Problems and Comments For Section 3

Problems: 3.1, 3.4, 3.9, 3.10, 3.11, 3.12

Comments: For the multiplicative monoid of $n \times n$-matrices one has that a left-inverse of a matrix A is automatically a right-inverse, thus an inverse.
This is proven in linear algebra and related to the
Theorem The linear homogeneous system $A X=0$ of n equations in n unknowns has only the trivial solution if and only if $A X=B$ has for every B (exactly) one solution. Here A is an $n \times n$ matrix and X and B are $n \times 1$ matrices.
For the monoid of maps on a set X one has that the map $f: S \rightarrow S$ has a left inverse $g: S \rightarrow S$, that is $g \circ f=i d_{S}$ for some g, if and only if f is injective, that is $f\left(x_{1}\right)=f\left(x_{2}\right)$ iff $x_{1}=x_{2}$. And f has a right inverse $h: S \rightarrow S$, that is $f \circ h=i d_{S}$ for some h, if and only if f is surjective, that is for every $y \in S$ there is some x such that $f(x)=y$. It now follows::

Theorem If a map $f: S \rightarrow S$ has a left as well a right inverse, then it has a unique inverse, which is the inverse map f^{-1} off

$$
f(x)=y \Leftrightarrow f^{-1}(y)=x
$$

For maps on finite sets S one has that $f: S \rightarrow S$ is injective if and only f is surjective. Why?
Exercise Let $S=\mathbb{N}$ and $f: n \mapsto 2 n$. Find a left inverse g and demonstrate that it is not a right inverse and that there are many left inverses for f. Now let $f: n \mapsto d(n)$, where $d(n)$ is the number of prime divisors of n. Find a right inverse g and demonstrate that it is not a left inverse and that there are many right inverses for f.

