Math 6397 Riemannian Geometry,Hodge Theory on Riemannian Manifolds By Min Ru, University of Houston

1 Hodge Theory on Riemannian Manifolds

- Global inner product for differential forms Let (M, g) be a Riemannian manifold. In a local coordinate $\left(U ; x^{i}\right)$, let

$$
\eta=\sqrt{G} d x^{1} \wedge \cdots \wedge d x^{m}
$$

η in fact is a global m-form, called the volume form of M. We first define the inner product for differential forms. Let ϕ, ψ are two r-forms. Let $\left(U, x^{i}\right)$ be a local coordinate. We write

$$
\begin{aligned}
\left.\phi\right|_{U} & =\frac{1}{r!} \phi_{i_{1} \cdots i_{r}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{r}}, \\
\left.\psi\right|_{U} & =\frac{1}{r!} \psi_{j_{1} \cdots j_{r}} d x^{j_{1}} \wedge \cdots \wedge d x^{j_{r}} .
\end{aligned}
$$

We define, the inner product $<,>$ of ϕ, ψ as

$$
<\phi, \psi>=\frac{1}{r!} \phi^{i_{1} \cdots i_{r}} \psi_{i_{1} \cdots i_{r}}=\sum_{i_{1}<\cdots<i_{r}} \phi^{i_{1} \cdots i_{r}} \psi_{i_{1} \cdots i_{r}}
$$

where $\phi^{i_{1} \cdots i_{r}}=g^{i_{1} j_{1}} \cdots g^{i_{r} j_{r}} \phi_{j_{1} \cdots j_{r}}$. It is important to note that the definition is independent of the choice of local coordinates. We also have $\langle\phi, \phi\rangle \geq 0$ and $<\phi, \phi\rangle=0$ if and only if $\phi=0$.

We now define the global inner product of ϕ, ψ as

$$
(\phi, \psi)=\int_{M}<\phi, \psi>\eta
$$

where η is the volume form of M.

- The exterior differential operator d and its co-operator Denote by $\Lambda^{r}(M)$ the set of smooth r-forms on M. Let (,) be the (global) inner product defined above. As the formal adjoint operator of the exterior differential operator d, the codifferential operator $\delta: \Lambda^{r+1}(M) \rightarrow$ $\Lambda^{r}(M)$ is defined by, for every $\phi \in \Lambda^{r}(M), \psi \in \Lambda^{r+1}(M)$,

$$
(d \phi, \psi)=(\phi, \delta \psi) .
$$

- Hodge-star operator. In order to find the expression of the codifferential operator δ, we introduce the Hodge-star operator $*$, which is an isomorphism $*: \Lambda^{r}(M) \rightarrow \Lambda^{m-r}(M)$ defined by, for every $\phi, \eta \in$ $\Lambda^{r}(M)$,

$$
\phi \wedge(* \psi)=<\phi, \psi>\eta .
$$

Let ω be a r-form. Let $\left(U, x^{i}\right)$ be a local coordinate. We write

$$
\left.\omega\right|_{U}=\frac{1}{r!} \sum_{i_{1}, \ldots, i_{r}} a_{i_{1} \cdots i_{r}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{r}} .
$$

Then

$$
* \omega=\frac{\sqrt{G}}{r!(m-r)!} \delta_{i_{1} \cdots i_{m}}^{1 \cdots m} a^{i_{1} \cdots i_{r}} d x^{i_{r+1}} \wedge \cdots \wedge d x^{i_{m}}
$$

where

$$
a^{i_{1} \cdots i_{r}}=g^{i_{1} j_{1}} \cdots g^{i_{r} j_{r}} a_{j_{1} \cdots j_{r}},
$$

and $\delta_{i_{1} \cdots i_{m}}^{1 \cdots m}$ is the Levi-Civita permutation symbol, i.e. $\delta_{i_{1} \cdots i_{m}}^{12 \cdots}=1$ if $\left(i_{1} \cdots i_{m}\right)$ is an even permutation of $(12 \ldots m), \delta_{i_{1} \cdots i_{m}}^{12 \cdots}=-1$ if $\left(i_{1} \cdots i_{m}\right)$ is an odd permutation of $(12 \ldots m), \delta_{i_{1} \cdots i_{m}}^{12 \cdots m}=0$ otherwise. It can be shown that $* \omega$ is is independent of the choice of local coordinates. So $* \omega$ is a globally defined $(m-r)$-form (it can be regarded as an alternative definition). The operator $*$ which sends r-forms to $(m-r)$-forms.

