Math 6397 Riemannian Geometry, Hodge Theory on Riemannian Manifolds By Min Ru, University of Houston

1 Hodge Theory on Riemannian Manifolds

• Global inner product for differential forms Let (M, g) be a Riemannian manifold. In a local coordinate $(U; x^i)$, let

$$\eta = \sqrt{G} dx^1 \wedge \dots \wedge dx^m.$$

 η in fact is a global *m*-form, called the volume form of M. We first define the inner product for differential forms. Let ϕ, ψ are two *r*-forms. Let (U, x^i) be a local coordinate. We write

$$\phi|_U = \frac{1}{r!} \phi_{i_1 \cdots i_r} dx^{i_1} \wedge \cdots \wedge dx^{i_r},$$

$$\psi|_U = \frac{1}{r!} \psi_{j_1 \cdots j_r} dx^{j_1} \wedge \cdots \wedge dx^{j_r}.$$

We define, the inner product <~,~> of ϕ,ψ as

$$\langle \phi, \psi \rangle = \frac{1}{r!} \phi^{i_1 \cdots i_r} \psi_{i_1 \cdots i_r} = \sum_{i_1 < \cdots < i_r} \phi^{i_1 \cdots i_r} \psi_{i_1 \cdots i_r},$$

where $\phi^{i_1\cdots i_r} = g^{i_1j_1}\cdots g^{i_rj_r}\phi_{j_1\cdots j_r}$. It is important to note that the definition is independent of the choice of local coordinates. We also have $\langle \phi, \phi \rangle \geq 0$ and $\langle \phi, \phi \rangle = 0$ if and only if $\phi = 0$.

We now define the **global** inner product of ϕ, ψ as

$$(\phi,\psi) = \int_M \langle \phi,\psi \rangle \eta$$

where η is the volume form of M.

• The exterior differential operator d and its co-operator Denote by $\Lambda^{r}(M)$ the set of smooth r-forms on M. Let (,) be the (global) inner product defined above. As the formal adjoint operator of the exterior differential operator d, the codifferential operator $\delta : \Lambda^{r+1}(M) \to \Lambda^{r}(M)$ is defined by, for every $\phi \in \Lambda^{r}(M), \psi \in \Lambda^{r+1}(M)$,

$$(d\phi,\psi) = (\phi,\delta\psi).$$

• Hodge-star operator. In order to find the expression of the codifferential operator δ , we introduce the Hodge-star operator *, which is an isomorphism $* : \Lambda^r(M) \to \Lambda^{m-r}(M)$ defined by, for every $\phi, \eta \in \Lambda^r(M)$,

$$\phi \wedge (*\psi) = <\phi, \psi > \eta.$$

Let ω be a r-form. Let (U, x^i) be a local coordinate. We write

$$\omega|_U = \frac{1}{r!} \sum_{i_1, \dots, i_r} a_{i_1 \cdots i_r} dx^{i_1} \wedge \dots \wedge dx^{i_r}.$$

Then

$$*\omega = \frac{\sqrt{G}}{r!(m-r)!} \delta^{1\cdots m}_{i_1\cdots i_m} a^{i_1\cdots i_r} dx^{i_{r+1}} \wedge \cdots \wedge dx^{i_m},$$

where

$$a^{i_1\cdots i_r} = g^{i_1j_1}\cdots g^{i_rj_r}a_{j_1\cdots j_r},$$

and $\delta_{i_1\cdots i_m}^{1\cdots m}$ is the Levi-Civita permutation symbol, i.e. $\delta_{i_1\cdots i_m}^{12\cdots m} = 1$ if $(i_1\cdots i_m)$ is an even permutation of $(12\ldots m)$, $\delta_{i_1\cdots i_m}^{12\cdots m} = -1$ if $(i_1\cdots i_m)$ is an odd permutation of $(12\ldots m)$, $\delta_{i_1\cdots i_m}^{12\cdots m} = 0$ otherwise. It can be shown that $*\omega$ is is independent of the choice of local coordinates. So $*\omega$ is a globally defined (m-r)-form (it can be regarded as an alternative definition). The operator * which sends r-forms to (m-r)-forms.

