Name:

You have $\mathbf{8 0}$ minutes to complete the test. Each problem is worth $\mathbf{2 0}$ points. You cannot
use any books or notes.

1. Label each of the following statements as either true of false.
a. $A \cup \emptyset=A$ is true for any set A . True
b. If $A \cup X=A \cup Y$ holds only for $X=Y$. False
c. The empty set \emptyset has no subsets. False
d. Let A and B be sets. If $\mathrm{P}(A)=\mathrm{P}(B)$ only if $A=B$. True
e. The union of two subsets A and B of the set X is the largest subset of X that contains A and B. False
f. The intersection of two subsets A and B of the set X is the largest subset of X that is contained in A and B. True
g. $x_{1}=x_{2} \rightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$ defines injectivity of f. False
h. $f\left(x_{1}\right) \neq f\left(x_{2}\right) \rightarrow x_{1} \neq x_{2}$ defines injectivity of f. False
i. Let $f: A \rightarrow B$ be any map. If there is a map $g: B \rightarrow A$ such that $f \circ g=i d_{B}$ then f must be surjective. True
j. If every injective map $f: A \rightarrow A$ is also surjective then A must be finite. True
2. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that $g \circ f$ is injective. Prove that f must be injective.

- Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $g\left(f\left(x_{1}\right)=g\left(f\left(x_{2}\right)=(g \circ f) x_{1}=(g \circ f) x_{2}\right.\right.$ But $g \circ f$ is injective. Therefore $x_{1}=x_{2}$.

3. Find a bijective map $f: \mathrm{R} \rightarrow(0,1)$ from all real numbers to the open interval $(-1,1)$. It is enough to sketch the graph of such a function.

- A function like arctan does the job.

4. Define the divisibility relation | between natural numbers. Is there a natural number m such that for every $n \in \mathrm{~N}$ one has that $n \mid m$?

- $n \mid m$ iff $\exists_{k}(k \cdot n=m)$ We have $n \cdot 0=m$ for every $n \in N$. Thus $n \mid 0$ for every $n \in \mathrm{~N}$. (This assumes $0 \in N$, otherwise there is no such m)

5. Let $f: A \rightarrow B$ be any map. Define a relation \sim_{f} on A by $\sim_{f}=\left\{\left(a_{1}, a_{2}\right) \mid f\left(a_{1}\right)=f\left(a_{2}\right)\right\}$. Explain why \sim_{f} is an equivalence relation.

- $f(x)=f(x)$, thus \sim_{f} is reflexive. If $f(x)=f(y)$ then $f(y)=f(x)$, Thus \sim_{f} is symmetric. If $f(x)=f(y), f(y)=f(z)$ then $f(x)=f(z)$. Thus \sim_{f} is transitive.

6. Let $d: \mathrm{R}^{2} \rightarrow \mathrm{R},(x, y) \mapsto \sqrt{x^{2}+y^{2}}$. What is the equivalence class $[(0,1)]$ with respect to \sim_{d}

- $[(0,1)]=\left\{(x, y) \mid \sqrt{x^{2}+y^{2}}=1\right\}$

7. Prove that f is injective iff \sim_{f} is the equality on A.

- The function f is injective iff $f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2} \Leftrightarrow x_{1} \sim_{f} x_{2}$

8. Let E and F be two equivalence relations on the set A.
a. Prove that the intersection $E \cap F=\{(a, b) \mid a E b$ and $a F b\}$ is an equivalence relation.

- $(x, x) \in E$ as well $(x, x) \in F$ because E and F are reflexive. Thus $E \cap F$ is reflexive. Symmetry and Transitivity are similar.
b. Prove that in general the union $E \cup F=\{(a, b) \mid a E b$ or $a F b\}$ is not an equivalence. Here you have to give an example of two equivalence relations whose union fails to be transitive.
- We take two relations on \mathbb{Z}. Let E have the partition into even and odd integers. Let F be have the partition into non-negative integers and negative integers. Then $-4 E 2,2 F 3$ but neither $(-4,3) \in E$ nor $(-4,3) \in F$. Because $(-4,2),(2,3) \in E \cup F$ we have that $E \cup F$ is not transitive. (A better choice is $A=\{1,2,3\}$ where E has the classes $\{1,2\},\{3\}$ and F the classes $\{1\}$ and $\{2,3\}$ then $1 E 2$ and $2 F 3$ but neither $1 E 3$ nor $1 F 3$.

