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ABSTRACT

This dissertation focuses on three research topics: (i) the study of the scalar auxiliary variable

(SAV) method for the surface Cahn-Hilliard equations, (ii) the development of a numerical method

for the Navier-Stokes-Cahn-Hilliard (NSCH) equations on surfaces, and (iii) applications of the

NSCH model in biomembranes.

The SAV formulation of the Cahn-Hilliard equations is combined with an adaptive time stepping

and a geometrically unfitted trace finite element method (TraceFEM). The stability is proven to

hold in an appropriate sense for both first- and second-order in time variants of the method. The

performance of our SAV method is illustrated through a series of numerical experiments, including

a systematic comparison with a stabilized semi-explicit method.

A thermodynamically consistent phase-field model is introduced for a two-phase flow of incom-

pressible viscous fluids. The model allows for a non-linear dependence of fluid density on the phase-

field order parameter. Driven by applications in biomembrane studies, the model is formulated for

tangential flows of fluids constrained to a surface and consists of the Navier–Stokes–Cahn–Hilliard

type equations. A fully discrete time-stepping scheme with the following properties is presented: (i)

the scheme decouples the fluid and phase-field equation solvers at each time step, (ii) the resulting

two algebraic systems are linear, and (iii) the numerical solution satisfies the same stability bound

as the solution of the original system under some restrictions on the discretization parameters.

Numerical examples are provided to demonstrate the stability, accuracy, and overall efficiency of

the approach.

Finally, the NSCH model is employed for the quantitative validation of domain coarsening,

fluidity, and fusogenicity of multi-component vesicles.

This dissertation incorporates sections from the following articles, with the consent of collab-

orating authors, and adhering to publisher policies: Palzhanov, Zhiliakov, Quaini, and Olshanskii

(2021) [88]; Olshanskii, Palzhanov, and Quaini (2023) [78]; Wang, Palzhanov, Quaini, Olshanskii,

and Majd (2022) [111]; Wang, Palzhanov, Dang, Quaini, Olshanskii, and Majd (2023) [110].
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1 Introduction

Phase-field modeling is a mathematical and computational approach used to study and numer-

ically simulate the evolution of the multi-phase systems. The evolution of such systems is often

characterized by abrupt phase transitions. This poses a challenge for analysis and simulations

due to discontinuities or singularities in the solution to the corresponding mathematical problem.

Phase-field modeling addresses this challenge by introducing a smooth and continuous order pa-

rameter that varies seamlessly across the domain. This order parameter enables the representation

of different phases without the development of sharp interfaces. The convenience offered by hav-

ing smooth order parameter, in addition to the possibility of rigorous mathematical analysis, has

made phase-field methods highly successful in modeling multi-phase problems. The evolution of the

phase-field variables is usually driven by the gradient flow of a total free energy functional. How-

ever, constructing efficient, robust, and energy-stable numerical schemes for gradient flow problems

is not a trivial task. If one is not careful in designing a numerical scheme that preserves the energy

dissipation mechanism inherent in gradient flows, an extremely small time step might be required

to dissipate energy, resulting in an inefficient scheme. For a comprehensive review of numerical

schemes for gradient flows, we refer to [96]. One effective numerical technique for a broad range of

gradient flows is the scalar auxiliary variable (SAV) method [95], which enables the construction of

efficient and accurate time discretization schemes. Since its introduction in [95], the SAV method

has been developed and applied to various problems, including epitaxial thin film growth models

[19], models for single- and multi-component Bose-Einstein condensates [120], and the square phase

field crystal model [108].

SAV methods for the Cahn–Hilliard equation have been extensively studied in volumetric do-

mains. Convergence and error analysis for a first-order semi-discrete SAV scheme are conducted

in [94]. An unconditionally energy-stable and second-order accurate SAV algorithm is presented

in [17]. Error estimates for first and second-order fully discretized SAV schemes, utilizing a mixed

finite element discretization for the spatial variables, are derived in [18]. An improvement over the
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standard SAV method is represented by a class of extrapolated and linearized SAV methods based

on Runge–Kutta time integration [5]. These methods can achieve arbitrarily high-order accuracy

for the time discretization of the Cahn–Hilliard problem. To the best of our knowledge, it is the

first time that the SAV method is applied to the surface Cahn–Hilliard problem. Other surface

problems are treated in [102, 103].

In early versions of the SAVmethod [95, 96], numerical efficiency for the Cahn–Hilliard equations

is achieved through the computationally cheap invertibility of the discrete biharmonic operator in

simple geometric settings discretized by, e.g., a tensor product finite difference method. For the

equations posed on surfaces, such fast solvers are not available in general.