It has the following properties, for any *r*-forms ϕ and ψ :

- (1) $\phi \wedge *\psi = \langle \phi, \psi \rangle \eta$,
- (2) $*\eta = 1, *1 = \eta,$

$$(3) * (*\phi) = (-1)^{r(m+1)}\phi,$$

(4)
$$(*\phi, *\psi) = (\phi, \psi).$$

• Expression of the codifferential operator δ in terms of the Hodge-Star operator. Define $\delta = (-1)^{mr+1} * \circ d \circ * : \Lambda^{r+1}(M) \rightarrow \Lambda^r(M)$, where $\Lambda^r(M)$ is the set of smooth *r*-forms, is called the *codif*-ferential operator. It is easy to verify that $\delta \circ \delta = 0$. We also have the

following very important property for δ : For $\phi \in \Lambda^r(M), \psi \in \Lambda^{r+1}(M)$, we have

$$(d\phi,\psi) = (\phi,\delta\psi)_{\phi}$$

i.e. δ is conjugate to d. So $(-1)^{mr+1} * \circ d \circ *$ is the expression of the odifferential operator δ .

Proof. Note

$$d(\phi \wedge *\psi) = d\phi \wedge *\psi + (-1)^r \phi \wedge d(*\psi)$$

= $d\phi \wedge *\psi + (-1)^r (-1)^{mr+r} \phi \wedge *(*d*\psi)$
= $d\phi \wedge *\psi - \phi \wedge *\delta\psi.$

Then desired identity is obtained by applying the Stokes theorem.

• Hodge-Laplace operator. We define the Hodge-Laplace operator $\tilde{\Delta} = d\delta + \delta d : \Lambda^r(M) \to \Lambda^r(M).$

For $f \in C^{\infty}(M)$, then $\delta(f) = 0$, so

$$\tilde{\Delta}(f) = \delta(df) = -*d * df, \quad \tilde{\Delta}f\eta = *\tilde{\Delta}f = -d * df.$$

Let (U, x^i) be a local coordinate, then

$$df|_U = \frac{\partial f}{\partial x^i} dx^i,$$

$$*df|_{U} = \frac{\sqrt{G}}{(m-1)!} \delta^{1\cdots m}_{i_{1}\cdots i_{m}} g^{i_{1}j} \frac{\partial f}{\partial x^{j}} dx^{i_{2}} \wedge \cdots \wedge dx^{i_{m}}$$
$$= \sqrt{G} \sum_{i=1}^{m} (-1)^{i+1} g^{ij} \frac{\partial f}{\partial x^{j}} dx^{1} \wedge \cdots \wedge d\hat{x}^{i} \wedge \cdots \wedge dx^{m}.$$

Hence

$$\begin{split} (\tilde{\bigtriangleup}f)\eta|_U &= -d(*df)|_U = -\frac{\partial}{\partial x^i} \left(\sqrt{G}g^{ij}\frac{\partial f}{\partial x^j}\right) dx^1 \wedge \dots \wedge dx^m \\ &= -\bigtriangleup f\eta|_U. \end{split}$$

This tells us

$$\tilde{\bigtriangleup}f = -\bigtriangleup f.$$

So $-\tilde{\bigtriangleup}$ when acts on $C^{\infty}(M)$ is the Beltrami-Laplace operator \bigtriangleup .

• Hodge Theory. In this section, we denote the Hodge-Laplace operator by \triangle . Let $\mathcal{H}^r(M) = ker \triangle$ and $\mathcal{H} = \bigoplus \mathcal{H}^r(M)$. Let $\wedge^*(M) = \bigoplus_{r=0}^{\infty} \Lambda^r(M)$.

The Hodge theorem Let (M, g) be an n-dimensional compact oriented Riemannian manifold without boundary. For each integer $0 \leq r \leq n$, $\mathcal{H}^r(M)$ is finite dimensional, and there exists a bounded linear operator $G : \bigwedge^*(M) \to \bigwedge^*(M)$ (called Green's operator) such that

- (a) $kerG = \mathcal{H};$
- (b) G keeps types, and commute with the operators *, d and δ ;

(c) G is a compact operator, i.e. the closure of image of an arbitrary bounded subset of $\bigwedge^*(M)$ under G is compact;

(d) $I = \mathcal{H} + \Delta \circ G$, where I is the identity operator, and \mathcal{H} is the orthogonal projection from $\wedge^*(M)$ to \mathcal{H} with respect to the inner product (,).

