A PRIMER FOR LINERA ALGEBRA

PROVIDED
BY

MATHLAB OF UH

These notes are meant as a "primer" for a first course on Linear Algebra.
The notes deal only with points and vectors as spatial objects and no
attempts have been made to present the theory in an axiomatic setting. On
the other hand, we give a precise definition of what a vector is. Also, the
section on the dot prqduct is quite complete. I feel that the notes contain
most of the the essentials on the algebra of vectors, which students of
Calculus IIT (the multivariable caluﬁu}us) or of a beginning physms course
should be familiar with. o

Klaus Kaiser



1. Points. Let £ ba a straight line. We pick any point O on £ and call it
the origin. Let ‘U be any other point on £. One customarily assumes that U
is to the right of O. But this is not necessary. The half-line which
contains U is called the positive half-line. The other half is called
negative, We call U the unit point of £. The segment OU determines the unit
length for measuring distances. Let P be any point on the positive half-
line. The length of OP measured in multiples of OU is called the x-
coordinate of P. For example, U has the coordinate x = 1 while the origin O
has the coordinate x = 0. The midpoint of the segment OU has coordinate

= 1/2. Points to the left of O have negative coordinates. We assume, as
an axiom, that for every real number x there is exactly one point P on £
whose coordinate is x. The ordered pair (O,U} defines a coordinate system

of the line £.

Let £, and £, be two non~parallel lines in a plane 5. Let O be the point of
intersection. We pick any iwo points U, and U, as unit points of £, and £,
respectively. The triple (O, U, Uz) determines an (affine) coordinate
system for m. Let P be any point of the plane n. The line which is parallel
to £, and which goes through P intersects /62 in a point P,. Similarly, the
line which is parallel to f,?_ and which goes through P intersects /{’,1 in a
point P . Then, if a is the coordinate of P, and if b is the coordinate of
P,, one says that a and b are the coordinates of P®: P(a,b) and that
P, = P(0,b) and P, = P(a,0) are the projections of P along the coordinate

axes.
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A coordinate.system is called cartesian if
FE i

R 4
{a) the coordinate axes are perpendicular to each other;

(b) the unit points have the same distance from the origin.

At any rate, whether the system (O, U, U,) is affine or cartesian, t/here is
aone-to-one correspondence between ordered pairs (a,b) of real numbers and
points P of the plane. For example, the ordered pairs (0,0), (1,0) and (0,1)
correspond to the points O, U1 and Uz, respectively. Given (a,b) one has a
unigque point P, on £ whose coordinate is a. Similarly, one has a unique
point P, on £, whose coordinate is b. All points where the first coordinate
is a are on the line which goes through P, and which is parallel to .{’,2.
Similarly, all points with second coordinate b are on the line which goes
through P, and which is parallel to £,. The point of intersection of these

two lines is a unique point P = P{a,b) with coordinates a and b.

Let O be any point of our physical space. We take three lines £, through O
which are not in a plane. On each of the lines £, we pick a point U,
different from O. Then (O, U, U, Ua) is a space coordinate system. The
origin O and any two of the unit points determine a coordinate plane. For

example, O and U, and U, determine the plane n, ,» We have three different

coordinate planes: Typ 0 My, and T, ,+ Any two planes in space intersect
b 3
-,
in a line. For example, T, o, and T, have the line f,l in common. Note:
¥ 3
nl,z nnl,a = 'CL ’ 7r1,2 rHrrz,3 = 'f’z 4 n1,3 n nz,z = '6’3
and my,,NT 0w, = {0}
A
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Let P be any point in space. Notice that the intersection of a line £ and a
plane 7 is either empty, a point or the line £. The plane which is parallel
to T, and which goes through P intersects 63 in exactly one point P,. Let
x, be the coordinate of P, with respect to (O, Ug). The x,-coordinate of P
is determined by P, where P, is the intersection of the line f,z and the
plane which goes through P and which is parallel to Ty, g0 Finally, X, is the
coordinate of P, where P, is the intersection of the line £, and the plane
which goes through P and which is parallel to T, 5 We established a one-to-
one correspondence between points P in space and triples (xl,xz,xa). The
origin O corresponds to (0,0,0), the point U, to (1,0,0), U, to (0,1,0) and
U, to {0,0,1). All points whose first coordinate is X, are¥the points on the

plane n;, which goes through P, and which is parallel to n The points for

2;3°
which x, is the second coordinate are the points on the plane %, which goes
through P, and which is parallel to n, ,» The intersection of the two planes
n, and m, is a line £. It contains all the points P for which x, and x, are
the first two coordinates. If we intersect £ with the plane ;:: which is the
plane which goes through P, and which is parallel to Ty, .0 WE get a unique
point P(xl,xz,xs) whose coordinates are X, X, and X,.