In this work, for the first time, SAV methods are combined with a geometrically unfitted fi-

nite element method for the numerical solution of the Cahn-Hilliard problem posed on a surface.

The approach builds on earlier work on a unfitted FEM for elliptic PDEs posed on surfaces [84]

called TraceFEM. Unlike some other geometrically unfitted methods for surface PDEs, TraceFEM

employs sharp surface representation. The surface can be defined implicitly and no knowledge of

the surface parametrization is required. This method allows to solve for a scalar quantity or a

vector field on a surface, for which a parametrization or triangulation is not required. In [102, 103]

instead, the authors have opted for a fitted finite element method, combined with a exponential-

type SAV scheme. We consider both first-order and second-order backward differentiation formula

schemes and prove their energy stability. Additionally, we present a time-adaptive version of the

second-order scheme, drawing inspiration from [33]. Implementation details are provided for all the

proposed schemes.

Furthermore, we investigate the coupling of the Cahn-Hilliard equations with the Navier-Stokes

equations. The classical diffuse-interface description of a binary incompressible fluid with density-

matched components is known as Model H [47], constituting the Navier–Stokes–Cahn–Hilliard

(NSCH) system. Several generalizations to the case of variable density components have been

presented in the literature [2, 4, 11, 21, 22, 34, 35, 73, 98]. It is important to note that some
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of these models relax the incompressibility constraint to quasi-compressibility, and not all mod-

els satisfy Galilean invariance, local mass conservation, or thermodynamic consistency. In this

work, we specifically focus on the generalization of Model H, initially presented in [2]. This model

demonstrates thermodynamic consistency when the density of the mixture depends linearly on

the phase-field variable (concentration or volume/surface fraction). We introduce an extension of

the model presented in [2], ensuring thermodynamic consistency for a general monotone relation

between density and the phase-field variable.

Motivated by applications in biomembranes, we apply this new model to simulate the dynamics

of two-phase flows on closed smooth surfaces of arbitrary shapes. While computational studies

extensively explore multi-component fluid flows in planar and volumetric domains (see, e.g., [40,

71, 77, 114, 118] and references therein), the research of the NSCH systems on manifolds is somewhat

limited. This lack of studies arises due to the inherent challenges in numerically solving equations on

general surfaces, involving the discretization of tangential differential operators and the approximate

recovery of potentially complex shapes. In [76], the authors tackle these challenges by introducing

a stream function formulation, decoupling the surface Navier–Stokes problem from the surface

Cahn-Hilliard problem, and employing a parametric finite element approach. Using an alternative

approach, Yang and Kim [113] experimented with a finite difference method on staggered marker-

and-cell meshes for the NSCH system posed on surface embedded in the mesh.

We continue studying the TraceFEM for the simulation of two-phase incompressible flow on

surfaces using our generalization of Model H. TraceFEM has been extended to the surface Stokes

problem in [79, 81] and the surface Cahn–Hilliard problem in [115]. Additionally, ongoing work is

being conducted on TraceFEM for equations on evolving surfaces [85, 80].

While the numerical analysis of diffuse-interface models for two-phase fluids with matching den-

sities can rely significantly on established analyses for the incompressible Navier–Stokes equations

and the Cahn–Hilliard equations alone [29, 56, 43], designing energy-stable, efficient, and consistent

discretizations for diffuse-interface models involving non-matching densities turns out to be more

challenging.
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The present study contributes to the field with a first order in time, linear, and decoupled FE

scheme for our generalization of the model from [2]. One advantage of the proposed scheme is that

it neither modifies the momentum equation nor alters the advection velocity. We prove that the

scheme is stable under a mild time-step restriction. Moreover, the analysis tracks the dependence

of the estimates on ϵ, the critical model parameter that defines the width of the transition region

between phases. The fact that the model is posed on arbitrary-shaped closed smooth surfaces and

the use of an unfitted finite element method for spatial discretization add some further technical

difficulties to the analysis. However, apart from these extra technical details, the general line

of arguments can be simplified to a Euclidian setting or extended to other spatial discretization

techniques.

