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1 Hodge Theory on Riemannian Manifolds

• Global inner product for differential forms Let (M, g) be a Rie-
mannian manifold. In a local coordinate (U ;xi), let

η =
√
Gdx1 ∧ · · · ∧ dxm.

η in fact is a global m-form, called the volume form of M . We first
define the inner product for differential forms. Let φ, ψ are two r-forms.
Let (U, xi) be a local coordinate. We write

φ|U =
1

r!
φi1···irdx

i1 ∧ · · · ∧ dxir ,

ψ|U =
1

r!
ψj1···jrdx

j1 ∧ · · · ∧ dxjr .

We define, the inner product < , > of φ, ψ as

< φ,ψ >=
1

r!
φi1···irψi1···ir =

∑
i1<···<ir

φi1···irψi1···ir ,

where φi1···ir = gi1j1 · · · girjrφj1···jr . It is important to note that the def-
inition is independent of the choice of local coordinates. We also have
< φ, φ >≥ 0 and < φ, φ >= 0 if and only if φ = 0.

We now define the global inner product of φ, ψ as

(φ, ψ) =
∫

M
< φ,ψ > η,

where η is the volume form of M .

• The exterior differential operator d and its co-operator Denote
by Λr(M) the set of smooth r-forms on M . Let ( , ) be the (global)
inner product defined above. As the formal adjoint operator of the ex-
terior differential operator d, the codifferential operator δ : Λr+1(M) →
Λr(M) is defined by, for every φ ∈ Λr(M), ψ ∈ Λr+1(M),

(dφ, ψ) = (φ, δψ).
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• Hodge-star operator. In order to find the expression of the codif-
ferential operator δ, we introduce the Hodge-star operator ∗, which is
an isomorphism ∗ : Λr(M) → Λm−r(M) defined by, for every φ, η ∈
Λr(M),

φ ∧ (∗ψ) =< φ,ψ > η.

Let ω be a r-form. Let (U, xi) be a local coordinate. We write

ω|U =
1

r!

∑
i1,...,ir

ai1···irdx
i1 ∧ · · · ∧ dxir .

Then

∗ω =

√
G

r!(m− r)!
δ1···m
i1···ima

i1···irdxir+1 ∧ · · · ∧ dxim ,

where
ai1···ir = gi1j1 · · · girjraj1···jr ,

and δ1···m
i1···im is the Levi-Civita permutation symbol, i.e. δ12···m

i1···im = 1 if
(i1 · · · im) is an even permutation of (12 . . .m), δ12···m

i1···im = −1 if (i1 · · · im)
is an odd permutation of (12 . . .m), δ12···m

i1···im = 0 otherwise. It can be
shown that ∗ω is is independent of the choice of local coordinates. So ∗ω
is a globally defined (m− r)-form (it can be regarded as an alternative
definition). The operator ∗ which sends r-forms to (m− r)-forms.

It has the following properties, for any r-forms φ and ψ:

(1) φ ∧ ∗ψ =< φ,ψ > η,

(2) ∗η = 1, ∗1 = η,

(3) ∗(∗φ) = (−1)r(m+1)φ,

(4) (∗φ, ∗ψ) = (φ, ψ).

• Expression of the codifferential operator δ in terms of the
Hodge-Star operator. Define δ = (−1)mr+1 ∗ ◦d ◦ ∗ : Λr+1(M) →
Λr(M), where Λr(M) is the set of smooth r-forms, is called the codif-
ferential operator. It is easy to verify that δ ◦ δ = 0. We also have the
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following very important property for δ: For φ ∈ Λr(M), ψ ∈ Λr+1(M),
we have

(dφ, ψ) = (φ, δψ),

i.e. δ is conjugate to d. So (−1)mr+1 ∗ ◦d ◦ ∗ is the expression of the
odifferential operator δ.

Proof. Note

d(φ ∧ ∗ψ) = dφ ∧ ∗ψ + (−1)rφ ∧ d(∗ψ)

= dφ ∧ ∗ψ + (−1)r(−1)mr+rφ ∧ ∗(∗d ∗ ψ)

= dφ ∧ ∗ψ − φ ∧ ∗δψ.