Examples.

1. Assume that we are given coordinate systems for a line £, a plane n and
for the space. The gguation X, = 2 then determines

(a) a point of £ ; (b) a hne of T {c) a plane in space.

2. The equations X = 2, X %, = -3 determine a unique point” of the plane n. In“ﬁf‘i’fﬁff"‘"‘f""’ TEF TR

space this system describes a line as intersection of two planes.




Z. Vectors. L}Bﬁ a'ﬂ;d Q be any two points. They may be points on a line, of
a plane or points in space. The directed line segment from the initial point
P to the end point Q is called the located vector P& . Two located vectors
PQ and ®S are equivalent if the line segments PG and RS are of the same
length, are parallel and are directed the same way. Every located vector is
equivalent fo one where the origin O of a cocrdinate system is the initial
point. Such located vectors are called position vectors. More generally,
given any point R and any located vector ?@ there is exactly one located

vector BS which is equivalent to DQ.

i

All these located vectors stand for one vector o

g,

Given located vectors P@ and @8 the located vector P8 is called the sum:
P4 + @S = B3

This is called the parallelogram law for addition of located vectors. Notice

that the end point of the first summand is the initial point.of the second

summand. We state a few properties for the addition of located vectors:

(a) _@3 + 'Qa = _}f’a e, _Q_é is neutral with respect to addition.
(b) ?—@ + @? = PB e, Q_lg is inverse to ‘3 ,
(c) (PR +QR) +RS=PR+ RS =P3, PQ + (GR + RS) = PG + Q2 = PS. That is,

the addition is apsociative.




N N N
PR isthesumof PQ and QR

P

Associativity of addition

.

Any class o of equivalent located wvectors is called a vector., If PQ is a
located vector in space and if P = P(a,,a,,a,) and Q = Q(b,,b,,b,) then _156
~-a,b, -a,,b, - a,).

is equivalent to the located vector 52 where X = (b1

One says that c, = b¢- a, are the components of the vector «.

Given a coordinate system we may define operations for points according L e LI

~ the following rules:




"The sum of: pomis P(a seee) and P(bi,,.o) is the point p(31+b1”")'
-P(a ,...) is the point P(~a ,...).

With this convention we have can write:

PG ~ O(G-P7T .

Notice that P + Q depends on the chosen coordinate system. If P is the
origin for a coordinate system, then the sum is Q. If we choose Q as origin,
the sum is P. If P is the origin then -P = P. in other words, the sum of
points has no absolute geometric meaning. However, @ —~ P determines a unique
vector, the equivalence class of TPTQ, regardless of the chosen coordinate

system.

A vector o stands for a whole equivalence class of located vectors. For any
point P, e.g. P = O, there is exactly one located vector in o which has P as

initial point and

PG ~RS iff Q-P=S-R

Using coordinates, one writes « = Q@ - P = (c,,c,,c,).
Let o and B be vectors. We wish to define « + B. Let PQ € « and QS € . Then

« + B is the class of PS. It doesn’t matter which located vector P@ one

picks from «. It is easy to see that a+ 8= 8+ .

Let OX € « and OY € B. We have 0Y ~ X{X+YJ. Hence:
OX + X(X+Y) = O(X4Y) where O(X4Y) € « + B.

That is:

If OX € « and OY € B then O(X+Y) € « + B.

g

Using coordinates this says that the components c of o + B are a, + b
The class of PP is called the zero vector o. If P8 € « then the class of _—?
is called the additive inverse (-a) of «. Vectors form with respect to

addition a commutative group. That is:

(a) x+ 0= a.

{(b) o + {(~a) = o.

(c) (a+ B) + 7= a+ (B+7) R I V

(d) a+5:,9+~g.