From the Hodge theorem, since $I = \mathcal{H} + \triangle \circ G$, we can write (called the Hodge-decomposition)

Corollary(Hodge-decomposition)

$$\begin{aligned} \Lambda^{r}(M) &= & \triangle(\Lambda^{r}(M)) \oplus \mathcal{H}^{r}(M) \\ &= & d\delta\Lambda^{r}(M) \oplus \delta d\Lambda^{r}(M) \oplus \mathcal{H}^{r}(M) \\ &= & d\Lambda^{r-1}(M) \oplus \delta\Lambda^{r+1}(M) \oplus \mathcal{H}^{r}(M). \end{aligned}$$

To prove this theorem, basically we need to show tow things: (1): \mathcal{H} is a finite dimensional vector space, (2): Write $\wedge^*(M) = \mathcal{H} \oplus \mathcal{H}^{\perp}$, where \mathcal{H}^{\perp} is the orthogonal complement of \mathcal{H} with respect to (,), we need to show that $\Delta : \mathcal{H}^{\perp} \to \mathcal{H}^{\perp}$ and Δ is one-to-one and onto. (note that: for every $\phi \in \wedge^*(M), \psi \in \mathcal{H}, (\Delta \phi, \psi) = (\phi, \Delta \psi) = 0$, so $\Delta \phi \in \mathcal{H}^{\perp}$. Hence $\Delta : \mathcal{H}^{\perp} \to \mathcal{H}^{\perp}$). Once (1) and (2) are proved, then we take $G|_{\mathcal{H}} = 0$, and $G|_{\mathcal{H}^{\perp}} = \Delta^{-1}$. This will prove the Hodge theorem. To do so, we first note that the operator \triangle is positive (i.e. its eigenvalues are all positive). In fact, write $P = d + \delta$. Then it is easy to verify that both P are \triangle are self-dual, and $\triangle = P^2$. Hence

$$(\triangle \phi, \phi) = (P\phi, P\phi) = (d\phi, d\phi) + (\delta\phi, \delta\phi) \ge 0.$$

So \triangle is an elliptic self-adjoint operator. We therefore use the "theory of elliptic (self-adjoint) differential operator". To do so, we need first introduce the concept of "Sobolov space".

Let s be a nonnegative integer. Define the inner product $(,)_s$ on $\wedge^*(M)$ as follows: for every $f_1, f_2 \in \wedge^*(M)$, define

$$(f_1, f_2)_s = \sum_{k=0}^s \int_M \langle \bigtriangledown^k f_1, \bigtriangledown^k f_2 \rangle *1,$$

 $\|f_1\|_s^2 = (f_1, f_1)_s,$

where *1 is the volume form on M. Let $H_s(M)$ be the completion of $\bigwedge^*(M)$ with respect to the Sobolov norm $\| \|_s$, which is called the 'Sobolov space.

We use the following three facts (proofs are omitted):

• Garding's inequality: There exist constant $c_1, c_2 > 0$, such that for every $f \in \bigwedge^*(M)$, we have

$$(\triangle f, f) \ge c_1 ||f||_1^2 - c_2 ||f||_0^2.$$

Remark: This is a variant of so-called *Bocher technique*.

To state the second fact, we introduce the concept of weak derivative: Write $P = d + \delta$ and $\Delta = P^2$. For $\phi \in H_s(M)$ and $\psi \in H_t(M)$, we say $P\phi = \psi$ (weak), if for every test form $f \in \bigwedge^*(M)$, we have $(\phi, Pf) = (\psi, f)$. In similar way, $\Delta \phi = \psi$ (weak) is defined. If $\phi \in$ $H_s(M), \psi \in H_t(M)$, and $P\phi = \psi$ (weak), we denote it by $P\phi \in H_t(M)$.

- Regularity of the operator P: If $\phi \in H_0(M)$ and $P\phi \in \bigwedge^*(M)$, then $\phi \in \bigwedge^*(M)$.
- Rellich Lemma: If $\{\phi_i\} \subset \bigwedge^*(M)$ is bounded in the $|| ||_1$, then it has a Cauchy subsequence with respect to the norm $|| ||_0$.

The above theorem about the **Regularity of the operator** P implies the following lemma

• The weak form of the Wyle lemma: If $\phi \in H_1(M)$, and $\Delta \phi = \psi(weak)$ with $\psi \in \bigwedge^*(M)$, then $\phi \in \bigwedge^*(M)$.

Proof of the Hodge Theorem. We first prove that \mathcal{H} is a finite dimensional vector space. If not, there exists an infinite orthonormal set $\{\omega_1, \ldots, \omega_n, \cdots\}$. By Garding's inequality, there exist constants c_1, c_2 such that for all i, we have

$$\|\omega_i\|_1^2 \le \frac{1}{c_1} \{(\Delta \omega_i, \omega_i) + c_2 \|\omega_i\|_0^2\} = \frac{c_2}{c_1}.$$

By Rellich Lemma, $\{\omega_i\}$ must have a Cauchy subsequence with respect to the norm $\| \|_0$, which is impossible, since $\|\omega_i - \omega_j\|_0^2 = 2$ for $i \neq j$. This proves that \mathcal{H} is a finite dimensional vector space.