Finally, we explore some applications of the proposed NSCH model in multicomponent lipid

vesicles. Biological membranes exhibit heterogeneity, a crucial aspect influencing their function-

ality. The phenomenon of domain formation in membranes has been leveraged to create in-

novative materials with diverse surfaces. When applied to drug delivery, these heterogeneous

membrane materials have demonstrated distinct advantages over their homogeneous counterparts

[8, 91]. However, the efficient design of such heterogeneous membrane-based materials necessitates

computer-aided modeling capable of predicting lipid domain formation and dynamics on a given

membrane composition reliably and quantitatively. To enhance the accuracy of predictions, con-

sidering membrane viscosity differences between liquid ordered and disordered phases, we employ

the Navier–Stokes–Cahn–Hilliard model coupled with innovative numerical methods. To validate

the model, we compare its numerical results with experimental results on Giant Unilamellar Vesi-

cles (GUVs) featuring ternary membrane compositions. Also, we study the fusogenicity of cationic

liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase

separation to control this surface distribution. It is found that concentrating the cationic lipids into

small surface patches on liposomes, through phase-separation, can enhance liposome’s fusogenicity.

Further concentrating these lipids into smaller patches on the surface of liposomes led to an in-

creased level of fusogenicity. These experimental findings are supported by numerical simulations
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using the NSCH model.

The rest of the dissertation is organized as follows:

Chapter 2. We give some necessary basics of tangential calculus on smooth surfaces embedded

in R3.

Chapter 3. We introduce our phase field models on surfaces: the Cahn-Hilliard model and the

Navier-Stokes-Cahn-Hilliard model. Details of these models, along with their energy dissipation

properties, are presented, as shown in [88, 115].

Chapter 4. We develop a numerical method using a scalar auxiliary variable for the Cahn-

Hilliard equations and prove its numerical stability. Also, we examine the time adaptive algorithm

for this method. Concerning the NSCH model, we describe a decoupled finite element method and

provide its analysis [88, 78].

Chapter 5. We present a numerical assessment of the numerical methods and models developed

in the thesis. For the CH model, we report results on convergence, phase separation simulation,

and engage in a discussion on time adaptivity. Reports on the NSCH model include convergence

test and simulations of the Kelvin–Helmholtz and Rayleigh–Taylor instabilities [88, 78].

Chapter 6. The developed models and methods are applied to simulate phase separation

and domain formation in multicomponent lipid bi-layers. We compare the numerical results to

experimental findings on giant unilamellar vesicles (GUV) obtained through fluorescence microscopy

imaging. Additionally, we employ our model to investigate the electrostatic interaction between

small unilamellar vesicles (SUV) and GUVs [111, 110].

Chapter 7. In conclusion, we offer some final remarks on the introduced phase-field models

on surfaces, reflecting on their significance, potential applications, and avenues for future research.
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2 Tangential calculus on manifolds

In this chapter we introduce some basics of tangential calculus for manifolds. Consider Γ ⊂

Rn, n ⩾ 3, a (n − 1)-dimensional closed, smooth, simply connected manifold. Our main interest

is the case n = 3, that is why we will proceed with this case, but most of the concepts and the

analysis applies for general n. Concerning the smoothness conditions for Γ, we note that it will

sufficient to assume that the surface Γ has C3 smoothness. In the remainder, we always assume

that this holds. For a more in-depth exploration of this topic, see [51].

2.1 The tangential operators

The outward pointing normal vector on Γ is denoted by n = n(x, t), and

P = P(x) := I− n(x)n(x)T

for x ∈ Γ is the orthogonal projection onto the tangent plane.

In a neighborhood O(Γ) of Γ, the closest point projection p : O(Γ) → Γ is well defined. For

a scalar function p : Γ → R or a vector function u : Γ → R3, we define pe = p ◦ p : O(Γ) → R,

ue = u ◦p : O(Γ)→ R3, extensions of p and u from Γ to its neighborhood O(Γ) along the normal

directions. On Γ, it holds ∇pe = P∇pe and ∇ue = ∇ueP, with ∇u := (∇u1 ∇u2 ∇u3)T ∈ R3×3

for vector functions u. The surface gradient and covariant derivatives on Γ are then defined as

∇Γp = P∇pe and ∇Γu := P∇ueP. Note that the definitions of surface gradient and covariant

derivatives are independent of a particular smooth extension of p and u off Γ. The reason why we

consider normal extensions is because they are convenient for the error analysis.
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For scalar functions f, g and vector functions u,v : Γ→ Rn we have the following product rules:

∇Γ(fg) = g∇Γf + f∇Γg (2.1)

∇Γ(u · v) = vT∇Γu+ uT∇Γv, if Pu = u, Pv = v, (2.2)

∇Γ(fu) = f∇Γu+Pu∇Γf. (2.3)

The surface divergence operators for a vector g : Γ→ R3 and a tensor A : Γ→ R3×3 are defined

as:

divΓv := tr(∇Γv) = tr(P(∇v)P) = tr(P(∇v))) = tr((∇v)P), (2.4)

divΓA :=
(
divΓ(e

T
1 A), divΓ(e

T
2 A), divΓ(e

T
3 A)

)T
. (2.5)

with ei the ith standard basis vector in R3.