Then desired identity is obtained by applying the Stokes theorem.

• Hodge-Laplace operator. We define the Hodge-Laplace operator

4̃ = dδ + δd : Λr(M) → Λr(M).

For f ∈ C∞(M), then δ(f) = 0, so

4̃(f) = δ(df) = − ∗ d ∗ df, 4̃fη = ∗4̃f = −d ∗ df.

Let (U, xi) be a local coordinate, then

df |U =
∂f

∂xi
dxi,

∗df |U =

√
G

(m− 1)!
δ1···m
i1···img

i1j ∂f

∂xj
dxi2 ∧ · · · ∧ dxim

=
√
G

m∑
i=1

(−1)i+1gij ∂f

∂xj
dx1 ∧ · · · ∧ dx̂i ∧ · · · ∧ dxm.

Hence

(4̃f)η|U = −d(∗df)|U = − ∂

∂xi

(√
Ggij ∂f

∂xj

)
dx1 ∧ · · · ∧ dxm

= −4 fη|U .

This tells us
4̃f = −4 f.

So −4̃ when acts on C∞(M) is the Beltrami-Laplace operator 4.
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• Hodge Theory. In this section, we denote the Hodge-Laplace oper-
ator by 4. Let Hr(M) = ker4 and H =

⊕Hr(M). Let
∧∗(M) =⊕∞

r=0 Λr(M).

The Hodge theorem Let (M, g) be an n-dimensional compact ori-
ented Riemannian manifold without boundary. For each integer 0 ≤
r ≤ n, Hr(M) is finite dimensional, and there exists a bounded linear
operator G :

∧∗(M) → ∧∗(M) (called Green’s operator) such that

(a) kerG = H;

(b) G keeps types, and commute with the operators ∗, d and δ;

(c) G is a compact operator, i.e. the closure of image of an arbitrary
bounded subset of

∧∗(M) under G is compact;

(d) I = H + 4 ◦ G, where I is the identity operator, and H is the
orthogonal projection from

∧∗(M) to H with respect to the inner product
( , ).

From the Hodge theorem, since I = H +4 ◦ G, we can write (called
the Hodge-decomposition)

Corollary( Hodge-decomposition)

Λr(M) = 4(Λr(M))⊕Hr(M)

= dδΛr(M)⊕ δdΛr(M)⊕Hr(M)

= dΛr−1(M)⊕ δΛr+1(M)⊕Hr(M).

To prove this theorem, basically we need to show tow things: (1): H
is a finite dimensional vector space, (2): Write

∧∗(M) = H⊕H⊥,
where H⊥ is the orthogonal complement of H with respect to ( , ), we
need to show that 4 : H⊥ → H⊥ and 4 is one-to-one and onto.
(note that: for every φ ∈ ∧∗(M), ψ ∈ H, (4φ, ψ) = (φ,4ψ) = 0,
so 4φ ∈ H⊥. Hence 4 : H⊥ → H⊥). Once (1) and (2) are proved,
then we take G|H = 0, and G|H⊥ = 4−1. This will prove the Hodge
theorem.
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To do so, we first note that the operator 4 is positive (i.e. its eigenval-
ues are all positive). In fact, write P = d+ δ. Then it is easy to verify
that both P are 4 are self-dual, and 4 = P 2. Hence

(4φ, φ) = (Pφ, Pφ) = (dφ, dφ) + (δφ, δφ) ≥ 0.

So 4 is an elliptic self-adjoint operator. We therefore use the “theory
of elliptic (self-adjoint) differential operator”. To do so, we need first
introduce the concept of “Sobolov space”.

Let s be a nonnegative integer. Define the inner product ( , )s on∧∗(M) as follows: for every f1, f2 ∈
∧∗(M), define

(f1, f2)s =
s∑

k=0

∫
M
< 5kf1,5kf2 > ∗1,

‖f1‖2
s = (f1, f1)s,

where ∗1 is the volume form on M . Let Hs(M) be the completion
of
∧∗(M) with respect to the Sobolov norm ‖ ‖s, which is called the

‘Sobolov space.

