
Notes for Test 2

There will be six problems on Test 2. Each problem will be worth 20 points. The first
problem will be 10 Truth-False questions.
The test will cover Divisibility (2.3), prime factorization and greatest common divisor
(2.4) and from Groups (3.1) and (3.2).

For example that ab−1  a−1b−1 yields commutativity is a typical test problem In
general ab−1  b−1a−1.But we are given that
b−1a−1  a−1b−1. Now we take the inverse on both sides and get
b−1a−1−1  a−1−1b−1−1  ab, and a−1b−1−1  b−1−1a−1−1  ba.
Thus ba  ab.
The problem on the test will be very similar. Do problem 15, page 160

One main example of a group is the group of integers modulo k. This material is
somewhat spread out in the book. Here is what you need to know.

Integers modulo k
This is section 2.5 in the book. It combines what you learned about equivalence
relations together with the definition of groups:
For every integer n and k  0 we have division of n by k with remainder

n  qk  r, 0 ≤ r  k

We say that n and m are congruent modulo k if in the divsion algorithm for n and m
both numbers divided by k have the same remainder. This partitions the set ℤ of
integers into k equivalence classes, namely in classes where the remainder is
r  0, r  1,… , r  k − 1
Examples: Let k  2. The possible remainders are r  0 and r  1. Numbers n and m
have remainder r  0 only if they are both even and remainder r  1 if they are both
odd. Thus the class 0 of 0 is the set of all even numbers, the class 1 of 1 is the set
of all odd numbers. Because we are talking congruence modulo 2, we use a subscript
2 :
02  …−10,−8,−6,−4,−2,0,2,4,6,8,10,…, and 12 
…−11,−9,−7,−5,−3,−1,1,3,5,7,9,11,…
Let k  3. According to possible remainders r  0, r  1, r  2 we get three classes:
03  …−15,−12,−9,−6,−3,0,3,6,9,12,15,…, 13  …−14,−11,−8,−5,−2,1,4,7,10,13
23  …−13,−10,−7,−4,−1,2,5,7,10,…

Theorem. For k  0 we have

nk  n  kℤ  n  kx|x ∈ ℤ

Proof. If n and m are in the same class then both numbers have the same remainder
r, where 0 ≤ r  k, . That is
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n  q1k  r,m  q2k  r

Thus

m  n  q2 − q1k

Hence,

nk ⊆ n  kℤ

On the other hand, if m  n  kx we have that m − n  kx. That is m − n is divisible by k
But according to the division algorithm we also have m  q2k  r2 and n  q1k  r1. If r2

and r1 are different then we may assume r2  r1. We get

m − n  q2 − q1k − r2 − r1

We have that m − n is divisible by k. On the right side q2 − q1k is divisible by k.Thus
r2 − r1 must be divisible by k. But this is impossible because 0  r2 − r1  k.

For k  0 we get exactly k congruence classes according to the possible remainders.
The set of classes modulo k is denoted as ℤk :

ℤk  0k, 1k,… , k − 1k

ℤk is a set of k −many elements, where each element is a subset of ℤ.Each n ∈ ℤ is
congruent modulo k to exactly one r where 0 ≤ r  k.

nk  rk  r  kℤ

Theorem. For every k  0 one has that the set ℤk is a commutative group of k −many
elements:

nk  mk  n  mk,−nk  −nk, 0  0k

Proof. The difficult part is to understand that we actually have defined operations.
That is if nk  n′k and mk  m′k then n  mk  n′  m′k.But this is quite
obvious: n and m differ from n′ and m′ by a multiple of k. And therefore n  m and
n′  m′ differ by a multiple of k. (To be explicit:
n′  n  ks,m′  m  kt,n′  m′  n  m  ks  t) Thus n  mk  n′  m′k. We have a
similar argument for taking the additive inverse and for the zero-element. Keep in mind
that the zero of ℤk is kℤ.
That we get with these definitions a commutative group is easy to see. The group
properties are inherited from the integers. Like associativity:
a  b  c  a  b  c  a  b  c  a  b  c  a  b  c  a  b  
a  b  a  b  b  a  b  a
That 0 is the zero for ℤk is also clear: a  0  a  0  a and
a  −a  a  −a  a − a  0

Example: 812  712  1512  312. But also: 812  8 − 48  −4012,
712  7  60  6712, 812  712  −40  67  2712  312

We can also multiply elements of ℤk by the same rules:

nk  mk  nmk
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One needs to show, if n  n′, m  m′ then nm  n′m′.You should do this as an
exercise.

Theorem. With respect to multiplication, ℤk is a commutative semigroup with unit
1k.We also have that multiplication is distributive over addition.
Proof. Commutativity: a  b  ab  ba  b  a;
Distributivity:
a  b  c  a  b  c  ab  c  ab  ac  ab  ac  ab  ac
Unit: a  1  a1  a. Remember that 1  1  kℤ  1  kl|l ∈ ℤ
Example: 812  712  5612  812

This tells us that we don’t have in ℤ12 the cancellation property: We have
8  7  8  1  8.The reason is that not every element has an inverse.
Theorem. If m,k  1 then mk has a multiplicative inverse in ℤk.
Proof. We have xm  yk  1.Therefore xm  yk  1 in ℤk. However
yk  yk  0.Therefore xm  1. We got that x is the inverse of m.
Corollary. For every prime p one has that all classes 1p, 2p,… , p − 1p have a
multiplicative inverse.
Proof. we have a,p  1 for a  1,2,… ,p − 1.

Example. 7,12  1. By the theorem, 712 must have an inverse. From
3  12 − 5  7  1 we see that −5 is in ℤ12 the inverse of 7.We also have −5  7.
indeed 7  7  49  1 in ℤ12.

In ℤ5 all four classes different from 0 must have an inverse:
1−1  1, 2−1  3, 3−1  2, 4−1  4
As a further example we have 11,30  1. We get that 11  11 − 4  30  1 (do the
calculations for x11  y30 Therefore 11 has an inverse modulo 30, Namely
11−1  11.
We can solve something like
x  1130  830 : x  8  11−1  8  11  88  88 − 90  −2  28.Check:
28  11  308  10  30  8  8
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