Notes for Test 2

There will be six problems on Test 2. Each problem will be worth 20 points. The first
problem will be 10 Truth-False questions.

The test will cover Divisibility (2.3), prime factorization and greatest common divisor
(2.4) and from Groups (3.1) and (3.2).

For example that (ab)~! = a~tb~! yields commutativity is a typical test problem In
general (ab)~! = b~'a~!.But we are given that

ba-! = a~'hb~l. Now we take the inverse on both sides and get

(bta )t =@l b))t =ab and (atb ) = (b!)t(a?l)?! = ba.

Thus ba = ab.

The problem on the test will be very similar. Do problem 15, page 160

One main example of a group is the group of integers modulo k. This material is
somewhat spread out in the book. Here is what you need to know.

Integers modulo k

This is section 2.5 in the book. It combines what you learned about equivalence
relations together with the definition of groups:

For every integer n and k > 0 we have division of n by k with remainder

n=gk+r,0<r<Kk

We say that n and m are congruent modulo k if in the divsion algorithm for n and m
both numbers divided by k have the same remainder. This partitions the set Z of
integers into k equivalence classes, namely in classes where the remainder is
r=0r=1..,r=k-1
Examples: Let k = 2. The possible remainders arer = 0 and r = 1. Numbers n and m
have remainder r = 0 only if they are both even and remainder r = 1 if they are both
odd. Thus the class [0] of 0 is the set of all even numbers, the class [1] of 1 is the set
of all odd numbers. Because we are talking congruence modulo 2, we use a subscript
2
[0], = {...-10,-8,-6,-4,-2,0,2,4,6,8,10, ...}, and [1], =
{...-11,-9,-7,-5,-3,-1,1,3,5,7,9,11, ...}
Let k = 3. According to possible remainders r = 0,r = 1,r = 2 we get three classes:

3 = {...-15,-12,-9,-6,-3,0,3,6,9,12,15, ... },[1]s = {...-14,-11,-8,-5,-2,1,4,7,10,13
[2]3 = {...-13,-10,-7,-4,-1,2,5,7,10, ...}

Theorem. For k > 0 we have
[Nk = nN+kZ =<{n+kx|x € Z}

Proof. If n and m are in the same class then both numbers have the same remainder
r, where0 <r <k,. Thatis



n=qik+rm=qxk+r
Thus
m=n+(gz —qu)k
Hence,
[Nk € n+kz

On the other hand, if m = n + kx we have that m —n = kx. That is m —n is divisible by k
But according to the division algorithm we also have m = g2k + r, and n = g1k +r1.1f ry
and r; are different then we may assume r, > r;. We get

m-n=(q2—0gu)k—(ra—ry)

We have that m — n is divisible by k. On the right side (g2 — q1)k is divisible by k. Thus
(r, — r1) must be divisible by k. But this is impossible because 0 < r —r; < k.

For k > 0 we get exactly k congruence classes according to the possible remainders.
The set of classes modulo k is denoted as Zx :

Zx = [0k, [1]k, ..., [k = 1]k}

Zy is a set of k —-many elements, where each element is a subset of Z.Eachn € Z is
congruent modulo k to exactly one r where 0 <r < k.

Nk =[rlk =r+kz

Theorem. For every k > 0 one has that the set Z, is a commutative group of k —-many
elements:

[N]k + [M]k = [N+ m]k,~[n]k = [-n]k, 0 = [O]k

Proof. The difficult part is to understand that we actually have defined operations.
That is if [n]k = [n']x and [m]x = [m']« then [n + m]x = [n' + m']. But this is quite
obvious: n and m differ from n’ and m’ by a multiple of k. And therefore n + m and

n' + m'’ differ by a multiple of k.(To be explicit:

n=n+ks,m =m+kt,n"+m’ = n+m+k(s+t)) Thus [n+m]x = [n"+m']x. We have a
similar argument for taking the additive inverse and for the zero-element. Keep in mind
that the zero of Zy is kZ.

That we get with these definitions a commutative group is easy to see. The group
properties are inherited from the integers. Like associativity:

(fa] + [b]) +[c] =[a+b]+[c] =[(@+b)+c]=[a+(b+c)] =[a]+[b+c]=T[a]+([b]+]
[a] + [b] = [a+b] = [b+a] = [b] +[a]

That [0] is the zero for Zy is also clear: [a] + [0] = [a+ 0] = [a] and

[a]+ (-[a]) =[a]+[-a] =[a—a=0]

Example: [8]12 + [7]12 = [15]12 = [3]12. But also: [8]12 = [8 — 48 = —40] 12,
[7] 12 = [7 +60 = 67] 12, [8] 12 + [7]12 = [—40 +67 = 27] 12 = [3]12

We can also multiply elements of Zy by the same rules:
[n]k « [m]k = [nm]k



One needs to show, if [n] = [n'],[m] = [m'] then [nm] = [n'm’]. You should do this as an
exercise.

Theorem. With respect to multiplication, Zy is a commutative semigroup with unit
[1]k. We also have that multiplication is distributive over addition.

Proof. Commutativity: [a] - [b] = [ab] = [ba] = [b] - [a];

Distributivity:

[a] - ([b] +[c]) =T[a]-([b+c]) =T[a(b+c)] =[ab+ac] = [ab]+ [ac] = [a][b] + [a][c]
Unit: [a] - [1] = [al] = [a]. Remember that [1] = 1+ kZ = {1 +Kl|l € Z}

Example: [8] 12 ° [7]12 = [56]12 = [8]12

This tells us that we don’t have in Z,, the cancellation property: We have

[8] - [7] = [8] - [1] = [8]. The reason is that not every element has an inverse.
Theorem. If (m,k) = 1 then [m]x has a multiplicative inverse in Z.

Proof. We have xm + yk = 1. Therefore [x][m] + [y][k] = [1] in Z«. However

[y][K] = [yk] = [0]. Therefore [x][m] = [1]. We got that [x] is the inverse of [m].
Corollary. For every prime p one has that all classes [1],[2]p,...,[p — 1], have a
multiplicative inverse.

Proof. we have (a,p) = 1fora=1,2,...,p- 1.

Example. (7,12) = 1. By the theorem, [7]1> must have an inverse. From
3.12-5.7 =1 we see that [-5] is in Z1, the inverse of [7]. We also have [-5] = [7].
indeed [7] - [7] = [49] = [1] in Z13.

In Zs all four classes different from 0 must have an inverse:

[1]7 = [1],[2] = [3],[3] = [2],[4]™ = [4]

As a further example we have (11,30) = 1. We getthat 11 - 11 -4 - 30 = 1 (do the
calculations for x11 + y30) Therefore 11 has an inverse modulo 30, Namely

[11]7 = [11].

We can solve something like

X+ [11]30 = [8]s0 : X = [8] - [11]7t = [8] - [11] = [88] = [88 — 90] = [-2] = [28].Check:
[28] - [11] = [308] = [10 - 30 + 8] = [8]