For a closed smooth surface Γ, the integration by parts identity needed to devise weak formu-

lations reads:

∫
Γ
vdiv Γf ds = −

∫
Γ
f · ∇Γv ds+

∫
Γ
κvf · n ds, for f ∈ H1(Γ)3, v ∈ H1(Γ), (2.6)

here κ is the sum of principle curvatures; see, e.g. [38, Appendix A].
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3 Mathematical models

3.1 The Cahn–Hilliard model posed on surfaces

On Γ we consider a heterogeneous mixture of two species with mass concentrations ci = mi/m,

i = 1, 2, wheremi are the masses of the components andm is the total mass. Sincem = m1+m2, we

have c1 + c2 = 1. Let c1 be the representative concentration c, i.e., c = c1. Concentration c ∈ [0, 1]

is a conserved quantity, moreover let ρ be the constant total density of the system ρ = m/S, where

S is the surface area of Γ. Phase separation in this two component system can be modelled by the

Cahn–Hilliard equation [16, 15].

In order to describe the evolution of the concentration profile c(x, t), we consider the conserva-

tion law:

ρ
∂c

∂t
+ divΓj = 0 on Γ× (0, T ], (3.1)

where ρ is the density of the system and j is a diffusion flux. The flux j is defined according to

Fick’s law, which is empirical:

j = −M∇Γµ on Γ, µ =
δf

δc
, (3.2)

where M is the so-called mobility coefficient (see [60]) and µ is the chemical potential, which is de-

fined as the functional derivative of the total specific free energy f with respect to the concentration

c. Thus, we introduce the total specific free energy:

f(c) = f0(c) +
1

2
ϵ2|∇Γc|2. (3.3)

where f0(c) is the free energy per unit surface, while the second term in (3.3) represents the in-

terfacial free energy based on the concentration gradient. We recall that in order to have phase
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separation, f0 must be a non-convex function of c. A fundamental fact of the chemical thermo-

dynamics is that even when phase separation has occurred, there is a limited miscibility between

the components. In model (3.1)–(3.3), the interface between the two components is a layer of

size ϵ where thermodynamically unstable mixtures are stabilized by a gradient term in the energy.

Further details concerning the thermodynamics of partially miscible mixtures can be found, for

example, in [60].

By combining eq. (3.1), (3.2), and (3.3), we obtain the surface Cahn–Hilliard equation:

ρ
∂c

∂t
− divΓ

(
M∇Γ

(
f ′
0 − ϵ2∆Γc

))
= 0 on Γ. (3.4)

Eq. (3.4) is a fourth-order equation, so casting it in a weak form would result in the presence of

second-order spatial derivatives. From the numerical point of view, it is beneficial to avoid higher

order spatial derivatives. Hence, it is common to rewrite eq. (3.4) in mixed form, i.e., as two coupled

second-order equations:

ρ
∂c

∂t
− divΓ (M∇Γµ) = 0 on Γ, (3.5)

µ = f ′
0 − ϵ2∆Γc on Γ. (3.6)

System (3.5)–(3.6) needs to be supplemented with the definitions of mobility M and free energy

per unit surface f0. A possible choice for M is given by

M = M(c) = c(1− c). (3.7)

This mobility is referred to as a degenerate mobility, since it is not strictly positive. We note

that in many of the existing analytic studies, as well as numerical simulations, mobility is assumed

to be constant. At the same time, concentration dependent mobility was already considered by

Cahn [15] and (3.7) is also a popular choice for numerical studies. Although it is known that

the dependence between the mobility on the concentration difference produces important changes
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during the coarsening process, only a few authors consider more complex mobility functions; see,

e.g., [119]. In the absence of studies on the appropriate mobility function for lateral phase separation

in biological membranes, here we choose to use (3.7). Again, a common choice for f0 is given by

f0(c) =
ξ

4
c2(1− c)2, (3.8)

where ξ defines the barrier height, i.e., the local maximum at c = 1/2 [27]. We set ξ = 1 in all of

our simulations. With mobility as in (3.7) and specific free energy as in (3.8), problem (3.5)–(3.6)

is a coupled system of nonlinear PDEs posed on Γ.