Let c € R anc}?@} be a located vector. Assume P # . We define cf?@ = PR
where R is the époint on the line which goes through P and @ and has with
respect to the coordinate system (P,Q) the coordinate c. That is, c.?@ has
initial point P, the same direction as P& if c > 0, but pointing in the
opposite direction for ¢ < 0. The length of c.PG is c-times the length of
553. We define ¢.PP = PB. Notice:

If i’—@ ~ RS thén cf?@ ~c.RS .

In order to define c.a, we may pick any ?6 € o and define as c.x the class

of c.—@ .

We define, with respect to a given coordinate system, a multiplication of

real numbers and points.

Let ¢ be a real number and P(al,...) be a point. Then C.P(al,...} is the

point P{c- 811"’)'

Again, the result ¢.P depends on the chosen coordinate system. If P is the

origin O the c¢.P = O holds for every c € R.

Let OX € « Then c.0X = O(c.Xf. This is quite easy to see. The following

rules have very easy proofs. Together with rules (a)~(d) %hey constitute the

axioms of a vector space.

() cola + B) = cux + c.B.

(f) (c + d).x = cox + ducxs

(g) (c+d)ex = c.d.ax. ' .
(h) lax = o

Examples.

1. Find the X such that OX = (1,2,-2)(4,3,1) . Answer:

X = (4,3,1) - (1,2,-2) = (3,1,3). |

2. Find the X such faat (2,1,-5)X_ = (1,2,-2)(4,3,1). Answer:
X - (2,1,-5) = (3,1,3), X = (2,1,-5) +43,1,3) = (5,2,-2).

3. Find the X such that X(2,1,-57 = (1,2,-2)(4,3,1J. Answer:




<2;1)“5) - X :,'(331;3)1 X= <2’11“5) - (3'1}3) = (“‘1;0)“2>'

Instead of ?@ € « one often writes Pii = «. That is, one identifies a single

representative, i.e., a located vsctor, with its equivalence class.
Let P be a point and « be a vector. One defines:
Praz=Qq, where?@:a

With respect to any coordinate system one has that the coordinates g, of Q
are given by p, t+a where p, are the coordinates of P and a, are the

components of «.

Let (O, Ul, Uz) be a coordinate system. The classes for the located vectors

OU; are called the unit vectors ¢,. If P is any point then

OP = O(Xl,Xzyxsf = X.e, + X6, + X6, = OP 4 OP; + OP,

That is, every vector is the sum of its projections along the coordinate

axes.

Let o and B be two non-zero vectors. We say that « is parallel to g if there
is some ¢ € R such that « = c.B. This defines obviously an equivalence

relation among non-zero vectors. o

e
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- Lines and Planes. Two different points P and @ determine a line. The set
i H

of points whééﬁ;r'az*e on the line through P and Q are the points X such that

ﬁ:ti?@,tef‘m’.

i s
PX=3gPQ

With respect to a coordinate system this reads as X - Pz t(Q~ P), ie,
X=zP+t(Q~P), tekR.

Let P, @ and R be three different points where S is not on the line through
P and Q. Then (P,Q,R) constitutes an affine coordinate system G of a plane
n where P plays the role of the origin and Q and R are the unit points. Let
'1-56 = « and PR = B. That is, o and B play the roles of unit vectors for G.
Let X be a point of . Then

ﬁ:s.a«%t.ﬁ , s,t €R.

In coordinates, thisds X - P = 5.{Q ~ P) + t.{R - P). Thus:

-

X=P+sQ-P)+tfR-P), steR.



.
PX=aPQ +1LPR

Example. Show that the three medians of a triangle intersect in one point.
Answer: Let A,B,C be the vertices of a triangle, Let N, L. and M be the
midpoints of the sides a,b and ¢, respectively.