We use the following three facts(proofs are omitted):

• Garding’s inequality: There exist constant c1, c2 > 0, such that for
every f ∈ ∧∗(M), we have

(4f, f) ≥ c1‖f‖2
1 − c2‖f‖2

0.

Remark: This is a variant of so-called Bocher technique.

To state the second fact, we introduce the concept of weak derivative:
Write P = d + δ and 4 = P 2. For φ ∈ Hs(M) and ψ ∈ Ht(M),
we say Pφ = ψ(weak), if for every test form f ∈ ∧∗(M), we have
(φ, Pf) = (ψ, f). In similar way, 4φ = ψ(weak) is defined. If φ ∈
Hs(M), ψ ∈ Ht(M), and Pφ = ψ(weak), we denote it by Pφ ∈ Ht(M).
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• Regularity of the operator P : If φ ∈ H0(M) and Pφ ∈ ∧∗(M),
then φ ∈ ∧∗(M).

• Rellich Lemma: If {φi} ⊂
∧∗(M) is bounded in the ‖ ‖1, then it has

a Cauchy subsequence with respect to the norm ‖ ‖0.

The above theorem about the Regularity of the operator P implies
the following lemma

• The weak form of the Wyle lemma: If φ ∈ H1(M), and 4φ =
ψ(weak) with ψ ∈ ∧∗(M), then φ ∈ ∧∗(M).

Proof of the Hodge Theorem. We first prove that H is a finite dimen-
sional vector space. If not, there exists an infinite orthonormal set
{ω1, . . . , ωn, · · ·}. By Garding’s inequality, there exist constants c1, c2
such that for all i, we have

‖ωi‖2
1 ≤

1

c1
{(4ωi, ωi) + c2‖ωi‖2

0} =
c2
c1
.

By Rellich Lemma, {ωi} must have a Cauchy subsequence with respect
to the norm ‖ ‖0, which is impossible, since ‖ωi − ωj‖2

0 = 2 for i 6= j.
This proves that H is a finite dimensional vector space.

Next, write
∗∧
(M) = H⊕H⊥,

where H⊥ is the orthogonal complement of H with respect to ( , ). We
now prove a simpler version of Garding’s inequality:

Garding’s Lemma there exists a positive constant c0 such that for all
f ∈ H⊥, we have

‖f‖2
1 ≤ c0(4f, f).

Proof. If not, there exists a sequence fi ∈ H⊥ with ‖fi‖1 = 1 and
(4fi, fi) → 0. From Rellich lemma, we assume, WLOG, that fi is
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convergent with respect to ‖ ‖0, i.e. there exists F ∈ H0(M) such that
limi→+∞ ‖F − fi‖0 = 0. We claim that F = 0. In fact, from above,
(4fi, fi) = ‖Pfi‖2

0 → 0, hence for every φ ∈ ∧∗(M),

(F, Pφ) = lim
i→+∞

(fi, Pφ) = lim
i→+∞

(Pfi − φ) = 0.

Hence PF = 0 (weak). From the regularity of P , we have F ∈ ∧∗(M).
Hence

4F = P (PF ) = 0,

so F ∈ H. Also, since fi ∈ H⊥, we have, for every φ ∈ H,

(F, φ) = lim
i→+∞

(fi, φ) = 0,

so F ∈ H⊥. Thus F ∈ H ∩H⊥. This implies that F = 0. This means
that limi→+∞ ‖fi‖0 = 0. Now, by the Garding inequality, There exist
constant c1, c2 > 0, such that

(4fi, fi) ≥ c1‖fi‖2
1 − c2‖fi‖2

0.

Because, from above, both (4fi, fi) and ‖fi‖2
0 converge to zero, so

limi→+∞ ‖fi‖1 = 0, which contradicts the assumption that ‖fi‖1 = 1.
This proves Garding’s lemma.

We now prove that 4 : H⊥ → H⊥ and 4 is one-to-one and onto.

