Notes for Test 2

There will be six problems on Test 2. Each problem will be worth $\mathbf{2 0}$ points. The first problem will be 10 Truth-False questions.
The test will cover Divisibility (2.3), prime factorization and greatest common divisor (2.4) and from Groups (3.1) and (3.2).

For example that $(a b)^{-1}=a^{-1} b^{-1}$ yields commutativity is a typical test problem In general $(a b)^{-1}=b^{-1} a^{-1}$. But we are given that
$b^{-1} a^{-1}=a^{-1} b^{-1}$. Now we take the inverse on both sides and get
$\left(b^{-1} a^{-1}\right)^{-1}=\left(a^{-1}\right)^{-1}\left(b^{-1}\right)^{-1}=a b$, and $\left(a^{-1} b^{-1}\right)^{-1}=\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1}=b a$.
Thus $b a=a b$.
The problem on the test will be very similar. Do problem 15, page 160
One main example of a group is the group of integers modulo k. This material is somewhat spread out in the book. Here is what you need to know.

Integers modulo \mathbf{k}

This is section 2.5 in the book. It combines what you learned about equivalence relations together with the definition of groups:
For every integer n and $k>0$ we have division of n by k with remainder

$$
n=q k+r, 0 \leq r<k
$$

We say that n and m are congruent modulo k if in the divsion algorithm for n and m both numbers divided by k have the same remainder. This partitions the set \mathbb{Z} of integers into k equivalence classes, namely in classes where the remainder is $r=0, r=1, \ldots, r=k-1$
Examples: Let $k=2$. The possible remainders are $r=0$ and $r=1$. Numbers n and m have remainder $r=0$ only if they are both even and remainder $r=1$ if they are both odd. Thus the class [0] of 0 is the set of all even numbers, the class [1] of 1 is the set of all odd numbers. Because we are talking congruence modulo 2 , we use a subscript 2 :
$[0]_{2}=\{\ldots-10,-8,-6,-4,-2,0,2,4,6,8,10, \ldots\}$, and $[1]_{2}=$ $\{\ldots-11,-9,-7,-5,-3,-1,1,3,5,7,9,11, \ldots\}$
Let $k=3$. According to possible remainders $r=0, r=1, r=2$ we get three classes: $[0]_{3}=\{\ldots-15,-12,-9,-6,-3,0,3,6,9,12,15, \ldots\},[1]_{3}=\{\ldots-14,-11,-8,-5,-2,1,4,7,10,13$ $[2]_{3}=\{\ldots-13,-10,-7,-4,-1,2,5,7,10, \ldots\}$

Theorem. For $k>0$ we have

$$
[n]_{k}=n+k \mathbb{Z}=\{n+k x \mid x \in \mathbb{Z}\}
$$

Proof. If n and m are in the same class then both numbers have the same remainder r, where $0 \leq r<k$, That is

$$
n=q_{1} k+r, m=q_{2} k+r
$$

Thus

$$
m=n+\left(q_{2}-q_{1}\right) k
$$

Hence,

$$
[n]_{k} \subseteq n+k \mathbb{Z}
$$

On the other hand, if $m=n+k x$ we have that $m-n=k x$. That is $m-n$ is divisible by k But according to the division algorithm we also have $m=q_{2} k+r_{2}$ and $n=q_{1} k+r_{1}$. If r_{2} and r_{1} are different then we may assume $r_{2}>r_{1}$. We get

$$
m-n=\left(q_{2}-q_{1}\right) k-\left(r_{2}-r_{1}\right)
$$

We have that $m-n$ is divisible by k. On the right side $\left(q_{2}-q_{1}\right) k$ is divisible by k. Thus ($r_{2}-r_{1}$) must be divisible by k. But this is impossible because $0<r_{2}-r_{1}<k$.

For $k>0$ we get exactly k congruence classes according to the possible remainders. The set of classes modulo k is denoted as \mathbb{Z}_{k} :

$$
\mathbb{Z}_{k}=\left\{[0]_{k},[1]_{k}, \ldots,[k-1]_{k}\right\}
$$

\mathbb{Z}_{k} is a set of k-many elements, where each element is a subset of \mathbb{Z}. Each $n \in \mathbb{Z}$ is congruent modulo k to exactly one r where $0 \leq r<k$.