We first calculate the intersection $ of the medians AN and CM:

M:A+% {(B-A), N=B -%% (C - B). There are numbers S and t such that:
SzA+t.N-A)zC+s.{M-C)
A+t.(B+%-(C—-B)~A):C+s,(A+—%(B—A)-C)

s t 1 —
(1-t—§).A-—(1~s—-»2-).C—§.(s~t).8_0~~
s s s L 1 _
(l—t"‘é*)-A'—(l—t—z—}-C'*‘-EC*“Z"C—'Z.(S“‘{L)«B—O
(1—t~~§-).A—{l—t~-§).C:%.(s—t).8~%.(s—t).c
(1-t-S5)FR=2%.(s-1).C8

But CA and CB are not parallel. Hence,

_ 1 ,
(1—t—-§-=):0,~2~.(s-t):0

10



This vields

We got

SzA+2 . (N-A)=C+2.M-0)

3 3
as point of intersection for AN and CM. By symmetry, the intersection T of

AN and BL is

T:A+-§.(N—A):B+-§-.(L—B)

Hence, S = T and all three medians intersect in one point.

11



4. Scalar Product. Let € be any cartesian coordinate system of a plane or
¢ B M ; . . . .

the space. This gives us a fixed unit for measuring lengths and a frame for

measuring angles, Let = (al,az,as) and = (b,,b,,b ). We define the

scalar product by the number:
w-f=a b +a,-b, +a,-b,

The scalar product generalizes the product of numbers. Our main goal is to
show that the scalar product, despite the fact that it has been defined in
terms of components, does not depend on the chosen coordinate system €.
For any vector o = (a,b,c) one has

cra = al + b? o+l

That is,
w20 and o= Qiff azo
If PP ea where P =P {a,b,c} and P, =P (a,b,c.) then the
172 17 1t 2 7 T2 Tt

components of ¢ are a = a, —a, b= b2 - b1 and ¢ = c, - ¢, and, according

to the Pythagorean Theorem, one has for the length of the line segment

il

PP, | =4a® +b" + ¢

For any vector « we define the norm or length by

el = Jaor

The following rules comprise the basic properties for the scalar product.

They are very easy to prove:

(a) a-B = Bra.
(b) (ax+ B)oy = oy + 7.
() (c.x)«B = c-(aB).

We have for the unit vectors of our chosen cartesian coordinate system:

©¥ 3
g, =&

1€y I 5; =1, for i = j, and 0 otherwise.

o,

iy

We are going to show that the scalar product of any two non-zero vectors is

12



zero if and only if tjhe vectors are perpendicular to each other. But how can
wWe eXpress ir; concise mathematical terms that o and B are perpendicular? Let
ox represent « and oY represent B. Then )44 represents B - « and m
represents B + . Clearly, 0% is perpendicular (1) to OY iff IV and W

are of the same length. That is,

a L B iff B~ all = 1B + «ll

-4

But I - «ll = 1B + «ll is the same as [ - «li’= I8 + «li® This is,
(B-o)e(B-a)=(Bt+ta)e (Bt a) & fef—2(xef) +B:B = BB + 2(xx* ) xt-cx &
4(x«B) = 0 &= - B = 0. Hence,

oL Biff weB=0
Assume o+ = 0 and let y = a + B. An easy calculstion establishes the

Pythagorean Theorem for vectors: Iyl =l + 1Y if « o B

If « # o, then

£y = o
&7 fiadl
is called the unit vector in the direction of «. One has llegll = 1 and, of

course, €4 points in, the direction of «. Unit vectors are also called

directions. If « and B are non-zero vectors and if ¢,d # 0 then
. %

o L Biff cux L duB iff £y L £g

13



The zero vectbg‘o has no direction and is considered as perpendicular to any
other vector. L\%any applications require the decomposition of a vector B
(e.g. of force or velocity) into a direction given by a vector « and into a
direction which is perpendicular to «.

Given the direction g, and a vector B we try to find some c such that

(¥*) B=cuey+ y where y 1«

by

fe=C.e_+ ¥

Thereisonly one ¢ suchthat V== C.g
is perpendicularto a . Y s called the praojection of |
along « .

R

Multiplication of both sides of both sides of (¥) by £y yields
c = By
The vector

1
Hedl2

pProju(B) = (Breg)ey = <(Bra)e

is called the projectipn of B along «. Its length is given by

P

Hproja(ﬁ)ﬂ = 0Byl = T:é?ii“ « H{Bro) !