First we show that4 : H⊥ ⊂ H⊥. In fact, for every φ ∈ ∧∗(M), ψ ∈ H,

(4φ, ψ) = (φ,4ψ) = 0,

so 4φ ∈ H⊥. To show 4 is one-to-one, let φ1, φ2 ∈ H⊥, and assume
that 4φ1 = 4φ2. Then, from one hand, φ1 − φ2 ∈ H⊥. On the other
hand, since 4(φ1 − φ2) = 0, φ1 − φ2 ∈ H. Hence φ1 = φ2. It remains
to show that 4 is onto. i.e. for every f ∈ H⊥, there exists φ ∈ H⊥

such that 4φ = f . This gets down to solve the differential equation
4φ = f (with unknown φ). Let B be the closure of H⊥ in H1(M).
From Wyle’s theorem, we only need to solve 4φ = f in the weak sense,
i.e. there exists φ ∈ B such that, for every g ∈ ∧∗(M),

(φ,4g) = (f, g).
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Since
∧∗(M) = H⊕H⊥, we can write g = g1 + g2 where g1 ∈ H, g2 ∈

H⊥. So the above identity is equivalent to every g2 ∈ H⊥,

(φ,4g2) = (f, g2).

So the proof is reduced to the following statement: for every f ∈ H⊥,
there exists φ ∈ B such that, for every g ∈ H⊥,

(φ,4g) = (f, g).

We now use the Riesz representation theorem to prove this state-
ment. In fact, for every φ, ψ ∈ H⊥, define [φ, ψ] = (φ,4ψ), and
consider the linear transformation L : B → R defined by l(g) = (f, g)
for every g ∈ B. Our goal is to show that we can extend [ , ] to B such
that l is continuous with respect to [ , ] (or bounded). Then by Riesz
representation theorem, there exists φ ∈ B such that, for every g ∈ B
(in particular for g ∈ H⊥),

l(g) = [φ, g].

This will prove our statement. To extend [ , ], we compare [ , ] with
( , )1. From definition, [ , ] is bilinar. From Garding’s inequality, for
every φ ∈ H⊥,

[φ, φ] = (φ,4φ) ≥ 1

c0
‖φ‖2

1.

On the other hand,

[φ, φ] = (φ,4φ) = ‖Pφ‖0.

By direct verification, we have, for every φ ∈ ∧∗(M),

‖Pφ‖2
0 ≤ c‖φ‖2

1.

Hence
[φ, φ] ≤ c‖φ‖2

1.

So [ , ] and ( , )1 are equivalent on H⊥. So there exists an unique
continuation on B, and for every g ∈ B, we have

[g, g] ≥ 1

c0
‖g‖2

1.
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To show that l is continuous with respect to [ , ](or bounded), we notice
that

|l(g)| = |(f, g)| ≤ ‖f‖0‖g‖0 ≤ ‖f‖0‖g‖1 ≤
√
c0‖f‖0

√
[g, g].

So the claim is proved. This finishes the proof that 4 is onto.

To prove Hodge’s theorem, since, from above, 4 : H⊥ → H⊥ is one-to-
one and onto, we let G :

∧∗(M) → ∧∗(M) be defined as follows: G|H =
0, and G|H⊥ = 4−1. Then we see that kerG = H and I = H +4 ◦G.
The rest of properties are also easy to verify.

This finishes the proof.

• Application of the Hodge Theory. Let M be a compact mani-
fold. Denote by Λr(M) the set of all r-forms on M . Clearly Λ0(M) is
the set of all differential functions on M . By the rule of the exterior
multiplication, we see that 0 ≤ r ≤ n.

The exterior differential operator is a map d : Λr(M) → Λr+1(M),
which satisfies conditions:

(i) d is R-linear;

(ii) For f ∈ Λ0(M), df is the usual differential of f , and d(df) = 0;

(iii) d(φ ∧ ψ) = dφ ∧ ψ + (−1)rφ ∧ dψ for any φ ∈ Λr(M) and any ψ.

