Problems and Comments for Section 17, 18, and 21

Problems: 17.6, 17.7, 18.1 (a), (b), (c), 21.11, 21.12
Comments (and synopsis for these sections): You should read 17 and 18 simultaneously. You may stop reading section 18 after the examples for Theorem 18.5.

Add in the definition of a ring homomorphism the condition
iii) $\varphi\left(1_{R}\right)=1_{S}$
because all rings should have a unit.
The kernel of a ring homomorphism $\varphi: R \rightarrow S$ is the set of all elements of R which are mapped to the zero of S. By what we have learned about group homomorphisms, $\operatorname{ker}(\varphi)$ must be a subgroup I of $(R,+,-, 0)$. Moreover, if $\varphi(a)=0$ and if b is any element in R then $\varphi(b a)=\varphi(a b)=0$. That is, if $a \in I$ and if $b \in R$ then $a b \in I$ and $b a \in I$. This is how ideals are defined. If I is an ideal then the group $(R / I,+,-, 0=I)$ is also a ring under "representative wise" multiplications (see Theorem 17.3). The multiplicative unit is the class of 1 , that is $1+I$. If I is the ideal (that is the kernel) for a homomorphism φ then the ring $R / I \cong \operatorname{im}(\varphi)$. That is the homomorphism theorem for rings, Theorem 18.5 If an ideal I contains an element a which has an inverse a^{-1} then $a^{-1} a=1 \in I$, hence $I=R$
If \mathbf{F} is a field and $I \neq 0$ an ideal of \mathbf{F} then $I=\mathbf{F}$.
Assume that R is commutative and R / I is a domain. That is, whenever
$(a+I)(b+I)=a b+I=I$, one has that $(a+I)=I$ or $(b+I)=I$. Thus $a b \in I$ iff $a \in I$ or $b \in I$. Such ideals are called prime ideals. The converse is also easy to see, that is R / I is a domain if I is prime.
Let I be any ideal of the commutative ring R. Let $a \in R$. Then
$J=I+(a)=\{i+a b \mid i \in I, b \in R\}$ is an ideal, actually the smallest ideal that contains I and a.
An ideal M is called maximal if $M \neq R$ and if for any ideal $I \supseteq M$ one has that $I=M$ or $I=R$.
If M is maximal and $a \notin M$ then $M+(a)=R$. Hence $m+a b=1$ for some $m \in M$ and $b \in R$.
Now, $(a+M)$ is not the zero in R / M is equivalent to $a \notin M$. By what we just said, one has some b and m such that $m+a b=1$. But this is: $(a+M)(b+M)=(a b+M)=1+M$. Hence every element $(a+M) \neq 0$ of R / M has an inverse $(b+M)$. We proved:
If M is a maximal ideal of the commutative ring R then R / M is a field.
Now, if R / I is a field then every class $(a+I) \neq I$ has an inverse $(b+I)$. Thus
$(a+I)(b+I)=1+I$. This is $a b-1=i$ for some $i \in I$. We conclude that $I+(a)$ contains 1 if $a \notin I$. Hence I has to be maximal.
A (commutative) domain D is called a principal ideal domain (PID) if every ideal is principal. \mathbb{Z} and polynomial rings, like $\mathbb{R}[x]$ are PId's.
For domains the divisibility relation is all important:

$$
a \mid b \text { iff } a \cdot q=b \text { for some } q \in D \text { iff }(a) \supseteq(b)
$$