14



The vector </
Py

4 He

Y = B - projylp)
is perpendicular to e, and
B = proju(B) + (B - proju(g))

is the decomposition of § into a component which points in the direction of
«, and a component which is perpendicular to «. There is only one such

decomposition. If é is the angle between the vectors « and B then

1
m ‘{B'O()

cos{d) = —TET

Hence:
(Bra) = B+l -cos(8)

The last formula shows that the value of the scalar product is independent

of the chosen cartesian coordinate system. Because |cos(8)| £ 1, one has the
Cauchy -Schwarz inequality: HBro) | < igll« il

There is a somewhat more elementary proof of Cauchy-Schwarz which doesn’t

rely on the cosine function. The orthogonal decomposition

B = proju(B) + (B - proju(p))

leads to: .

1BIZ = liprojo (B)I* + 1B — proj. (B

1
il

Thus: 1BI% 2 llproju (BN?, iwe., B 2 liprojy(B)ll = - 1H(Bra)

If we multiply the last inequality by fall, Cauchy-Schwarz follows.

We are going to show that the projection of g along « is the unique vector
c.x for which the function f(c) = I8 - c.xll takes on its minimum. We have

the orthogonal decomposition:

15



&,l'

"5 B=ca= (B - projy(p)) + (projy(s) ~c.)

-

Thus: g - c.xll® = IIg - proja(ﬁ}iiz + liproj,(B) - coall® .
Hence: 135 - call 2 I - proj (Bl and equality holds iff proju(B) = cut

This latter property of the projection of a vector B along « # o makes it
clear that the projection of B along « depends only on the line
<> = {c.eylc € R} which is generated by « We are now going to find the

projection of a vector B along a plane.

Let o and g be non-zero vectors and assume that they are not parallel. Then
£y and y = B - proj,(B) are non-zero and perpendicular to each other. It is
easy to see that the vectors g, =¢, and €y = &, produce the same "span" as o

and f. That is, they span the same plane n:
= <e,f> = {caa + d.B} = {c.g, + d.ug,} where c,d €R

Using projections to ortho-normalize the spanning vectors of a plane in

order to obtain a cartesian system is called the Gram—Schmidt process.

If yemn then y=c.e, +d.e,. In order to calculate the first component ¢
of y, we multiply both sides by g,+ It follows c = y+£, and, similarly,

d = y-¢,. Hence:
Y = (7.g,) + (7.5,)

Notice that (y-e ).e, is the projection of y along e, and (y+€,).e, is the

projection of y along €y

Let y be any vector, not necessarily in n. We define the projection of y

along w by

projp(y) = (y-e,)e, + (¥-g,).¢,

We need to show that proj,(y) depegg@ds only on 7, not on the chosen cartesian
coordinate system. In order to prove this, let 1 be any vector in n. Then

n=c., +de, and an easy calculation shows: (y - projy(y)):n = 0. That

16



is, v — projﬂ(‘f) is perpendicular to any vector n in n. If x is another
| 4

vector in 7, then
¥ - %= (y = proju(y)) + (proj,;(y) - %)

is an orthogonal decomposition: 1 = projy(y) — » is as the difference of two

vectors in n also a vector in w. Hence, by the Pythagorean theorem:
ly = %li* = Iy = proj (¥)I* + liproj, (y) - I

Thus: iy = xdt = Iy = proj (y)i

and equality holds iff x = proj,(y).

We have shown that x = proj, (y) is the only vector in » such that y ~ x is
perpendicular to all vectors in n. We also showed that it is characterized
as the unique vector for which f(x) = lly - xll, x € %, takes on its minimum.
If €, ¢, is any ortho-normal system of vectors in 7, then the projection of

y onto  is the sum of the projections of y along €, and €,, respectively.

Let o, B and y be three vectors which are not in a plane. That is, together
with a point P as origin, they form a coordinate system different from €, We
can continue the Gram-Schmidt process in order to obtain a cartesian system
where the first two vectors g, and ¢, span the same plagz 7t as @ and $. The
vector 53’ =y - projp{y) is perpendicular to g, and g,. If we make E; to a
unit vector ¢

, then £,y E and g, form a cartesian base of our three

3 2

dimensional space. Actual calculations are quite tedious and should be done

use projections in order to calculate explicitly the distance of a point

from a plane. A more efficient method will be provided in the next section.

Example. Find the distance d(P,n) of the point P(1,1,1) from the plane x
which goes through the points P (1,0,0), P (0,1,0) and P,(0,0,1).

