Problems and Comments for Section 17, 18, and 21

 \sim

Problems: 17.6, 17.7, 18.1 (a), (b), (c), 21.11, 21.12

Comments (and synopsis for these sections): You should read 17 and 18 simultaneously. You may stop reading section 18 after the examples for Theorem 18.5.

Add in the definition of a ring homomorphism the condition

iii) $\varphi(1_R) = 1_S$

because all rings should have a unit.

The kernel of a ring homomorphism $\varphi : R \to S$ is the set of all elements of R which are mapped to the zero of S. By what we have learned about group homomorphisms, ker(φ) must be a subgroup I of (R, +, -, 0). Moreover, if $\varphi(a) = 0$ and if b is any element in R then $\varphi(ba) = \varphi(ab) = 0$. That is, if $a \in I$ and if $b \in R$ then $ab \in I$ and $ba \in I$. This is how ideals are defined. If I is an ideal then the group (R/I, +, -, 0 = I) is also a ring under "representative wise" multiplications (see Theorem 17.3). The multiplicative unit is the class of 1, that is 1 + I. If I is the ideal (that is the kernel) for a homomorphism φ then the ring $R/I \cong im(\varphi)$. That is the homomorphism theorem for rings, Theorem 18.5 If an ideal I contains an element a which has an inverse a^{-1} then $a^{-1}a = 1 \in I$, hence I = R

If **F** is a field and $I \neq 0$ an ideal of **F** then $I = \mathbf{F}$.

Assume that R is commutative and R/I is a domain. That is, whenever

(a+I)(b+I) = ab+I = I, one has that (a+I) = I or (b+I) = I. Thus $ab \in I$ iff $a \in I$ or $b \in I$. Such ideals are called *prime* ideals. The converse is also easy to see, that is R/I is a domain if I is prime.

Let *I* be any ideal of the commutative ring *R*. Let $a \in R$. Then

 $J = I + (a) = \{i + ab | i \in I, b \in R\}$ is an ideal, actually the smallest ideal that contains *I* and *a*.

An ideal *M* is called *maximal* if $M \neq R$ and if for any ideal $I \supseteq M$ one has that I = M or I = R.

If *M* is maximal and $a \notin M$ then M + (a) = R. Hence m + ab = 1 for some $m \in M$ and $b \in R$.

Now, (a + M) is not the zero in R/M is equivalent to $a \notin M$. By what we just said, one has some *b* and *m* such that m + ab = 1. But this is: (a + M)(b + M) = (ab + M) = 1 + M. Hence every element $(a + M) \neq 0$ of R/M has an inverse (b + M). We proved:

If M is a maximal ideal of the commutative ring R then R/M is a field.

Now, if R/I is a field then every class $(a + I) \neq I$ has an inverse (b + I). Thus (a + I)(b + I) = 1 + I. This is ab - 1 = i for some $i \in I$. We conclude that I + (a) contains 1 if $a \notin I$. Hence *I* has to be maximal.

A (commutative) domain *D* is called a principal ideal domain (PID) if every ideal is principal. \mathbb{Z} and polynomial rings, like $\mathbb{R}[x]$ are PId's.

For domains the divisibility relation is all important:

 $a|b \text{ iff } a \cdot q = b \text{ for some } q \in D \text{ iff } (a) \supseteq (b)$

Every element $a \in D$ has trivial divisors: a and 1.

We have that a|b and b|a iff b = ea and a = fb. Hence a = fea This is fe = 1 because D is a domain. Hence a and b differ only by an invertible element. In this case we say that a and b are associates and write $a \sim b$. For example, in \mathbb{Z} one has that $a \sim \pm a$ because 1 and -1 are the only elements which have an inverse.

One always has a|0, that is with respect to divisibility, 0 is the largest element and because 1|a, 1 is the smallest element.

An element $q \in D$ is called *irreducible* if q has only tivial divisors. Trivial divisors of an element a are all $e \sim 1$, that is the invertible elements, and $a' \sim a$.

An element $p \in D$ is called *prime* if whenever p|ab one has that p|a or p|b.

- **Remark** A prime element is irreducible.
 - **Proof** Assume that $p = a \cdot b$. Because $p \cdot 1 = a \cdot b$ we have that $p|a \cdot b$. Hence p|a or p|b. On the other hand, $p = a \cdot b$ tells us that a|p and b|p. Thus $a \sim p$ or $b \sim p$.
- **Theorem** In a PID, every irreducible element is prime.
 - **Proof** That q is irreducible means that (q) is a maximal ideal. Hence D/(q) is a field, thus a domain. So (q) is a prime ideal and (easy to see), q has to be prime.
- **Theorem** In a PID, every ascending chain $I_1 \subseteq I_2 \subseteq ...$ of ideals is finite. That is for some k one has that $I_k = I_{k+1} = ...$
 - **Proof** It is quite obvious that the union of an ascending chain of ideals is an ideal. Thus $\bigcup I_n = I = (d)$. If $d \in I_k$ then all ideals are equal from k on.
- **Theorem** Let a be a non invertible element of the PID D. Then there is some irreducble p which divides a.
- **Theorem** If a is not irreducible then it has a proper divisor a_1 . Thus $(a) \subset (a_1)$. If a_1 is irreducible, we are done. Otherwise, a_1 has a proper divisor a_2 and we have $(a_1) \subset (a_2)$. If If a_2 is irreducible, we are done. Otherwise, a_2 has a proper divisor a_3 and we have $(a_2) \subset (a_3)$. By the previous theorem, this has to stop at some point. Thus a has an irreducible divisor $q = a_k$.
- **Theorem** In a PID, any non invertible element a different from zero is a product of irreducible elements. The factorization is essentially unique.

Proof The element $a \neq 0$ has an irreducible divisor p_1 . If $q_1 = a/p_1$ is invertible, we are done. Otherwise q_1 has an irreducible divisor p_2 . If $q_2 = q_1/p_2 = a/p_1p_2$ is invertible, we are done. Otherwise q_2 has an irreducible divisor p_3 . If $q_3 = q_2/p_3 = a/p_1p_2p_3$ is invertible, we are done....Notice that $\dots q_3|q_2|q_1$ or $(q_1) \subset (q_2) \subset (q_3) \subset \dots$ Hence for some k we must have that $q_k = a/p_1p_2p_3 \dots p_k = \epsilon$ is an invertible element, hence $a = (\epsilon p_1)p_2p_3 \dots p_k$ where ϵp_1 as an associate of p_1 is also irreducible.

Assume that

$$a = p_1 p_2 p_3 \dots p_k = q_1 q_2 q_3 \dots q_k$$

then k = l and after some re-enumeration one has that $p_i \sim q_i$.

This follows from the fact that irreducible elements are prime. Thus, because $p_1|q_1(q_2q_3...q_l)$ we have that $p_1|q_1$ or $p_1|q_2(q_3...q_l)$. If $p_1|q_1$ then because q_1 is

irreducible one has that $p_1 \sim q_1$. Otherwise $p_1|q_2$ which leads to $p_1 \sim q_2$ or $p_1|q_3(\ldots q_l)$. If $p_1|q_3$ then because q_3 is irreducible one has that $p_1 \sim q_3$. hence, we must get $p_1 \sim q_j$ for some $j \leq l$. After some re-arrangement of the q's we can assume that j = 1. We cancel on both sides p_1 and continue or finish by induction.