Problems and Comments on Induction Chapter 4

Section 4.1, Problems: 25, 32, 35, 47

Comments. We will take the following for granted: Let S be a non-empty subset of natural numbers. Then S contains a smallest element. This is called the well-ordering principle. The argument for showing this principle is clear. Let n be any element in S. Because S is non-empty, there must be such an n. If n is already the smallest element in S, we are done. Otherwise, there is a smaller element n_{1} in S. If n_{1} is the smallest element in S, we are done. Otherwise there is a smaller element n_{2} in S. Because we cannot have an infinite descending chain $n>n_{1}>n_{2}>n_{3}>\cdots$ of natural numbers smaller than n, we must arrive this way at the smallest number in S.
From the well-ordering principle we can deduce the proof principle of Mathematical Induction. In order to prove a statement about natural numbers, $P(n)$, it is enough to prove $P(0)$, which is the basis step, together with the inductive step, which is the implication $P(n) \rightarrow P(n+1)$. Indeed, if we had some n for which P would not be true, then the set $S=\{n \mid \neg P(n)\}$ would be non-empty. Thus S would have a least element, m. This m cannot be 1 , because P is true for 1 . Thus m must have a predecessor, $m-1$, which is a natural number. But $P(m-1)$ is true. We have already chosen as number m the smallest number for which P is not true, and $m-1$ is smaller than m. But then the inductive step: $P(m-1) \rightarrow P(m)$ yields that $P(m)$ must hold. But this is a contradiction, P does not hold for m.
Example 11, p. 247, is a beautiful and non-trivial example of mathematical induction. There is a second version of induction. Assume that we can show the following: $P(1)$ holds and $P(n)$ holds, in case that $P(k)$ holds for every $k<n$. Then P holds for all natural numbers n. Indeed, assume that we had a number n for which P does not hold. We take the smallest such number, n. It cannot be1. But by the choice of m, we have $P(k)$ for all $k<n$. But then $P(n)$ holds, which is a contradiction.
This second principle of complete induction is often used in algebra. For example in order to show that every natural number is a product of primes. We define 1 as the empty product of primes. Then, if n is any natural number, it is either a prime, and we are done, or it is the product of two smaller numbers n_{1} and n_{2}. Assuming that every number smaller than n is a product of primes, n_{1} as well as n_{2} are products of primes. But then $n=n_{1} \cdot n_{2}$ is a product of primes.