It has the following properties, for any r-forms ϕ and ψ :
(1) $\phi \wedge * \psi=<\phi, \psi>\eta$,
(2) $* \eta=1, * 1=\eta$,
(3) $*(* \phi)=(-1)^{r(m+1)} \phi$,
(4) $(* \phi, * \psi)=(\phi, \psi)$.

- Expression of the codifferential operator δ in terms of the Hodge-Star operator. Define $\delta=(-1)^{m r+1} * \circ d \circ *: \Lambda^{r+1}(M) \rightarrow$ $\Lambda^{r}(M)$, where $\Lambda^{r}(M)$ is the set of smooth r-forms, is called the codifferential operator. It is easy to verify that $\delta \circ \delta=0$. We also have the
following very important property for δ : For $\phi \in \Lambda^{r}(M), \psi \in \Lambda^{r+1}(M)$, we have

$$
(d \phi, \psi)=(\phi, \delta \psi),
$$

i.e. δ is conjugate to d. So $(-1)^{m r+1} * \circ d \circ *$ is the expression of the odifferential operator δ.

Proof. Note

$$
\begin{aligned}
d(\phi \wedge * \psi) & =d \phi \wedge * \psi+(-1)^{r} \phi \wedge d(* \psi) \\
& =d \phi \wedge * \psi+(-1)^{r}(-1)^{m r+r} \phi \wedge *(* d * \psi) \\
& =d \phi \wedge * \psi-\phi \wedge * \delta \psi
\end{aligned}
$$

Then desired identity is obtained by applying the Stokes theorem.

- Hodge-Laplace operator. We define the Hodge-Laplace operator

$$
\tilde{\triangle}=d \delta+\delta d: \Lambda^{r}(M) \rightarrow \Lambda^{r}(M)
$$

For $f \in C^{\infty}(M)$, then $\delta(f)=0$, so

$$
\tilde{\triangle}(f)=\delta(d f)=-* d * d f, \quad \tilde{\triangle} f \eta=* \tilde{\triangle} f=-d * d f .
$$

Let $\left(U, x^{i}\right)$ be a local coordinate, then

$$
\begin{gathered}
\left.d f\right|_{U}=\frac{\partial f}{\partial x^{i}} d x^{i}, \\
\left.* d f\right|_{U}=\frac{\sqrt{G}}{(m-1)!} \delta_{i_{1} \cdots i_{m}}^{1 \cdots m} g^{i_{1 j} j} \frac{\partial f}{\partial x^{j}} d x^{i_{2}} \wedge \cdots \wedge d x^{i_{m}} \\
=\sqrt{G} \sum_{i=1}^{m}(-1)^{i+1} g^{i j} \frac{\partial f}{\partial x^{j}} d x^{1} \wedge \cdots \wedge d \hat{x}^{i} \wedge \cdots \wedge d x^{m} .
\end{gathered}
$$

Hence

$$
\begin{aligned}
\left.(\tilde{\triangle} f) \eta\right|_{U} & =-\left.d(* d f)\right|_{U}=-\frac{\partial}{\partial x^{i}}\left(\sqrt{G} g^{i j} \frac{\partial f}{\partial x^{j}}\right) d x^{1} \wedge \cdots \wedge d x^{m} \\
& =-\left.\triangle f \eta\right|_{U} .
\end{aligned}
$$

This tells us

$$
\tilde{\triangle} f=-\triangle f
$$

So $-\tilde{\triangle}$ when acts on $C^{\infty}(M)$ is the Beltrami-Laplace operator \triangle.

- Hodge Theory. In this section, we denote the Hodge-Laplace operator by \triangle. Let $\mathcal{H}^{r}(M)=k e r \triangle$ and $\mathcal{H}=\oplus \mathcal{H}^{r}(M)$. Let $\wedge^{*}(M)=$ $\oplus_{r=0}^{\infty} \Lambda^{r}(M)$.