There are three important properties for d: (a) d2 = 0 (called the
Poincare lemme), (b) For ω ∈ Λ1(M) and X, Y ∈ Γ(TM), we have

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

(c) If F : M → N , then F ∗ ◦ d = d ◦ F ∗.
A differential r-form φ ∈ Λr(M) is said to be closed if dθ = 0, and
φ ∈ Λr(M) is said to be exact if there exists η ∈ Λr−1(M) such that
φ = dη. Since d ◦ d = 0, we know that every exact form is also
closed. Let Zr(M,R) denote the set of all (smooth) closed rforms on
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M , and let Br(M,R) denote the set of all (smooth) exact rforms on
M . Then Br(M,R) ⊂ Zr(M,R) which allows us to form the quotient
space Hr(M,R) := Zr(M,R)/Br(M,R), called the deRham cohomol-
ogy group of dimension r. Set

H∗(M,R) = H0(M,R)⊕H1(M,R)⊕ · · · ⊕Hm(M,R),

which is an algebra with the exterior multiplication.

Theorem (the deRham Theorem) There is a natural isomorphism
of H∗(M,R) and the cohomology ring of M .

As an application of Hodge theory, we can study Hr(M,R) using the
nice representation of harmonic forms as follows

Theorem(Representing Cohomology Classes by Harmonic Fomrs).
Each deRham cohomology class on (M, g) contains a unique harmonic
representative.

Proof. Let h : Λr(M) → Hr(M) be the orthogonal projection. If
ω ∈ Λr(M) is closed, then according to the Hodge decomposition, we
have

ω = dα+ h(ω)

which implies that [ω] = [h(ω)] ∈ Hr(M,R). SinceHr(M) ⊥ dΛr−1(M)
we see that two different harmonic forms must belong to two different
deRham cohomology classes. In fact, if γ1, γ2 ∈ Hr(M) and [γ1] = [γ2],
then γ1−γ2 = dα. But, dα ⊥ (γ1−γ2), thus dα = 0, so γ1 = γ2. Hence
h(ω) is unique in Hr(M,R).

From the proof of the Hodge theorem, we see that dimHr(M) <
+∞ if M is finite, so we get that dimHr(M,R) < +∞ if M is
compact.

Let M be a compact, oriented, differentiable manifold of dimension m.
We define a bilinear function

Hr(M,R)×Hm−r(M,R) → R
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by sending

([φ], [ψ]) 7→
∫

M
φ ∧ ψ.

Observe that the bilinear map is well-defined, i.e. if φ1 =
phi+ dξ, then, by Stoke’s theorem,∫

M
φ1 ∧ ψ =

∫
M
φ ∧ ψ.

Theorem. Poincare duality theorem. The bilinear function above
is non-singular pairing and consequently determines isomorphisms of
Hm−r(M) with the dual space of Hr(M):

Hm−r(M,R) ' (Hr(M,R))∗.

In fact, given a non-zero cohomology class [φ] ∈ Hr(M,R), we must
find a non-zero cohomology class [ψ] ∈ Hm−r(M,R), such that ([φ], [ψ]) 6=
0. Choose a Riemannian structure. We can assume that φ is harmonic,
and φ 6=. Since ∗4 = 4∗, we have that ∗φ is also harmonic, and
∗φ ∈ Hm−r(M,R). Now,

([φ], [ψ]) =
∫

M
φ ∧ ∗φ = ‖φ‖2 6= 0.

So the statement is proved.

The r-th Betti number βr(M) of (M, g) is defined by

βr(M) = dimHr(M,R) = dimHr.

Then we have
βr(M) = βm−r(M).

The Euler-Poincare characteristic number χ(M) of (M, g) is defined by

χ(M) =
m∑

r=0

(−1)r dimHr(M,R) =
m∑

r=0

(−1)rβr(M).
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Then, we have the statement that if m = dimM is odd, then χ(M) =
0..

Another statement we can prove(will be proved later) is Let (M, g) be a
compact oriented Riemannian manifold without boundary. If its Ricci
curvature is positive, then

β1(M) = βm−1(M) = 0.
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