Next, write

$$\bigwedge^*(M) = \mathcal{H} \oplus \mathcal{H}^{\perp},$$

where \mathcal{H}^{\perp} is the orthogonal complement of \mathcal{H} with respect to (,). We now prove a simpler version of Garding's inequality:

Garding's Lemma there exists a positive constant c_0 such that for all $f \in \mathcal{H}^{\perp}$, we have

$$\|f\|_1^2 \le c_0(\triangle f, f).$$

Proof. If not, there exists a sequence $f_i \in \mathcal{H}^{\perp}$ with $||f_i||_1 = 1$ and $(\Delta f_i, f_i) \to 0$. From Rellich lemma, we assume, WLOG, that f_i is

convergent with respect to $|| ||_0$, i.e. there exists $F \in H_0(M)$ such that $\lim_{i\to+\infty} ||F - f_i||_0 = 0$. We claim that F = 0. In fact, from above, $(\Delta f_i, f_i) = ||Pf_i||_0^2 \to 0$, hence for every $\phi \in \Lambda^*(M)$,

$$(F, P\phi) = \lim_{i \to +\infty} (f_i, P\phi) = \lim_{i \to +\infty} (Pf_i - \phi) = 0.$$

Hence PF = 0 (weak). From the regularity of P, we have $F \in \bigwedge^*(M)$. Hence

$$\triangle F = P(PF) = 0,$$

so $F \in \mathcal{H}$. Also, since $f_i \in \mathcal{H}^{\perp}$, we have, for every $\phi \in \mathcal{H}$,

$$(F,\phi) = \lim_{i \to +\infty} (f_i,\phi) = 0,$$

so $F \in \mathcal{H}^{\perp}$. Thus $F \in \mathcal{H} \cap \mathcal{H}^{\perp}$. This implies that F = 0. This means that $\lim_{i \to +\infty} ||f_i||_0 = 0$. Now, by the Garding inequality, There exist constant $c_1, c_2 > 0$, such that

$$(\Delta f_i, f_i) \ge c_1 \|f_i\|_1^2 - c_2 \|f_i\|_0^2.$$

Because, from above, both $(\Delta f_i, f_i)$ and $||f_i||_0^2$ converge to zero, so $\lim_{i\to+\infty} ||f_i||_1 = 0$, which contradicts the assumption that $||f_i||_1 = 1$. This proves Garding's lemma.

We now prove that $\triangle : \mathcal{H}^{\perp} \to \mathcal{H}^{\perp}$ and \triangle is one-to-one and onto.

First we show that $\triangle : \mathcal{H}^{\perp} \subset \mathcal{H}^{\perp}$. In fact, for every $\phi \in \wedge^*(M), \psi \in \mathcal{H}$,

$$(\triangle \phi, \psi) = (\phi, \triangle \psi) = 0,$$

so $\Delta \phi \in \mathcal{H}^{\perp}$. To show Δ is one-to-one, let $\phi_1, \phi_2 \in \mathcal{H}^{\perp}$, and assume that $\Delta \phi_1 = \Delta \phi_2$. Then, from one hand, $\phi_1 - \phi_2 \in \mathcal{H}^{\perp}$. On the other hand, since $\Delta(\phi_1 - \phi_2) = 0$, $\phi_1 - \phi_2 \in \mathcal{H}$. Hence $\phi_1 = \phi_2$. It remains to show that Δ is onto. i.e. for every $f \in \mathcal{H}^{\perp}$, there exists $\phi \in \mathcal{H}^{\perp}$ such that $\Delta \phi = f$. This gets down to solve the differential equation $\Delta \phi = f$ (with unknown ϕ). Let *B* be the closure of \mathcal{H}^{\perp} in $H_1(M)$. From Wyle's theorem, we only need to solve $\Delta \phi = f$ in the weak sense, i.e. there exists $\phi \in B$ such that, for every $g \in \Lambda^*(M)$,

$$(\phi, \triangle g) = (f, g)$$

Since $\wedge^*(M) = \mathcal{H} \oplus \mathcal{H}^{\perp}$, we can write $g = g_1 + g_2$ where $g_1 \in \mathcal{H}, g_2 \in \mathcal{H}^{\perp}$. So the above identity is equivalent to every $g_2 \in \mathcal{H}^{\perp}$,