The Hodge theorem Let (M, g) be an n-dimensional compact oriented Riemannian manifold without boundary. For each integer $0 \leq$ $r \leq n, \mathcal{H}^{r}(M)$ is finite dimensional, and there exists a bounded linear operator $G: \wedge^{*}(M) \rightarrow \wedge^{*}(M)$ (called Green's operator) such that
(a) $\operatorname{ker} G=\mathcal{H}$;
(b) G keeps types, and commute with the operators $*, d$ and δ;
(c) G is a compact operator, i.e. the closure of image of an arbitrary bounded subset of $\wedge^{*}(M)$ under G is compact;
(d) $I=\mathcal{H}+\triangle \circ G$, where I is the identity operator, and \mathcal{H} is the orthogonal projection from $\wedge^{*}(M)$ to \mathcal{H} with respect to the inner product (,).

From the Hodge theorem, since $I=\mathcal{H}+\triangle \circ G$, we can write (called the Hodge-decomposition)

Corollary(Hodge-decomposition)

$$
\begin{aligned}
\Lambda^{r}(M) & =\triangle\left(\Lambda^{r}(M)\right) \oplus \mathcal{H}^{r}(M) \\
& =d \delta \Lambda^{r}(M) \oplus \delta d \Lambda^{r}(M) \oplus \mathcal{H}^{r}(M) \\
& =d \Lambda^{r-1}(M) \oplus \delta \Lambda^{r+1}(M) \oplus \mathcal{H}^{r}(M)
\end{aligned}
$$

To prove this theorem, basically we need to show tow things: (1): \mathcal{H} is a finite dimensional vector space, (2): Write $\wedge^{*}(M)=\mathcal{H} \oplus \mathcal{H}^{\perp}$, where \mathcal{H}^{\perp} is the orthogonal complement of \mathcal{H} with respect to (,), we need to show that $\triangle: \mathcal{H}^{\perp} \rightarrow \mathcal{H}^{\perp}$ and \triangle is one-to-one and onto. (note that: for every $\phi \in \wedge^{*}(M), \psi \in \mathcal{H},(\triangle \phi, \psi)=(\phi, \Delta \psi)=0$, so $\Delta \phi \in \mathcal{H}^{\perp}$. Hence $\Delta: \mathcal{H}^{\perp} \rightarrow \mathcal{H}^{\perp}$). Once (1) and (2) are proved, then we take $\left.G\right|_{\mathcal{H}}=0$, and $\left.G\right|_{\mathcal{H}^{\perp}}=\Delta^{-1}$. This will prove the Hodge theorem.

To do so, we first note that the operator \triangle is positive (i.e. its eigenvalues are all positive). In fact, write $P=d+\delta$. Then it is easy to verify that both P are \triangle are self-dual, and $\triangle=P^{2}$. Hence

$$
(\triangle \phi, \phi)=(P \phi, P \phi)=(d \phi, d \phi)+(\delta \phi, \delta \phi) \geq 0 .
$$

So \triangle is an elliptic self-adjoint operator. We therefore use the "theory of elliptic (self-adjoint) differential operator". To do so, we need first introduce the concept of "Sobolov space".

Let s be a nonnegative integer. Define the inner product $(,)_{s}$ on $\Lambda^{*}(M)$ as follows: for every $f_{1}, f_{2} \in \Lambda^{*}(M)$, define

$$
\begin{gathered}
\left(f_{1}, f_{2}\right)_{s}=\sum_{k=0}^{s} \int_{M}<\nabla^{k} f_{1}, \nabla^{k} f_{2}>* 1, \\
\left\|f_{1}\right\|_{s}^{2}=\left(f_{1}, f_{1}\right)_{s},
\end{gathered}
$$

where $* 1$ is the volume form on M. Let $H_{s}(M)$ be the completion of $\Lambda^{*}(M)$ with respect to the Sobolov norm $\left\|\|_{s}\right.$, which is called the 'Sobolov space.

