Notes for Test 2

There will be **six** problems on Test 2. Each problem will be worth **20** points. The first problem will be **10** Truth-False questions.

The test will cover Divisibility (2.3), prime factorization and greatest common divisor (2.4) and from Groups (3.1) and (3.2).

For example that $(ab)^{-1} = a^{-1}b^{-1}$ yields commutativity is a typical test problem In general $(ab)^{-1} = b^{-1}a^{-1}$. But we are given that

$$b^{-1}a^{-1}=a^{-1}b^{-1}$$
. Now we take the inverse on both sides and get $(b^{-1}a^{-1})^{-1}=(a^{-1})^{-1}(b^{-1})^{-1}=ab$, and $(a^{-1}b^{-1})^{-1}=(b^{-1})^{-1}(a^{-1})^{-1}=ba$. Thus $ba=ab$.

The problem on the test will be very similar. Do problem 15, page 160

One main example of a group is the group of integers modulo k. This material is somewhat spread out in the book. Here is what you need to know.

Integers modulo k

This is section 2.5 in the book. It combines what you learned about equivalence relations together with the definition of groups:

For every integer n and k > 0 we have division of n by k with remainder

$$n = qk + r, 0 \le r < k$$

We say that n and m are congruent modulo k if in the division algorithm for n and m both numbers divided by k have the same remainder. This partitions the set \mathbb{Z} of integers into k equivalence classes, namely in classes where the remainder is $r = 0, r = 1, \ldots, r = k-1$

Examples: Let k=2. The possible remainders are r=0 and r=1. Numbers n and m have remainder r=0 only if they are **both even** and remainder r=1 if they are **both odd**. Thus the class [0] of 0 is the set of all even numbers, the class [1] of 1 is the set of all odd numbers. Because we are talking congruence modulo 2, we use a subscript 2:

$$[0]_2=\{\ldots-10,-8,-6,-4,-2,0,2,4,6,8,10,\ldots\},$$
 and $[1]_2=\{\ldots-11,-9,-7,-5,-3,-1,1,3,5,7,9,11,\ldots\}$

Let k = 3. According to possible remainders r = 0, r = 1, r = 2 we get three classes:

$$[0]_3 = \{\dots -15, -12, -9, -6, -3, 0, 3, 6, 9, 12, 15, \dots\}, [1]_3 = \{\dots -14, -11, -8, -5, -2, 1, 4, 7, 10, 13, -12, -13, -10, -7, -4, -1, 2, 5, 7, 10, \dots\}$$

Theorem. For k > 0 we have

$$[n]_k = n + k\mathbb{Z} = \{n + kx | x \in \mathbb{Z}\}\$$

Proof. If n and m are in the same class then both numbers have the same remainder r, where $0 \le r < k$,. That is

$$n = q_1k + r, m = q_2k + r$$

Thus

$$m = n + (q_2 - q_1)k$$

Hence,

$$[n]_k \subseteq n + k\mathbb{Z}$$

On the other hand, if m = n + kx we have that m - n = kx. That is m - n is divisible by k But according to the division algorithm we also have $m = q_2k + r_2$ and $n = q_1k + r_1$. If r_2 and r_1 are different then we may assume $r_2 > r_1$. We get

$$m-n = (q_2-q_1)k - (r_2-r_1)$$

We have that m - n is divisible by k. On the right side $(q_2 - q_1)k$ is divisible by k. Thus $(r_2 - r_1)$ must be divisible by k. But this is impossible because $0 < r_2 - r_1 < k$.

For k > 0 we get exactly k congruence classes according to the possible remainders. The set of classes modulo k is denoted as \mathbb{Z}_k :

$$\mathbb{Z}_k = \{[0]_k, [1]_k, \dots, [k-1]_k\}$$

 \mathbb{Z}_k is a set of k –many elements, where each element is a subset of \mathbb{Z} . Each $n \in \mathbb{Z}$ is congruent modulo k to exactly one r where $0 \le r < k$.

$$[n]_k = [r]_k = r + k\mathbb{Z}$$

Theorem. For every k > 0 one has that the set \mathbb{Z}_k is a commutative group of k –many elements:

$$[n]_k + [m]_k = [n+m]_k, -[n]_k = [-n]_k, 0 = [0]_k$$

Proof. The difficult part is to understand that we actually have defined operations. That is if $[n]_k = [n']_k$ and $[m]_k = [m']_k$ then $[n+m]_k = [n'+m']_k$. But this is quite obvious: n and m differ from n' and m' by a multiple of k. And therefore n+m and n'+m' differ by a multiple of k. (To be explicit:

n' = n + ks, m' = m + kt, n' + m' = n + m + k(s + t) Thus $[n + m]_k = [n' + m']_k$. We have a similar argument for taking the additive inverse and for the zero-element. Keep in mind that the zero of \mathbb{Z}_k is $k\mathbb{Z}$.

