Name:

You have 80 minutes to complete the test. Each problem is worth 20 points. You cannot

use any books or notes.

- 1. Label each of the following statements as either true of false.
 - **a.** $A \cup \emptyset = A$ is true for any set A. True
 - **b**. If $A \cup X = A \cup Y$ holds only for X = Y. False
 - **c**. The empty set \emptyset has no subsets. False
 - **d**. Let A and B be sets. If P(A) = P(B) only if A = B. True
 - **e**. The union of two subsets *A* and *B* of the set *X* is the largest subset of *X* that contains *A* and *B*. False
 - **f**. The intersection of two subsets *A* and *B* of the set *X* is the largest subset of *X* that is contained in *A* and *B*. True
 - **g**. $x_1 = x_2 \rightarrow f(x_1) = f(x_2)$ defines injectivity of f. False
 - **h.** $f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2$ defines injectivity of f. False
 - i. Let $f: A \to B$ be any map. If there is a map $g: B \to A$ such that $f \circ g = id_B$ then f must be surjective. True
 - j. If every injective map $f: A \to A$ is also surjective then A must be finite. True
- **2.** Let $f: A \to B$ and $g: B \to C$ be functions. Assume that $g \circ f$ is injective. Prove that f must be injective.
 - Assume $f(x_1) = f(x_2)$. Then $g(f(x_1)) = g(f(x_2)) = (g \circ f)x_1 = (g \circ f)x_2$ But $g \circ f$ is injective. Therefore $x_1 = x_2$.
- **3**. Find a bijective map $f: \mathbb{R} \to (0,1)$ from all real numbers to the open interval (-1,1). It is enough to sketch the graph of such a function.
 - A function like arctan does the job.
- **4.** Define the divisibility relation | between natural numbers. Is there a natural number m such that for every $n \in \mathbb{N}$ one has that n|m?
 - $n|m \text{ iff } \exists_k (k \cdot n = m) \text{ We have } n \cdot 0 = m \text{ for every } n \in \mathbb{N}. \text{ Thus } n|0 \text{ for every } n \in \mathbb{N}. \text{ (This assumes } 0 \in N, \text{ otherwise there is no such } m)$
- **5**. Let $f: A \to B$ be any map. Define a relation \sim_f on A by $\sim_f = \{(a_1, a_2) | f(a_1) = f(a_2)\}$. Explain why \sim_f is an equivalence relation.
 - f(x) = f(x), thus \sim_f is reflexive. If f(x) = f(y) then f(y) = f(x), Thus \sim_f is symmetric. If f(x) = f(y), f(y) = f(z) then f(x) = f(z). Thus \sim_f is transitive.
- **6.** Let $d: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \sqrt{x^2 + y^2}$. What is the equivalence class [(0,1)] with respect to \sim_d
 - $[(0,1)] = \{(x,y)|\sqrt{x^2+y^2} = 1\}$
- **7**. Prove that f is injective iff \sim_f is the equality on A.

- The function f is injective iff $f(x_1) = f(x_2) \iff x_1 = x_2 \iff x_1 \sim_f x_2$
- **8**. Let *E* and *F* be two equivalence relations on the set *A*.
 - **a.** Prove that the intersection $E \cap F = \{(a,b)|aEb \text{ and } aFb\}$ is an equivalence relation.
 - $(x,x) \in E$ as well $(x,x) \in F$ because E and F are reflexive. Thus $E \cap F$ is reflexive. Symmetry and Transitivity are similar.
 - **b.** Prove that in general the union $E \cup F = \{(a,b)|aEb \text{ or } aFb\}$ is not an equivalence. Here you have to give an example of two equivalence relations whose union fails to be transitive.
 - We take two relations on \mathbb{Z} . Let E have the partition into even and odd integers. Let F be have the partition into non-negative integers and negative integers. Then -4E2, 2F3 but neither $(-4,3) \in E$ nor $(-4,3) \in F$. Because $(-4,2), (2,3) \in E \cup F$ we have that $E \cup F$ is not transitive. (A better choice is $A = \{1,2,3\}$ where E has the classes $\{1,2\},\{3\}$ and F the classes $\{1\}$ and $\{2,3\}$ then 1E2 and 2F3 but neither 1E3 nor 1F3.