of the lowest common multiple $[a, b]$ is equal to the product $a b$ of a and b.
Proof: $a=p_{1}^{e_{1}(a)} p_{2}^{e_{2}(a)} \cdots p_{k}^{e_{k}(a)}, b=p_{1}^{e_{1}(b)} p_{2}^{e_{2}(a)} \cdots p_{k}^{e_{k}(b)}$,
$a b=p_{1}^{e_{1}(a)+e_{1}(b)} p_{2}^{e_{2}(a)+e_{2}(b)} \cdots p_{k}^{e_{k}(a)+e_{k}(b)}$,
$(a, b)=p_{1}^{\min \left(e_{1}(a), e_{1}(b)\right)} p_{2}^{\min \left(e_{2}(a), e_{2}(b)\right)} \cdots p_{k}^{\min \left(e_{k}(a), e_{k}(b)\right)},[a, b]=p_{1}^{\max \left(e_{1}(a), e_{1}(b)\right)} p_{2}^{\max \left(e_{2}(a), e_{2}(b)\right)} \cdots p_{k}^{\max \left(e_{k}(a), e_{k}(b)\right)}$
and clearly for every i one has that

$$
\min \left(e_{i}(a), e_{i}(b)\right)+\max \left(e_{i}(a), e_{i}(b)\right)=e_{i}(a)+e_{i}(b)
$$

which proves the claim.
3. Prove that if $(a, b)=1$ then $\left(a^{2}, b^{2}\right)=1$.

Proof. $(a, b)=1$ means that a and b don't have any common prime divisor. the same then hold for a^{2} and b.
4. Let G be a group and assume that for all elements a and b one has that $(a b)^{2}=a^{2} b^{2}$. Prove that G must be abelian.
Proof. $(a b)^{2}=a^{2} b^{2}$ means $a b a b=a a b b$. But then $a^{-1}(a b a b) b^{-1}=a^{-1}(a a b b) b^{-1}$. By associativity we get $\left(a^{-1} a\right)(b a)\left(b b^{-1}\right)=\left(a^{-1} a\right)(a b)\left(b b^{-1}\right)$ and therefore $b a=a b$.
5. a. Find the multiplicative inverse of $6 \bmod 5$, that is $[6]_{35}^{-1}$.

6 and 35 are relatively prime. Indeed, $1=6 \cdot 6-1 \cdot 35$ which yields
$[1]_{35}=[6]_{35} \cdot[6]_{35}$ or $[6]_{35}^{-1}=[6]$
b. Solve $6 x+3=0 \bmod 5$
$6 x+3=0$ is the same as $6 x=-3$ or $6 x=2($ all $\bmod 5)$. This is $[6]_{5}[6]_{5} x=[6]_{5}[2]_{5}$ or

$$
x=[12]_{5}=[2]_{5} . \text { Indeed } 6 \cdot 2+3=15=0 \bmod 5
$$

6. a. Prove that for every number $n>0, n-1$ has a multiplicative inverse $\bmod n$.
b. Prove $n-1$ is its own multiplicative inverse $\bmod n$

Proof. $(n, n-1)=1$, there are no common divisors of n and $n-1$. Also $1=1 \cdot n+(-1) \cdot(n-1)$. Thus $[-1]_{n}=[n-1]_{n}^{-1}$ and $[-1]=[n-1]$ Also $(n-1)(n-1)_{-}=n^{2}-2 n+1=1 \bmod n$ shows the same thing.

