
Problems and Comments for Section 17, 18, and 21

Problems: 17.6, 17.7, 18.1 (a), (b), (c), 21.11, 21.12
Comments (and synopsis for these sections): You should read 17 and 18
simultaneously. You may stop reading section 18 after the examples for Theorem
18.5.
Add in the definition of a ring homomorphism the condition
iii) 1R  1S

because all rings should have a unit.
The kernel of a ring homomorphism  : R → S is the set of all elements of R which are
mapped to the zero of S.By what we have learned about group homomorphisms,
ker must be a subgroup I of R,,−, 0. Moreover, if a  0 and if b is any element
in R then ba  ab  0.That is, if a ∈ I and if b ∈ R then ab ∈ I and ba ∈ I. This is
how ideals are defined. If I is an ideal then the group R/I,,−, 0  I is also a ring
under "representative wise" multiplications (see Theorem 17.3). The multiplicative unit
is the class of 1, that is 1  I. If I is the ideal (that is the kernel) for a homomorphism 
then the ring R/I ≅ im. That is the homomorphism theorem for rings, Theorem 18.5
If an ideal I contains an element a which has an inverse a−1 then a−1a  1 ∈ I, hence
I  R
If F is a field and I ≠ 0 an ideal of F then I  F.
Assume that R is commutative and R/I is a domain. That is, whenever
(a  Ib  I  ab  I  I,one has that a  I  I or b  I  I. Thus ab ∈ I iff a ∈ I or
b ∈ I. Such ideals are called prime ideals. The converse is also easy to see, that is R/I
is a domain if I is prime.
Let I be any ideal of the commutative ring R.Let a ∈ R. Then
J  I  a  i  ab|i ∈ I,b ∈ R is an ideal, actually the smallest ideal that contains I
and a.
An ideal M is called maximal if M ≠ R and if for any ideal I ⊇ M one has that I  M or
I  R.
If M is maximal and a ∉ M then M  a  R. Hence m  ab  1 for some m ∈ M and
b ∈ R.
Now, a  M is not the zero in R/M is equivalent to a ∉ M. By what we just said, one
has some b and m such that m  ab  1. But this is: a  Mb  M  ab  M  1  M.
Hence every element a  M ≠ 0 of R/M has an inverse b  M. We proved:
If M is a maximal ideal of the commutative ring R then R/M is a field.

Now, if R/I is a field then every class a  I ≠ I has an inverse b  I.Thus
a  Ib  I  1  I. This is ab − 1  i for some i ∈ I.We conclude that I  a contains
1 if a ∉ I. Hence I has to be maximal.
A (commutative) domain D is called a principal ideal domain (PID) if every ideal is
principal. ℤ and polynomial rings, like x are PId’s.
For domains the divisibility relation is all important:

a|b iff a  q  b for some q ∈ D iff a ⊇ b
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Every element a ∈ D has trivial divisors: a and 1.
We have that a|b and b|a iff b  ea and a  fb. Hence a  fea This is fe  1 because D
is a domain. Hence a and b differ only by an invertible element. In this case we say
that a and b are associates and write a  b. For example, in ℤ one has that a  a
because 1 and −1 are the only elements which have an inverse.
One always has a|0, that is with respect to divisibility, 0 is the largest element and
because 1|a, 1 is the smallest element.
An element q ∈ D is called irreducible if q has only tivial divisors. Trivial divisors of an
element a are all e  1, that is the invertible elements, and a′  a.
An element p ∈ D is called prime if whenever p|ab one has that p|a or p|b.

Remark A prime element is irreducible.
Proof Assume that p  a  b. Because p  1  a  b we have that p|a  b. Hence p|a or

p|b.On the other hand, p  a  b tells us that a|p and b|p. Thus a  p or b  p.
Theorem In a PID, every irreducible element is prime.

Proof That q is irreducible means that q is a maximal ideal. Hence D/q is a field,
thus a domain. So q is a prime ideal and (easy to see), q has to be prime.

Theorem In a PID, every ascending chain I1 ⊆ I2 ⊆… of ideals is finite. That is for
some k one has that Ik  Ik1 …

Proof It is quite obvious that the union of an ascending chain of ideals is an ideal.
Thus In  I  d. If d ∈ Ik then all ideals are equal from k on.

Theorem Let a be a non invertible element of the PID D.Then there is some irreducble p
which divides a.

Theorem If a is not irreducible then it has a proper divisor a1.Thus a ⊂ a1. If a1is
irreducible, we are done. Otherwise, a1 has a proper divisor a2 and we have
a1 ⊂ a2. If If a2 is irreducible, we are done. Otherwise, a2 has a proper divisor
a3 and we have a2 ⊂ a3. By the previous theorem, this has to stop at some
point. Thus a has an irreducible divisor q  ak.

Theorem In a PID, any non invertible element a different from zero is a product of
irreducible elements. The factorization is essentially unique.

Proof The element a ≠ 0 has an irreducible divisor p1. If q1  a/p1 is invertible, we
are done. Otherwise q1 has an irreducible divisor p2. If q2  q1/p2  a/p1p2 is
invertible, we are done. Otherwise q2 has an irreducible divisor p3. If
q3  q2/p3  a/p1p2p3 is invertible, we are done.....Notice that …q3|q2|q1or
q1 ⊂ q2 ⊂ q3 ⊂… Hence for some k we must have that
qk  a/p1p2p3…pk   is an invertible element, hence a  p1p2p3…pk where
p1 as an associate of p1 is also irreducible.

Assume that
a  p1p2p3…pk  q1q2q3…ql

then k  l and after some re-enumeration one has that pi  qi.
This follows from the fact that irreducible elements are prime. Thus, because

p1|q1q2q3…ql we have that p1|q1 or p1|q2q3…ql. Ifp1|q1 then becasue q1 is
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irreducible one has that p1  q1.Otherwise p1|q2 which leads to p1  q2 or
p1|q3…ql. If p1|q3 then because q3 is irreducible one has that p1  q3. hence, we
must get p1  qj for some j ≤ l. After some re-arrangement of the q′s we can
assume that j  1.We cancel on both sides p1 and continue or finish by induction.
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