We use the following three facts(proofs are omitted):

- Garding's inequality: There exist constant $c_{1}, c_{2}>0$, such that for every $f \in \wedge^{*}(M)$, we have

$$
(\triangle f, f) \geq c_{1}\|f\|_{1}^{2}-c_{2}\|f\|_{0}^{2} .
$$

Remark: This is a variant of so-called Bocher technique.
To state the second fact, we introduce the concept of weak derivative: Write $P=d+\delta$ and $\triangle=P^{2}$. For $\phi \in H_{s}(M)$ and $\psi \in H_{t}(M)$, we say $P \phi=\psi$ (weak), if for every test form $f \in \Lambda^{*}(M)$, we have $(\phi, P f)=(\psi, f)$. In similar way, $\Delta \phi=\psi($ weak $)$ is defined. If $\phi \in$ $H_{s}(M), \psi \in H_{t}(M)$, and $P \phi=\psi($ weak $)$, we denote it by $P \phi \in H_{t}(M)$.

- Regularity of the operator $P:$ If $\phi \in H_{0}(M)$ and $P \phi \in \wedge^{*}(M)$, then $\phi \in \wedge^{*}(M)$.
- Rellich Lemma: If $\left\{\phi_{i}\right\} \subset \wedge^{*}(M)$ is bounded in the $\left\|\|_{1}\right.$, then it has a Cauchy subsequence with respect to the norm $\left\|\|_{0}\right.$.

The above theorem about the Regularity of the operator P implies the following lemma

- The weak form of the Wyle lemma: If $\phi \in H_{1}(M)$, and $\triangle \phi=$ ψ (weak) with $\psi \in \wedge^{*}(M)$, then $\phi \in \wedge^{*}(M)$.

Proof of the Hodge Theorem. We first prove that \mathcal{H} is a finite dimensional vector space. If not, there exists an infinite orthonormal set $\left\{\omega_{1}, \ldots, \omega_{n}, \cdots\right\}$. By Garding's inequality, there exist constants c_{1}, c_{2} such that for all i, we have

$$
\left\|\omega_{i}\right\|_{1}^{2} \leq \frac{1}{c_{1}}\left\{\left(\triangle \omega_{i}, \omega_{i}\right)+c_{2}\left\|\omega_{i}\right\|_{0}^{2}\right\}=\frac{c_{2}}{c_{1}} .
$$

By Rellich Lemma, $\left\{\omega_{i}\right\}$ must have a Cauchy subsequence with respect to the norm $\left\|\|_{0}\right.$, which is impossible, since $\| \omega_{i}-\omega_{j} \|_{0}^{2}=2$ for $i \neq j$. This proves that \mathcal{H} is a finite dimensional vector space.

Next, write

$$
\bigwedge^{*}(M)=\mathcal{H} \oplus \mathcal{H}^{\perp}
$$

where \mathcal{H}^{\perp} is the orthogonal complement of \mathcal{H} with respect to (,). We now prove a simpler version of Garding's inequality:

Garding's Lemma there exists a positive constant c_{0} such that for all $f \in \mathcal{H}^{\perp}$, we have

$$
\|f\|_{1}^{2} \leq c_{0}(\triangle f, f)
$$

Proof. If not, there exists a sequence $f_{i} \in \mathcal{H}^{\perp}$ with $\left\|f_{i}\right\|_{1}=1$ and $\left(\triangle f_{i}, f_{i}\right) \rightarrow 0$. From Rellich lemma, we assume, WLOG, that f_{i} is
convergent with respect to $\left\|\|_{0}\right.$, i.e. there exists $F \in H_{0}(M)$ such that $\lim _{i \rightarrow+\infty}\left\|F-f_{i}\right\|_{0}=0$. We claim that $F=0$. In fact, from above, $\left(\triangle f_{i}, f_{i}\right)=\left\|P f_{i}\right\|_{0}^{2} \rightarrow 0$, hence for every $\phi \in \wedge^{*}(M)$,

$$
(F, P \phi)=\lim _{i \rightarrow+\infty}\left(f_{i}, P \phi\right)=\lim _{i \rightarrow+\infty}\left(P f_{i}-\phi\right)=0
$$

