Problems and Comments for Section 17, 18, and 21

~

Problems: 17.6, 17.7, 18.1 (a), (b), (c), 21.11, 21.12

Comments (and synopsis for these sections): You should read 17 and 18
simultaneously. You may stop reading section 18 after the examples for Theorem
18.5.

Add in the definition of a ring homomorphism the condition

i) p(1r) = 1s

because all rings should have a unit.

The kernel of a ring homomorphism ¢ : R - S is the set of all elements of R which are
mapped to the zero of S. By what we have learned about group homomorphisms,
ker(¢p) must be a subgroup I of (R,+,—,0). Moreover, if p(a) = 0 and if b is any element
in R then ¢(ba) = p(ab) = 0.Thatis,ifa € l andifb € Rthenab € | and ba € I. This is
how ideals are defined. If | is an ideal then the group (R/I,+,—,0 = 1) is also a ring
under "representative wise" multiplications (see Theorem 17.3). The multiplicative unit
is the class of 1, thatis 1+ 1. If | is the ideal (that is the kernel) for a homomorphism ¢
then the ring R/l = im(¢). That is the homomorphism theorem for rings, Theorem 18.5
If an ideal | contains an element a which has an inverse a~! thena™a = 1 € |, hence

| =R

If Fis afield and | = 0 an ideal of F then | = F.

Assume that R is commutative and R/l is a domain. That is, whenever
@+hm+Il)=ab+1=1onehasthat(a+1)=1or(b+1)=1 Thusab e liffaelor
b € I. Such ideals are called prime ideals. The converse is also easy to see, that is R/I
is a domain if I is prime.

Let | be any ideal of the commutative ring R.Leta € R. Then

J=1+(a) =<{i+abji € I,b € R} is an ideal, actually the smallest ideal that contains I
and a.

An ideal M is called maximal if M = R and if for any ideal | = M one has that | = M or
| = R.

If M is maximal and a ¢ M then M + (a) = R. Hence m + ab = 1 for some m € M and

b eR.

Now, (a+ M) is not the zero in R/M is equivalent to a ¢ M. By what we just said, one
has some b and m such that m+ab = 1. But thisis: (a+M)(b+ M) = (ab+ M) = 1+ M.
Hence every element (a+ M) # 0 of R/M has an inverse (b + M). We proved:

If M is a maximal ideal of the commutative ring R then R/M is a field.

Now, if R/l is a field then every class (a+ 1) # | has an inverse (b + I). Thus
(@+hm+1) =1+1 Thisisab-1 =ifor somei € I.We conclude that | + (a) contains
lifa ¢ I. Hence I has to be maximal.

A (commutative) domain D is called a principal ideal domain (PID) if every ideal is
principal. Z and polynomial rings, like R[x] are PId’s.

For domains the divisibility relation is all important:

albiffa-q = bfor some q € D iff (a) = (b)



Every element a € D has trivial divisors: a and 1.

We have that alb and bja iff b = ea and a = fb. Hence a = fea This is fe = 1 because D
is a domain. Hence a and b differ only by an invertible element. In this case we say
that a and b are associates and write a ~ b. For example, in Z one has that a ~ +a
because 1 and -1 are the only elements which have an inverse.

One always has a0, that is with respect to divisibility, 0 is the largest element and
because 1|a, 1 is the smallest element.

An element q € D is called irreducible if g has only tivial divisors. Trivial divisors of an
element a are all e ~ 1,that is the invertible elements, and a' ~ a.

An element p € D is called prime if whenever p|ab one has that p|a or p|b.

Remark A prime element is irreducible.

Proof Assumethatp = a-b. Because p -1 = a - b we have that p|a - b. Hence p|a or
p|b. On the other hand, p = a - b tells us that a|p and b|p. Thusa ~ porb ~ p.

Theorem InaPID, every irreducible element is prime.

Proof That g is irreducible means that (q) is a maximal ideal. Hence D/(q) is a field,
thus a domain. So (q) is a prime ideal and (easy to see), g has to be prime.

Theorem InaPID, every ascending chain I; < I, ... of ideals is finite. That is for
some k one has that Iy = Iy =...

Proof Itis quite obvious that the union of an ascending chain of ideals is an ideal.
Thus | J1n = 1= (d). Ifd e I« then all ideals are equal from k on.

Theorem Let a be a non invertible element of the PID D. Then there is some irreducble p
which divides a.

Theorem If ais not irreducible then it has a proper divisor a;. Thus (a) < (az). If azis
irreducible, we are done. Otherwise, a; has a proper divisor a, and we have
(a1) < (a2). If If a, is irreducible, we are done. Otherwise, a, has a proper divisor
as and we have (a;) < (as). By the previous theorem, this has to stop at some
point. Thus a has an irreducible divisor q = ax.

Theorem In a PID, any non invertible element a different from zero is a product of
irreducible elements. The factorization is essentially unique.

Proof The element a + 0 has an irreducible divisor p1.If g1 = a/p; is invertible, we
are done. Otherwise g1 has an irreducible divisor p2. If 2 = qi/p2 = alpip2 is
invertible, we are done. Otherwise g2 has an irreducible divisor ps. If
Qs = (2/ps = alp1p2ps is invertible, we are done.....Notice that ... qs|q2|q;0r
(1) < (g2) < (g3) <... Hence for some k we must have that
gk = a/p1p2Ps... Pk = € is an invertible element, hence a = (ep1)p2pPs... Pk Where
€p1 as an associate of p; is also irreducible.

Assume that

a = P1P2Ps... Pk = J10203...q
then k = | and after some re-enumeration one has that p; ~ q;.

This follows from the fact that irreducible elements are prime. Thus, because
P1]91(d29s... 1) we have that p1|qa or p1|g2(Qs...qi). Ifp1|qa then becasue q; is



irreducible one has that p1 ~ q1.Otherwise p1|q2 which leads to p1 ~ g2 or
p1|gs(...qr). If p1|gs then because qgs is irreducible one has that p1 ~ gs. hence, we
must get p1 ~ g;j for some j < I. After some re-arrangement of the g's we can
assume that j = 1. We cancel on both sides p; and continue or finish by induction.



