1 Problems and Comments For Section 2

Problems: 2.1, 2.5, 2.7, 2.8
Problem 2.13 requires some thought. It is optional.
A product term is defined recursively as follows:

1. $p=a$ is a product where a is any element of the group \mathbf{G}.
2. If p_{1} and p_{2} are products, then $p=\left(p_{1} \cdot p_{2}\right)$ is a product.
3. All products are obtained that way.

For any two elements a, b one has that $p=(a \cdot b)$ is a product. For three elements a, b, c there are two possibilities to form a product of these elements without changing the order: $((a \cdot(b \cdot c))$ and $((a \cdot b) \cdot c)$. By associativity, both products have the same value.

The complexity of a product is the number of dots in it. $p=a$ has complexity 0 . If p has complexity n and q complexity m then $(p \cdot q)$ has complexity $n+m+1$. A product is a string of parenthesis (left and right), elements of \mathbf{G} and dots. However such strings have to be constructed according to the rules 1 . and 2. They have to be well-formed.
If, read from left to right, the elements in a product are $a_{1}, a_{2}, \ldots, a_{n}$ then the product $p=p\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ has complexity $n-1$.Given a list $a_{1}, a_{2}, \ldots, a_{n}$ of elements, the normal product $n\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of these elements is defined recursively by

1. $n\left(a_{n}\right)=a_{n}$
2. $n\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{1} \cdot n\left(a_{2}, \ldots, a_{n}\right)\right)$

The claim of 2.13 now is

$$
p\left(a_{1}, \ldots, a_{n}\right)=n\left(a_{1}, \ldots, a_{n}\right)
$$

for any product $p\left(a_{1}, \ldots, a_{n}\right)$. Prove this by induction over the complexity of the product. 2.12 is a preparation for the general proof. Notice that for 2.12 and 2.13 , only associativity is used.

Question: Why did I say "dots", and not products, in the definition of complexity?

Comments

A group is most often defined as an algebraic system with three operations: $\cdot,^{-1}, e$. Here \cdot is binary, ${ }^{-1}$ is unary and e is nullary. The axioms for a group then are all equations:

1. $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
2. $a \cdot e=e \cdot a=a$
3. $a \cdot a^{-1}=a^{-1} \cdot a=e$

An algebraic system $\mathbf{A}=(A, \cdot)$ with only one binary associative operation is called a semi group. A semi group with an identity (or unit) is called a monoid. Thus a group is a monoid where every element has an inverse. Notice that under this definition, a group cannot be empty. It must at least have one element, the identity.

With this convention, the notation for the additive group of integers is $\mathbb{Z}=$ $(Z,+,-, 0)$. Here addition is the binary group operation. The multiplicative group of non-zero real numbers is $\mathbb{R}^{*}=\left(R \backslash\{0\}, \cdot,^{-1}, 1\right)$.

For any set $S, \operatorname{Map}(S)=\{f \mid f: S \rightarrow S\}$ is the set of maps f from S to S. It is a semigroup. Here the operation is composition of maps. The identity map $i d: S \rightarrow S, x \mapsto x$ is the identity.

$$
\operatorname{Map}(S)=(\{f \mid f: S \rightarrow S\}, \circ, i d)
$$

is the prototype of a monoid. It is not a group unless S has only one element.