Hence $P F=0$ (weak). From the regularity of P, we have $F \in \wedge^{*}(M)$. Hence

$$
\triangle F=P(P F)=0
$$

so $F \in \mathcal{H}$. Also, since $f_{i} \in \mathcal{H}^{\perp}$, we have, for every $\phi \in \mathcal{H}$,

$$
(F, \phi)=\lim _{i \rightarrow+\infty}\left(f_{i}, \phi\right)=0
$$

so $F \in \mathcal{H}^{\perp}$. Thus $F \in \mathcal{H} \cap \mathcal{H}^{\perp}$. This implies that $F=0$. This means that $\lim _{i \rightarrow+\infty}\left\|f_{i}\right\|_{0}=0$. Now, by the Garding inequality, There exist constant $c_{1}, c_{2}>0$, such that

$$
\left(\triangle f_{i}, f_{i}\right) \geq c_{1}\left\|f_{i}\right\|_{1}^{2}-c_{2}\left\|f_{i}\right\|_{0}^{2}
$$

Because, from above, both $\left(\triangle f_{i}, f_{i}\right)$ and $\left\|f_{i}\right\|_{0}^{2}$ converge to zero, so $\lim _{i \rightarrow+\infty}\left\|f_{i}\right\|_{1}=0$, which contradicts the assumption that $\left\|f_{i}\right\|_{1}=1$. This proves Garding's lemma.

We now prove that $\triangle: \mathcal{H}^{\perp} \rightarrow \mathcal{H}^{\perp}$ and \triangle is one-to-one and onto.
First we show that $\triangle: \mathcal{H}^{\perp} \subset \mathcal{H}^{\perp}$. In fact, for every $\phi \in \wedge^{*}(M), \psi \in \mathcal{H}$,

$$
(\triangle \phi, \psi)=(\phi, \triangle \psi)=0
$$

so $\triangle \phi \in \mathcal{H}^{\perp}$. To show \triangle is one-to-one, let $\phi_{1}, \phi_{2} \in \mathcal{H}^{\perp}$, and assume that $\triangle \phi_{1}=\triangle \phi_{2}$. Then, from one hand, $\phi_{1}-\phi_{2} \in \mathcal{H}^{\perp}$. On the other hand, since $\triangle\left(\phi_{1}-\phi_{2}\right)=0, \phi_{1}-\phi_{2} \in \mathcal{H}$. Hence $\phi_{1}=\phi_{2}$. It remains to show that \triangle is onto. i.e. for every $f \in \mathcal{H}^{\perp}$, there exists $\phi \in \mathcal{H}^{\perp}$ such that $\triangle \phi=f$. This gets down to solve the differential equation $\triangle \phi=f$ (with unknown ϕ). Let B be the closure of \mathcal{H}^{\perp} in $H_{1}(M)$. From Wyle's theorem, we only need to solve $\triangle \phi=f$ in the weak sense, i.e. there exists $\phi \in B$ such that, for every $g \in \wedge^{*}(M)$,

$$
(\phi, \Delta g)=(f, g)
$$

Since $\wedge^{*}(M)=\mathcal{H} \oplus \mathcal{H}^{\perp}$, we can write $g=g_{1}+g_{2}$ where $g_{1} \in \mathcal{H}, g_{2} \in$ \mathcal{H}^{\perp}. So the above identity is equivalent to every $g_{2} \in \mathcal{H}^{\perp}$,

$$
\left(\phi, \triangle g_{2}\right)=\left(f, g_{2}\right)
$$

So the proof is reduced to the following statement: for every $f \in \mathcal{H}^{\perp}$, there exists $\phi \in B$ such that, for every $g \in \mathcal{H}^{\perp}$,

$$
(\phi, \Delta g)=(f, g)
$$

We now use the Riesz representation theorem to prove this statement. In fact, for every $\phi, \psi \in \mathcal{H}^{\perp}$, define $[\phi, \psi]=(\phi, \Delta \psi)$, and consider the linear transformation $L: B \rightarrow \mathbf{R}$ defined by $l(g)=(f, g)$ for every $g \in B$. Our goal is to show that we can extend [,] to B such that l is continuous with respect to [,] (or bounded). Then by Riesz representation theorem, there exists $\phi \in B$ such that, for every $g \in B$ (in particular for $g \in \mathcal{H}^{\perp}$),

$$
l(g)=[\phi, g] .
$$

This will prove our statement. To extend [,], we compare [,] with $(,)_{1}$. From definition, [,] is bilinar. From Garding's inequality, for every $\phi \in \mathcal{H}^{\perp}$,