$$(\phi, \triangle g_2) = (f, g_2).$$

So the proof is reduced to the following statement: for every $f \in \mathcal{H}^{\perp}$, there exists $\phi \in B$ such that, for every $g \in \mathcal{H}^{\perp}$,

$$(\phi, \triangle g) = (f, g).$$

We now use the **Riesz representation** theorem to prove this statement. In fact, for every $\phi, \psi \in \mathcal{H}^{\perp}$, define $[\phi, \psi] = (\phi, \Delta \psi)$, and consider the linear transformation $L : B \to \mathbf{R}$ defined by l(g) = (f, g)for every $g \in B$. Our goal is to show that we can extend [,] to B such that l is continuous with respect to [,] (or bounded). Then by **Riesz representation** theorem, there exists $\phi \in B$ such that, for every $g \in B$ (in particular for $g \in \mathcal{H}^{\perp}$),

$$l(g) = [\phi, g]$$

This will prove our statement. To extend [,], we compare [,] with $(,)_1$. From definition, [,] is bilinar. From Garding's inequality, for every $\phi \in \mathcal{H}^{\perp}$,

$$[\phi, \phi] = (\phi, \triangle \phi) \ge \frac{1}{c_0} \|\phi\|_1^2.$$

On the other hand,

$$[\phi,\phi] = (\phi, \triangle \phi) = \|P\phi\|_0.$$

By direct verification, we have, for every $\phi \in \wedge^*(M)$,

$$\|P\phi\|_0^2 \le c \|\phi\|_1^2.$$

Hence

$$[\phi,\phi] \le c \|\phi\|_1^2.$$

So [,] and $(,)_1$ are equivalent on \mathcal{H}^{\perp} . So there exists an unique continuation on B, and for every $g \in B$, we have

$$[g,g] \ge \frac{1}{c_0} \|g\|_1^2.$$

To show that l is continuous with respect to [,] (or bounded), we notice that

$$|l(g)| = |(f,g)| \le ||f||_0 ||g||_0 \le ||f||_0 ||g||_1 \le \sqrt{c_0} ||f||_0 \sqrt{[g,g]}.$$

So the claim is proved. This finishes the proof that \triangle is onto.

To prove Hodge's theorem, since, from above, $\Delta : \mathcal{H}^{\perp} \to \mathcal{H}^{\perp}$ is one-toone and onto, we let $G : \Lambda^*(M) \to \Lambda^*(M)$ be defined as follows: $G|_{\mathcal{H}} = 0$, and $G|_{\mathcal{H}^{\perp}} = \Delta^{-1}$. Then we see that ker $G = \mathcal{H}$ and $I = \mathcal{H} + \Delta \circ G$. The rest of properties are also easy to verify.

This finishes the proof.

• Application of the Hodge Theory. Let M be a compact manifold. Denote by $\Lambda^{r}(M)$ the set of all r-forms on M. Clearly $\Lambda^{0}(M)$ is the set of all differential functions on M. By the rule of the exterior multiplication, we see that $0 \le r \le n$.

The exterior differential operator is a map $d : \Lambda^{r}(M) \to \Lambda^{r+1}(M)$, which satisfies conditions:

- (i) d is **R**-linear;
- (ii) For $f \in \Lambda^0(M)$, df is the usual differential of f, and d(df) = 0;

(iii) $d(\phi \wedge \psi) = d\phi \wedge \psi + (-1)^r \phi \wedge d\psi$ for any $\phi \in \Lambda^r(M)$ and any ψ .

There are three important properties for d: (a) $d^2 = 0$ (called the Poincare lemme), (b) For $\omega \in \Lambda^1(M)$ and $X, Y \in \Gamma(TM)$, we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

(c) If $F: M \to N$, then $F^* \circ d = d \circ F^*$.

