Practice sheet for Test 2, Math 3330, Spring 2016

1. Label each of the following statement as either true or false/
(a) If for integers a and b one has that $e=x a+y b$ then for $d=(a, b)$ one has that $e \mid d$.
(b) For any integer a one has $(a, 1)=1$.
(c) Let a and b be integers, not both zero, such that $d=(a, b)$. Then $(a, b)=(a,-b)$.
(d) Let a be an integer., then $(a, a+2)=2$.
(e) Assume that for the prime p that $p \mid a b$. The $p \mid a$ and $p \mid b$.
(f) The empty set \emptyset is n, roup.
(g) The set \mathbb{Z} of all integers is a non-abelian group with respect to subtraction.
(h)For any n, the elements different from zero of the integers modulo n form a group with respect to multiplication.
(i)The set $\mathbb{R} \backslash\{0\}$ of nonzero real numbers is a nonabelian group with respect to division.
(j) If in a group one has that $x y=x z$ one has that $y=z$.
2. Let a and b be integers, at least one of them not 0 . Let $d=(a, b)$. Then an integer c is of the form $c=x a+y b$ iff $d \mid c$.
3. In any group, for given $a, b \in G$, the equation $a * x=b$ has a unique solution x.
4. Let G be a group with 3 elements, $G=\{1, x, y\}$. Prove that $x y=e$.
5. Find the multiplicative inverse of $5 \bmod (14)$, that is $[5]_{14}^{-1}$ and solve $5 x+2=0 \bmod (14)$
6. If you have $1=x m+y n$ Then $[m]_{n}^{-1}$ exists and is $[x]_{n}$.