$$
[\phi, \phi]=(\phi, \Delta \phi) \geq \frac{1}{c_{0}}\|\phi\|_{1}^{2} .
$$

On the other hand,

$$
[\phi, \phi]=(\phi, \triangle \phi)=\|P \phi\|_{0} .
$$

By direct verification, we have, for every $\phi \in \wedge^{*}(M)$,

$$
\|P \phi\|_{0}^{2} \leq c\|\phi\|_{1}^{2} .
$$

Hence

$$
[\phi, \phi] \leq c\|\phi\|_{1}^{2}
$$

So [,] and (,) $)_{1}$ are equivalent on \mathcal{H}^{\perp}. So there exists an unique continuation on B, and for every $g \in B$, we have

$$
[g, g] \geq \frac{1}{c_{0}}\|g\|_{1}^{2}
$$

To show that l is continuous with respect to [,](or bounded), we notice that

$$
|l(g)|=|(f, g)| \leq\|f\|_{0}\|g\|_{0} \leq\|f\|_{0}\|g\|_{1} \leq \sqrt{c_{0}}\|f\|_{0} \sqrt{[g, g]} .
$$

So the claim is proved. This finishes the proof that \triangle is onto.

To prove Hodge's theorem, since, from above, $\triangle: \mathcal{H}^{\perp} \rightarrow \mathcal{H}^{\perp}$ is one-toone and onto, we let $G: \wedge^{*}(M) \rightarrow \wedge^{*}(M)$ be defined as follows: $\left.G\right|_{\mathcal{H}}=$ 0 , and $\left.G\right|_{\mathcal{H}^{\perp}}=\triangle^{-1}$. Then we see that $\operatorname{ker} G=\mathcal{H}$ and $I=\mathcal{H}+\triangle \circ G$. The rest of properties are also easy to verify.
This finishes the proof.

- Application of the Hodge Theory. Let M be a compact manifold. Denote by $\Lambda^{r}(M)$ the set of all r-forms on M. Clearly $\Lambda^{0}(M)$ is the set of all differential functions on M. By the rule of the exterior multiplication, we see that $0 \leq r \leq n$.

The exterior differential operator is a map $d: \Lambda^{r}(M) \rightarrow \Lambda^{r+1}(M)$, which satisfies conditions:
(i) d is \mathbf{R}-linear;
(ii) For $f \in \Lambda^{0}(M), d f$ is the usual differential of f, and $d(d f)=0$;
(iii) $d(\phi \wedge \psi)=d \phi \wedge \psi+(-1)^{r} \phi \wedge d \psi$ for any $\phi \in \Lambda^{r}(M)$ and any ψ.

There are three important properties for d : (a) $d^{2}=0$ (called the Poincare lemme), (b) For $\omega \in \Lambda^{1}(M)$ and $X, Y \in \Gamma(T M)$, we have

$$
d \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y])
$$

(c) If $F: M \rightarrow N$, then $F^{*} \circ d=d \circ F^{*}$.

A differential r-form $\phi \in \Lambda^{r}(M)$ is said to be closed if $d \theta=0$, and $\phi \in \Lambda^{r}(M)$ is said to be exact if there exists $\eta \in \Lambda^{r-1}(M)$ such that $\phi=d \eta$. Since $d \circ d=0$, we know that every exact form is also closed. Let $Z^{r}(M, \mathbf{R})$ denote the set of all (smooth) closed r forms on
M, and let $B^{r}(M, \mathbf{R})$ denote the set of all (smooth) exact r forms on M. Then $B^{r}(M, \mathbf{R}) \subset Z^{r}(M, \mathbf{R})$ which allows us to form the quotient space $H^{r}(M, \mathbf{R}):=Z^{r}(M, \mathbf{R}) / B^{r}(M, \mathbf{R})$, called the deRham cohomology group of dimension r. Set

$$
H^{*}(M, \mathbf{R})=H^{0}(M, \mathbf{R}) \oplus H^{1}(M, \mathbf{R}) \oplus \cdots \oplus H^{m}(M, \mathbf{R})
$$

which is an algebra with the exterior multiplication.
Theorem (the deRham Theorem) There is a natural isomorphism of $H^{*}(M, \mathbf{R})$ and the cohomology ring of M.
As an application of Hodge theory, we can study $H^{r}(M, \mathbf{R})$ using the nice representation of harmonic forms as follows

Theorem(Representing Cohomology Classes by Harmonic Fomrs).

