Problems and Comments For Section 4

Problems: 4.4, 4.9, 4.10, 4.15, 4.17,

Comments: For integers m and n we define that m divides n, written $m \mid n$, in case that there is some k such that $k \cdot m=n$. We have,

1. $1|n ; n| 0$.
2. $n \mid m$ and $m \mid n$ if and only if $n= \pm m$.
3. If $a \mid b$ and $a \mid c$ then $a \mid(b+c)$

Instead of saying that a divides b we also say that b is a multiple of a.

The greatest common divisor (g.c.d.) $d=(m, n)$ of m and n is defined by

1. $\quad d \mid m$ and $d \mid n$.
2. If $e \mid m$ and $e \mid n$ the $e \mid d$.

The g.c.d. is unique up to its sign. After you have read section 4, you should be able to prove the following
Proposition The g.c.d d of m and n is the only common divisor of m and n which is of the form $d=a m+b n$.
The lowest common multiple (I.c.m.) $u=[m, n]$ of m and n is defined by

1. $m \mid u$ and $n \mid u$.
2. If $m \mid v$ and $n \mid v$ then $u \mid v$.

The I.c.m. is unique up to its sign.
A partial order \leq on a set P is a reflexive, anti-symmetric and transitive relation. That is, for all $a, b, c \in P$ we have that:

1. $a \leq a$.
2. If $a \leq b$ and $b \leq a$ then $a=b$.
3. If $a \leq b$ and $b \leq c$ then $a \leq c$.
(P, \leq) is called a poset, or partially ordered set. A poset is called a totally
ordered set, or a chain, if in addition we have
4. $a \leq b$ or $b \leq a$.

Divisibility restricted to the non-negative integers is a partial order. All real numbers form with respect to ordinary ordering a chain.
An element $u \in P$ is called an upper bound of the subset S of P if $u \geq s$ holds for all $s \in S$. An upper bound for S that belongs to S is called the maximum of S. Prove that a set S can have at most one maximum. Lower bounds and minima are similarly defined.

A subset S of the poset P is bounded above if it admits an upper bound. A bounded subset is one that admits an upper as well as a lower bound. For the open interval $(0,1)$ of the totally ordered set (\mathbb{R}, \leq) of real numbers, every number $r \geq 1$ is an upper
bound and 1 is the least upper bound. Similarly, 0 is the largest lower bound for $(0,1)$.
If we restrict divisibility to non-negative integers, then any common divisor of a and b is a lower bound of S and the greatest common divisor is the largest lower bound. Similarly, any common multiple of a and b is an upper bound for S and the lowest common multiple is the least upper bound.

The least upper bound of a subset S of P is called the supremum or join of S :

$$
\sup (S)=\bigvee\{s \mid s \in S\}
$$

The largest lower bound of a subset S of P is called the infimum or meet of S :

$$
\inf (S)=\bigwedge\{s \mid s \in S\}
$$

A partially ordered set (L, \leq) is called a lattice if every two-element subset $S=\{a, b\}$ of L has a join, denoted as $a \vee b$ and meet, denoted as $a \wedge b$. We have that the set $\left(\mathbb{N}^{+}, \mid\right)$ of non-negative numbers together with divisibility is a lattice; 0 is the maximum of this lattice where 1 is the minimum. (This is the only case where $a \mid b$ but $a>b$)

A complete lattice is a bounded partially ordered set where every non-empty subset has an infimum as well as a supremum. The power set of a set X is a complete lattice under set inclusion \subseteq : For any system \mathbf{S} of subsets of X the join is the union of the sets in \mathbf{S} while the meet is the intersection:

$$
\bigvee s=\bigcup s, \bigwedge s=\bigcap s
$$

If $\mathbf{S}=\{A, B\}$ then the intersection $D=A \cap B$ of $\mathbf{S}=\{A, B\}$ is the largest subset of X, which is contained in A and B. Similarly, the union $U=A \cup B$ is the smallest subset of X which contains A and B.

In a complete lattice L, the infimum of $\mathbf{S}=\emptyset$ is defined as the maximum of L while the supremum of $\mathbf{S}=\emptyset$ is defined as the minimum of L. With this convention in mind, we can drop boundedness in the definition of a complete lattice. In particular, for the powerset lattice $(\mathbf{P}(X), \subseteq)$ of a set X, we define:

$$
\bigvee \emptyset=\emptyset, \bigwedge \emptyset=X
$$

The following is not very difficult to prove:
Theorem A bounded poset (P, \leq) is already a complete lattice if every subset has an infimum.