A differential r-form $\phi \in \Lambda^r(M)$ is said to be *closed* if $d\theta = 0$, and $\phi \in \Lambda^r(M)$ is said to be *exact* if there exists $\eta \in \Lambda^{r-1}(M)$ such that $\phi = d\eta$. Since $d \circ d = 0$, we know that every exact form is also closed. Let $Z^r(M, \mathbf{R})$ denote the set of all (smooth) closed rforms on

M, and let $B^r(M, \mathbf{R})$ denote the set of all (smooth) exact rforms on M. Then $B^r(M, \mathbf{R}) \subset Z^r(M, \mathbf{R})$ which allows us to form the quotient space $H^r(M, \mathbf{R}) := Z^r(M, \mathbf{R})/B^r(M, \mathbf{R})$, called the *deRham cohomology group* of dimension r. Set

 $H^*(M, \mathbf{R}) = H^0(M, \mathbf{R}) \oplus H^1(M, \mathbf{R}) \oplus \cdots \oplus H^m(M, \mathbf{R}),$

which is an algebra with the exterior multiplication.

Theorem (the deRham Theorem) There is a natural isomorphism of $H^*(M, \mathbf{R})$ and the cohomology ring of M.

As an application of Hodge theory, we can study $H^r(M, \mathbf{R})$ using the nice representation of harmonic forms as follows

Theorem(Representing Cohomology Classes by Harmonic Forms). Each deRham cohomology class on (M, g) contains a unique harmonic representative.

Proof. Let $h : \Lambda^r(M) \to \mathcal{H}^r(M)$ be the orthogonal projection. If $\omega \in \Lambda^r(M)$ is closed, then according to the Hodge decomposition, we have

$$\omega = d\alpha + h(\omega)$$

which implies that $[\omega] = [h(\omega)] \in H^r(M, \mathbf{R})$. Since $\mathcal{H}^r(M) \perp d\Lambda^{r-1}(M)$ we see that two different harmonic forms must belong to two different deRham cohomology classes. In fact, if $\gamma_1, \gamma_2 \in \mathcal{H}^r(M)$ and $[\gamma_1] = [\gamma_2]$, then $\gamma_1 - \gamma_2 = d\alpha$. But, $d\alpha \perp (\gamma_1 - \gamma_2)$, thus $d\alpha = 0$, so $\gamma_1 = \gamma_2$. Hence $h(\omega)$ is unique in $H^r(M, \mathbf{R})$.

From the proof of the Hodge theorem, we see that $\dim \mathcal{H}^r(M) < +\infty$ if M is finite, so we get that $\dim H^r(M, \mathbf{R}) < +\infty$ if M is compact.

Let M be a compact, oriented, differentiable manifold of dimension m. We define a bilinear function

$$H^r(M,\mathbf{R}) \times H^{m-r}(M,\mathbf{R}) \to \mathbf{R}$$

by sending

$$([\phi], [\psi]) \mapsto \int_M \phi \wedge \psi.$$

Observe that the bilinear map is well-defined, i.e. if $\phi_1 = phi + d\xi$, then, by Stoke's theorem,

$$\int_M \phi_1 \wedge \psi = \int_M \phi \wedge \psi.$$

Theorem. Poincare duality theorem. The bilinear function above is non-singular pairing and consequently determines isomorphisms of $\mathcal{H}^{m-r}(M)$ with the dual space of $\mathcal{H}^{r}(M)$:

$$H^{m-r}(M, \mathbf{R}) \simeq (H^r(M, \mathbf{R}))^*.$$

In fact, given a non-zero cohomology class $[\phi] \in H^r(M, \mathbf{R})$, we must find a non-zero cohomology class $[\psi] \in H^{m-r}(M, \mathbf{R})$, such that $([\phi], [\psi]) \neq 0$. Choose a Riemannian structure. We can assume that ϕ is harmonic, and $\phi \neq$. Since $*\Delta = \Delta *$, we have that $*\phi$ is also harmonic, and $*\phi \in H^{m-r}(M, \mathbf{R})$. Now,

$$([\phi], [\psi]) = \int_M \phi \wedge *\phi = \|\phi\|^2 \neq 0.$$

So the statement is proved.

The r-th Betti number $\beta_r(M)$ of (M, g) is defined by

$$\beta_r(M) = \dim H^r(M, R) = \dim \mathcal{H}^r.$$

Then we have

$$\beta_r(M) = \beta_{m-r}(M).$$

The Euler-Poincare characteristic number $\chi(M)$ of (M, g) is defined by

$$\chi(M) = \sum_{r=0}^{m} (-1)^r \dim H^r(M, R) = \sum_{r=0}^{m} (-1)^r \beta_r(M).$$

Then, we have the statement that if $m = \dim M$ is odd, then $\chi(M) = 0$..

Another statement we can prove(will be proved later) is Let (M, g) be a compact oriented Riemannian manifold without boundary. If its Ricci curvature is positive, then

$$\beta_1(M) = \beta_{m-1}(M) = 0.$$