Each deRham cohomology class on (M, g) contains a unique harmonic representative.

Proof. Let $h: \Lambda^{r}(M) \rightarrow \mathcal{H}^{r}(M)$ be the orthogonal projection. If $\omega \in \Lambda^{r}(M)$ is closed, then according to the Hodge decomposition, we have

$$
\omega=d \alpha+h(\omega)
$$

which implies that $[\omega]=[h(\omega)] \in H^{r}(M, \mathbf{R})$. Since $\mathcal{H}^{r}(M) \perp d \Lambda^{r-1}(M)$ we see that two different harmonic forms must belong to two different deRham cohomology classes. In fact, if $\gamma_{1}, \gamma_{2} \in \mathcal{H}^{r}(M)$ and $\left[\gamma_{1}\right]=\left[\gamma_{2}\right]$, then $\gamma_{1}-\gamma_{2}=d \alpha$. But, $d \alpha \perp\left(\gamma_{1}-\gamma_{2}\right)$, thus $d \alpha=0$, so $\gamma_{1}=\gamma_{2}$. Hence $h(\omega)$ is unique in $H^{r}(M, \mathbf{R})$.

From the proof of the Hodge theorem, we see that $\operatorname{dim} \mathcal{H}^{r}(M)<$ $+\infty$ if M is finite, so we get that $\operatorname{dim} H^{r}(M, \mathbf{R})<+\infty$ if M is compact.

Let M be a compact, oriented, differentiable manifold of dimension m. We define a bilinear function

$$
H^{r}(M, \mathbf{R}) \times H^{m-r}(M, \mathbf{R}) \rightarrow \mathbf{R}
$$

by sending

$$
([\phi],[\psi]) \mapsto \int_{M} \phi \wedge \psi .
$$

Observe that the bilinear map is well-defined, i.e. if $\phi_{1}=$ $p h i+d \xi$, then, by Stoke's theorem,

$$
\int_{M} \phi_{1} \wedge \psi=\int_{M} \phi \wedge \psi
$$

Theorem. Poincare duality theorem. The bilinear function above is non-singular pairing and consequently determines isomorphisms of $\mathcal{H}^{m-r}(M)$ with the dual space of $\mathcal{H}^{r}(M)$:

$$
H^{m-r}(M, \mathbf{R}) \simeq\left(H^{r}(M, \mathbf{R})\right)^{*}
$$

In fact, given a non-zero cohomology class $[\phi] \in H^{r}(M, \mathbf{R})$, we must find a non-zero cohomology class $[\psi] \in H^{m-r}(M, \mathbf{R})$, such that $([\phi],[\psi]) \neq$ 0 . Choose a Riemannian structure. We can assume that ϕ is harmonic, and $\phi \neq$. Since $* \triangle=\triangle *$, we have that $* \phi$ is also harmonic, and $* \phi \in H^{m-r}(M, \mathbf{R})$. Now,

$$
([\phi],[\psi])=\int_{M} \phi \wedge * \phi=\|\phi\|^{2} \neq 0 .
$$

So the statement is proved.
The r-th Betti number $\beta_{r}(M)$ of (M, g) is defined by

$$
\beta_{r}(M)=\operatorname{dim} H^{r}(M, R)=\operatorname{dim} \mathcal{H}^{r} .
$$

Then we have

$$
\beta_{r}(M)=\beta_{m-r}(M) .
$$

The Euler-Poincare characteristic number $\chi(M)$ of (M, g) is defined by

$$
\chi(M)=\sum_{r=0}^{m}(-1)^{r} \operatorname{dim} H^{r}(M, R)=\sum_{r=0}^{m}(-1)^{r} \beta_{r}(M) .
$$

Then, we have the statement that if $m=\operatorname{dim} M$ is odd, then $\chi(M)=$ $0 .$.

Another statement we can prove(will be proved later) is Let (M, g) be a compact oriented Riemannian manifold without boundary. If its Ricci curvature is positive, then

$$
\beta_{1}(M)=\beta_{m-1}(M)=0 .
$$