Every element $a \in D$ has trivial divisors: a and 1 .
We have that $a \mid b$ and $b \mid a$ iff $b=e a$ and $a=f b$. Hence $a=f e a$ This is $f e=1$ because D is a domain. Hence a and b differ only by an invertible element. In this case we say that a and b are associates and write $a \sim b$. For example, in \mathbb{Z} one has that $a \sim \pm a$ because 1 and -1 are the only elements which have an inverse.
One always has $a \mid 0$, that is with respect to divisibility, 0 is the largest element and because $1 \mid a, 1$ is the smallest element.
An element $q \in D$ is called irreducible if q has only tivial divisors. Trivial divisors of an element a are all $e \sim 1$, that is the invertible elements, and $a^{\prime} \sim a$.
An element $p \in D$ is called prime if whenever $p \mid a b$ one has that $p \mid a$ or $p \mid b$.
Remark A prime element is irreducible.
Proof Assume that $p=a \cdot b$. Because $p \cdot 1=a \cdot b$ we have that $p \mid a \cdot b$. Hence $p \mid a$ or $p \mid b$. On the other hand, $p=a \cdot b$ tells us that $a \mid p$ and $b \mid p$. Thus $a \sim p$ or $b \sim p$.
Theorem In a PID, every irreducible element is prime.
Proof That q is irreducible means that (q) is a maximal ideal. Hence $D /(q)$ is a field, thus a domain. So (q) is a prime ideal and (easy to see), q has to be prime.
Theorem In a PID, every ascending chain $I_{1} \subseteq I_{2} \subseteq \ldots$ of ideals is finite. That is for some k one has that $I_{k}=I_{k+1}=\ldots$
Proof It is quite obvious that the union of an ascending chain of ideals is an ideal. Thus $\bigcup I_{n}=I=(d)$. If $d \in I_{k}$ then all ideals are equal from k on.
Theorem Let a be a non invertible element of the PID D. Then there is some irreducble p which divides a.

Theorem If a is not irreducible then it has a proper divisor a_{1}.Thus $(a) \subset\left(a_{1}\right)$.If a_{1} is irreducible, we are done. Otherwise, a_{1} has a proper divisor a_{2} and we have $\left(a_{1}\right) \subset\left(a_{2}\right)$. If If a_{2} is irreducible, we are done. Otherwise, a_{2} has a proper divisor a_{3} and we have $\left(a_{2}\right) \subset\left(a_{3}\right)$. By the previous theorem, this has to stop at some point. Thus a has an irreducible divisor $q=a_{k}$.

Theorem In a PID, any non invertible element a different from zero is a product of irreducible elements. The factorization is essentially unique.
Proof The element $a \neq 0$ has an irreducible divisor p_{1}. If $q_{1}=a / p_{1}$ is invertible, we are done. Otherwise q_{1} has an irreducible divisor p_{2}. If $q_{2}=q_{1} / p_{2}=a / p_{1} p_{2}$ is invertible, we are done. Otherwise q_{2} has an irreducible divisor p_{3}. If $q_{3}=q_{2} / p_{3}=a / p_{1} p_{2} p_{3}$ is invertible, we are done.....Notice that $\ldots q_{3}\left|q_{2}\right| q_{1}$ or $\left(q_{1}\right) \subset\left(q_{2}\right) \subset\left(q_{3}\right) \subset \ldots$ Hence for some k we must have that $q_{k}=a / p_{1} p_{2} p_{3} \ldots p_{k}=\epsilon$ is an invertible element, hence $a=\left(\epsilon p_{1}\right) p_{2} p_{3} \ldots p_{k}$ where ϵp_{1} as an associate of p_{1} is also irreducible.

Assume that

$$
a=p_{1} p_{2} p_{3} \ldots p_{k}=q_{1} q_{2} q_{3} \ldots q_{1}
$$

then $k=l$ and after some re-enumeration one has that $p_{i} \sim q_{i}$.
This follows from the fact that irreducible elements are prime. Thus, because $p_{1} \mid q_{1}\left(q_{2} q_{3} \ldots q_{l}\right)$ we have that $p_{1} \mid q_{1}$ or $p_{1} \mid q_{2}\left(q_{3} \ldots q_{l}\right)$.If $p_{1} \mid q_{1}$ then becasue q_{1} is
irreducible one has that $p_{1} \sim q_{1}$. Otherwise $p_{1} \mid q_{2}$ which leads to $p_{1} \sim q_{2}$ or $p_{1} \mid q_{3}\left(\ldots q_{l}\right)$. If $p_{1} \mid q_{3}$ then because q_{3} is irreducible one has that $p_{1} \sim q_{3}$. hence, we must get $p_{1} \sim q_{j}$ for some $j \leq l$. After some re-arrangement of the q 's we can assume that $j=1$. We cancel on both sides p_{1} and continue or finish by induction.

