Test 3, Key Math 3330

You have 80 minutes to complete the test. Each problem is worth 20 points. You cannot

use any books or notes.

- 1. Label each of the following statements as either true of false.
 - **a.** The order of the identity element in any group is 1. **T**
 - **b**. All subroups of a cyclic group are cyclic. **T**
 - **c**. Two abelian groups of the same order are isomorphic. **F**
 - **d**. If $G = \langle a \rangle$ is of order n > 2 then $G = \langle a^{n-1} \rangle$. **T**
 - **e**. If *H* is a subgroup of the group *G* then only for x = e the coset xH is a subgroup of *G* **T**.
 - **f**. Let H be any subgroup of the group G. Then xH = H if and only if $x \in H$. **T**
 - **g**. If G is an abelian group then every subroup H of G is normal. **T**
 - **h**. The subgroups $\langle e \rangle$ and G are both normal subgroups of G. **T**
 - i. Z and 2Z are isomorphic. T
 - **j**. The group \mathbb{Q} of rational numbers with addition is an infinite cyclic group. **F**
- **2**. Prove that every cyclic group is a homomorphic image of the group \mathbb{Z} of integers with addition.

Proof. Let $G = \langle x \rangle = \{x^n | n \in \mathbb{Z}\}$ The map $e : \mathbb{Z} \to G, n \mapsto x^n$ is homomorphic: $e(n+m) = x^{n+m} = x^n x^m = e(n)e(m), e(-n) = x^{-n} = (x^n)^{-1} = e(n)^{-1}, e(0) = x^0 = 1.$

3. What are k and l in $2\mathbb{Z} + 3\mathbb{Z} = k\mathbb{Z}, 2\mathbb{Z} \cap 3\mathbb{Z} = l\mathbb{Z}$?

Answer: $2\mathbb{Z} + 3\mathbb{Z} = (2,3)\mathbb{Z} = \mathbb{Z}; 2\mathbb{Z} \cap 3\mathbb{Z} = [2,3]\mathbb{Z} = 6\mathbb{Z}$

- **4**. Let $G = \langle a \rangle$ be a cyclic group of order 8.
 - **a.** Find the order of each of the following $a^2, a^3, a^4, a^5, a^6, a^7, a^8$.

Answer: 4, 8, 2, 8, 4, 8, 1

b. Find all distinct generators of $\langle a \rangle$.

Answer: a, a^3, a^7

5. Prove that a homomorphic image of an abelian group is abelian.

Proof: Let $\varphi : G \twoheadrightarrow H$ be a surjective homomorphis from the abelian group G onto the group H. Let h_1, h_2 be any two elements of H. Then $h_1 = \varphi(g_1), h_2 = \varphi(g_2)$ and $h_1h_2 = \varphi(g_1)\varphi(g_2) = \varphi(g_1g_2) = \varphi(g_2g_1) = \varphi(g_2)\varphi(g_1) = h_2h_1$.

6. Let G be a group of order p^2 where p is a prime number. Prove that G contains a subgroup H of order p.

Proof: Let $x \in G$ where $x \neq e$. Then by Lagrange's Theorem, the order of < x > is either p or p^2 . If $|< x >| = p^2$ then G is cyclic and must have a subgroup of order p. Actually, $< x^p >$ is of order p. If |< x >| = p then we have found a subgroup of order p.