$$
[n]_{k}=[r]_{k}=r+k \mathbb{Z}
$$

Theorem. For every $k>0$ one has that the set \mathbb{Z}_{k} is a commutative group of k-many elements:

$$
[n]_{k}+[m]_{k}=[n+m]_{k},-[n]_{k}=[-n]_{k}, 0=[0]_{k}
$$

Proof. The difficult part is to understand that we actually have defined operations. That is if $[n]_{k}=\left[n^{\prime}\right]_{k}$ and $[m]_{k}=\left[m^{\prime}\right]_{k}$ then $[n+m]_{k}=\left[n^{\prime}+m^{\prime}\right]_{k}$. But this is quite obvious: n and m differ from n^{\prime} and m^{\prime} by a multiple of k. And therefore $n+m$ and $n^{\prime}+m^{\prime}$ differ by a multiple of k. (To be explicit: $\left.n^{\prime}=n+k s, m^{\prime}=m+k t, n^{\prime}+m^{\prime}=n+m+k(s+t)\right)$ Thus $[n+m]_{k}=\left[n^{\prime}+m^{\prime}\right]_{k}$. We have a similar argument for taking the additive inverse and for the zero-element. Keep in mind that the zero of \mathbb{Z}_{k} is $k \mathbb{Z}$.
That we get with these definitions a commutative group is easy to see. The group properties are inherited from the integers. Like associativity:
$([a]+[b])+[c]=[a+b]+[c]=[(a+b)+c]=[a+(b+c)]=[a]+[b+c]=[a]+([b]+[$ $[a]+[b]=[a+b]=[b+a]=[b]+[a]$
That [0] is the zero for \mathbb{Z}_{k} is also clear: $[a]+[0]=[a+0]=[a]$ and
$[a]+(-[a])=[a]+[-a]=[a-a=0]$

Example: $[8]_{12}+[7]_{12}=[15]_{12}=[3]_{12}$. But also: $[8]_{12}=[8-48=-40]_{12}$,
$[7]_{12}=[7+60=67]_{12},[8]_{12}+[7]_{12}=[-40+67=27]_{12}=[3]_{12}$

We can also multiply elements of \mathbb{Z}_{k} by the same rules:

$$
[n]_{k} \cdot[\mathrm{~m}]_{k}=[\mathrm{nm}]_{k}
$$

One needs to show, if $[n]=\left[n^{\prime}\right],[m]=\left[m^{\prime}\right]$ then $[n m]=\left[n^{\prime} m^{\prime}\right]$. You should do this as an exercise.

Theorem. With respect to multiplication, \mathbb{Z}_{k} is a commutative semigroup with unit $[1]_{k}$. We also have that multiplication is distributive over addition.
Proof. Commutativity: $[a] \cdot[b]=[a b]=[b a]=[b] \cdot[a]$;
Distributivity:
$[a] \cdot([b]+[c])=[a] \cdot([b+c])=[a(b+c)]=[a b+a c]=[a b]+[a c]=[a][b]+[a][c]$
Unit: $[a] \cdot[1]=[a 1]=[a]$. Remember that $[1]=1+k \mathbb{Z}=\{1+k l \mid l \in \mathbb{Z}\}$
Example: $[8]_{12} \cdot[7]_{12}=[56]_{12}=[8]_{12}$
This tells us that we don't have in \mathbb{Z}_{12} the cancellation property: We have $[8] \cdot[7]=[8] \cdot[1]=[8]$. The reason is that not every element has an inverse.
Theorem. If $(m, k)=1$ then $[m]_{k}$ has a multiplicative inverse in \mathbb{Z}_{k}.
Proof. We have $x m+y k=1$. Therefore $[x][m]+[y][k]=[1]$ in \mathbb{Z}_{k}. However $[y][k]=[y k]=[0]$. Therefore $[x][m]=[1]$. We got that $[x]$ is the inverse of $[m]$.
Corollary. For every prime p one has that all classes $[1]_{p},[2]_{p}, \ldots,[p-1]_{p}$ have a multiplicative inverse.
Proof. we have $(a, p)=1$ for $a=1,2, \ldots, p-1$.

Example. $(7,12)=1$. By the theorem, $[7]_{12}$ must have an inverse. From $3 \cdot 12-5 \cdot 7=1$ we see that $[-5]$ is in \mathbb{Z}_{12} the inverse of [7]. We also have $[-5]=[7]$. indeed [7] • [7] $=[49]=[1]$ in \mathbb{Z}_{12}.

In \mathbb{Z}_{5} all four classes different from 0 must have an inverse:
$[1]^{-1}=[1],[2]^{-1}=[3],[3]^{-1}=[2],[4]^{-1}=[4]$
As a further example we have $(11,30)=1$. We get that $11 \cdot 11-4 \cdot 30=1$ (do the calculations for $x 11+y 30$) Therefore 11 has an inverse modulo 30, Namely $[11]^{-1}=[11]$.
We can solve something like
$x \cdot[11]_{30}=[8]_{30}: x=[8] \cdot[11]^{-1}=[8] \cdot[11]=[88]=[88-90]=[-2]=[28]$. Check:
$[28] \cdot[11]=[308]=[10 \cdot 30+8]=[8]$