Answer: X = (1,0,0) + s.(~1,1,0) + t%—l,(),l) is the parametric equation of
. Let «= (-1,1,0) and B = (-1,0,1) and 7y = Peﬁ = (0,1,1). The vectors «
and B span the plane i, through O and d(P,n) is lly - projﬂo(y)!i. In order to

i~
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calculate projﬁ: (y) we have to replace @ and B by an ortho normal system. We
e &

set €, = g4 a:},d define €, as the unit vector for g - projg (B). Thus:
1
1 .
€, = == -(-1,1,0),
2 -

. 1 1
progel(-l,(),l) = ((-1,0,1) e o= (-1,1, 0)) = -(-1,1,0) = 5 .(-1,1,0)

27 N

. 1 1
B - pr03€1(~1,0,1) = ("1;011) - '2“' '(“17130) - ('" ’2‘ y ‘2‘ ] 1):

1
52 r ("2: 231))

projy (1) = (0,1, =5 -(-1,1,0)) == -(-1,1,0)) +

{2’ E“

IZ 1 1 2 1 1
{(01171)’ 3"" -(" “2"'“ “2“ 3 1))* "3"‘ '(‘ i‘ 1’ ‘.'2‘ ? 1)
1
3

1 1 1 1 - 2 1
=5 (LL0) + 5 -5 5y D (-5, 509
2 11 2 243 1 1 1
¥ Projy - 0,1L1) - (- 5, 5 »5) =7 (L,L,1) oy =y = )
37373 3 3 {*""3 i? 5‘
D= (e ! ! is called the normal vector for m,. We have llvll =1

and p is perpendicular to 5 . We get an orthogonal decomposition:

Y=y - projﬂo) + proj%(v)

Thus: (}' - Projgo(?’)) = PI‘sz)(Y) = (Y'V)’L)
and ty - projﬂe()')ﬂ = ?—[éj is the length of the projectiocii of Poig along

the normal v, i.e., the distance of P to the plane.

18



5. The Hesse~39rii}uia of a Plane. Let nt be the plane through P, and which has
[ i

« and B as spa?rining vectors. That is, n is the set of points given by
X=P, +s.x+tf where ste R

There is a different description of the same plane. Let v be a vector which

is perpendicular to all the wvectors Poi, where X is a point of n. That is,
p L g+ t.f where st €R &> D Pog where X €n

Let € be any cartesian coordinate system. Then « 1 B is the same as «-B = 0.

If p has with respect to € components a,b and ¢ and if P = P(Xo,yoza) then
vk, @u-?}?:()%:}a(x—xg) + by - v,) +c(z-2z,) =0
The formula
al{x - XO) + by - yo) + ez - Zo) =0

is the equation of a plane through P, and which is perpendicular to the

vector v. The formula can be rewritten as
a*x + by +crz = ax, + by, +crz, = d

That is, a plane is the set of all points X for which the scalar product

with a vector v is constant d. In particular,
a*X + bey+c-z2=0

is the equation of all points X for which OX is perpendicular to v. In this

case, X =0 is a point of .

Both sides of the equation a(x - x;) + b(y - ¥e) tclz - z,) =0 can be
multiplied by any number different from zero. In particular, we may multiply

by 1/lvii. Then

1 -
(m_-U)'(X"%Azgo) = EV'(X—XO) =0

19



is called the. Hesse~Equatzon of the plane m. Its left-hand side is called
the Hesse- Formu]a If X is any point in space, not necessarily a point of i,

then the projection of (X - XO) = PQX along v is given by the formula

J—
progupsx =z ({X - Xo)-eu).ey
The length of the projection is (X ~ Xo)-ep!. Hence,

epe (X - X))

ig + the length of the projection of Pog along the normal vector. But this
number is also equal to the distance of the point X to the plane. The unit

vector g, is called the normal vector of the plane 7.

Example. Find the distance d(P,n) of the point P(1,1,1) from the plane n
which goes through the points PO(I,O,O), PI(O,LO) and PZ(O,O,l).

Answer. All three points satisfy the equation x+y +2 = 1. This is,
(x-1)+yvy+2z=0
The vector v = (1,1,1) is the perpendicular to n and has length {_3" Thus

x~-1)+y+z

is the Hesse formula for n. If we substitute the point X = (1,1,1) we get
the nunber 2/{?, as we have seen before.
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