That we get with these definitions a commutative group is easy to see. The group properties are inherited from the integers. Like associativity:

$$([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [a] + [b]) = [a + b] = [b + a] = [b] + [a]$$

That [0] is the zero for \mathbb{Z}_k is also clear: [a] + [0] = [a + 0] = [a] and [a] + (-[a]) = [a] + [-a] = [a - a = 0]

Example:
$$[8]_{12} + [7]_{12} = [15]_{12} = [3]_{12}$$
. But also: $[8]_{12} = [8 - 48 = -40]_{12}$, $[7]_{12} = [7 + 60 = 67]_{12}$, $[8]_{12} + [7]_{12} = [-40 + 67 = 27]_{12} = [3]_{12}$

We can also multiply elements of \mathbb{Z}_k by the same rules:

$$[n]_k \bullet [m]_k = [nm]_k$$

One needs to show, if [n] = [n'], [m] = [m'] then [nm] = [n'm']. You should do this as an exercise.

Theorem. With respect to multiplication, \mathbb{Z}_k is a commutative semigroup with unit $[1]_k$. We also have that multiplication is distributive over addition.

Proof. Commutativity: $[a] \cdot [b] = [ab] = [ba] = [b] \cdot [a]$;

Distributivity:

$$[a] \cdot ([b] + [c]) = [a] \cdot ([b+c]) = [a(b+c)] = [ab+ac] = [ab] + [ac] = [a][b] + [a][c]$$

Unit: $[a] \cdot [1] = [a1] = [a]$. Remember that $[1] = 1 + k\mathbb{Z} = \{1 + kl | l \in \mathbb{Z}\}$

Example: $[8]_{12} \cdot [7]_{12} = [56]_{12} = [8]_{12}$

This tells us that we don't have in \mathbb{Z}_{12} the cancellation property: We have $[8] \cdot [7] = [8] \cdot [1] = [8]$. The reason is that not every element has an inverse.

Theorem. If (m,k) = 1 then $\lceil m \rceil_k$ has a multiplicative inverse in \mathbb{Z}_k .

Proof. We have xm + yk = 1. Therefore [x][m] + [y][k] = [1] in \mathbb{Z}_k . However [y][k] = [yk] = [0]. Therefore [x][m] = [1]. We got that [x] is the inverse of [m].

Corollary. For every prime p one has that all classes $[1]_p, [2]_p, \dots, [p-1]_p$ have a multiplicative inverse.

Proof. we have (a, p) = 1 for a = 1, 2, ..., p - 1.

Example. (7,12)=1. By the theorem, $[7]_{12}$ must have an inverse. From $3 \cdot 12 - 5 \cdot 7 = 1$ we see that [-5] is in \mathbb{Z}_{12} the inverse of [7]. We also have [-5] = [7]. indeed $[7] \cdot [7] = [49] = [1]$ in \mathbb{Z}_{12} .

In \mathbb{Z}_5 all four classes different from 0 must have an inverse:

$$[1]^{-1} = [1], [2]^{-1} = [3], [3]^{-1} = [2], [4]^{-1} = [4]$$

As a further example we have (11,30) = 1. We get that $11 \cdot 11 - 4 \cdot 30 = 1$ (do the calculations for x11 + y30) Therefore 11 has an inverse modulo 30, Namely $[11]^{-1} = [11]$.

We can solve something like

$$x \cdot [11]_{30} = [8]_{30} : x = [8] \cdot [11]^{-1} = [8] \cdot [11] = [88] = [88 - 90] = [-2] = [28]$$
. Check: $[28] \cdot [11] = [308] = [10 \cdot 30 + 8] = [8]$