The Cahn–Hilliard equations define gradient flows of the energy functional E(u) =
∫
Γ f(u) ds

in H−1(Γ) (a dual space to H1(Γ)). More precisely, the following energy minimization property

holds:

d

dt
E(c) = −

∫
Γ
|M(c)∇Γ(ϵ

2∆Γc+ f ′(c))|2 ds < 0. (3.9)

3.2 The Navier–Stokes–Cahn–Hilliard model posed on surfaces

For Navier-Stokes-Cahn-Hilliard model, the definition of c is modified as follows: On an arbitrary-

shaped closed, smooth, and stationary surface Γ we consider a heterogeneous mixture of two species

with surface fractions ci = Si/S, i = 1, 2, where Si are the surface area occupied by the components

and S is the surface area of Γ. Since S = S1+S2, we have c1+ c2 = 1. Let c1 be the representative

surface fraction, i.e., c = c1. Moreover, let mi be the mass of component i and m is the total mass.

Notice that density of the mixture can be expressed as ρ = m
S = m1

S1

S1
S + m2

S2

S2
S . Thus,

ρ = ρ(c) = ρ1c+ ρ2(1− c), (3.10)
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where densities ρ1, ρ2 > 0 are given constants. Similarly, for the dynamic viscosity of the mixture

we can write

η = η(c) = η1c+ η2(1− c), (3.11)

where η1 > 0 and η2 > 0 are the constant dynamic viscosities of the two species.

On Γ, we consider the surface rate-of-strain tensor [41] given by

Es(u) :=
1

2
(∇Γu+ (∇Γu)

T ). (3.12)

The classical phase-field model to describe the flow of two immiscible, incompressible, and

Newtonian fluids is the so-called Model H [47]. One of the fundamental assumptions for Model H

is that the densities of both components are matching. Several extensions have been proposed to

account for the case of non-matching densities; see Chapter 1. Here, we restrict our attention to

a thermodynamically consistent generalization of Model H first presented in [2]. For surface based

quantities the model reads:

ρ∂tu+ ρ(∇Γu)u−P divΓ(2ηEs(u)) +∇Γp = −σγc∇Γµ+M
dρ

dc
(∇Γu)∇Γµ+ f , (3.13)

divΓu = 0, (3.14)

∂tc+ divΓ(cu)− divΓ (M∇Γµ) = 0, (3.15)

µ =
1

ϵ
f ′
0 − ϵ∆Γc, (3.16)

on Γ × (0, T ], where T is the end of a time interval of interest. Here, u is the surface averaged

tangential velocity u = cu1 + (1 − c)u2, density is given by (3.10) and viscosity by (3.11), σγ is

line tension and µ is the chemical potential defined in (3.16). A force vector f , with f · n = 0,

is given. We note that system (3.13)–(3.16) is fully tangential, since surface Γ is stationary. For

a comprehensive discussion of the related the Navier–Stokes and the Cahn–Hilliard equations on

surfaces we refer, for example, to [51, 26, 24].
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Problem (3.13)–(3.16) has only one additional term with respect to Model H: the middle term

at the right-hand side in eq. (3.13). Notice that this term vanishes in the case of matching densities

since dρ
dc = (ρ1 − ρ2). However, the term is crucial for thermodynamic consistency when the

densities do not match and it can be interpreted as additional momentum flux due to diffusion of

the components driven by the gradient of the chemical potential.

In practice, we are interested in more general relations than (3.10) between ρ and c, since

depending on the choice of f0(c) (and because of numerical errors while computing) the order

parameter may not be constrained in [0, 1] and so ρ and η based on (3.10) may take physically

meaningless (even negative) values. Since we do not see how to show the thermodynamic consistency

of (3.13)–(3.16) for non-linear ρ(c), we propose a further modification. Without the loss of generality

let ρ1 ≥ ρ2. For a general dependence of ρ on c, it is reasonable to assume that ρ is a smooth

monotonic function of c, i.e., dρ
dc ≥ 0 (for ρ1 ≥ ρ2), and so we can set

dρ

dc
= θ2. (3.17)

Then, we replace (3.13) with

ρ∂tu+ ρ(∇Γu)u−PdivΓ(2ηEs(u)) +∇Γp = −σγc∇Γµ+Mθ(∇Γ(θu) )∇Γµ+ f . (3.18)

The updated model (3.18),(3.14)–(3.16) obviously coincides with (3.13)–(3.16) for ρ(c) from (3.10),

but exhibits thermodynamic consistency for a general monotone ρ–c relation as we show below.

The consistency is preserved if M is a non-negative function of c rather than a constant coefficient.

Thermodynamic consistent extensions of (3.13)–(3.16) for a generic smooth ρ(c) (no monotonicity

assumption) were also considered in [1, 3] for the purpose of well-posedness analysis. Those ex-

tensions introduce yet more term(s) in the momentum equation, so for computational needs and

numerical analysis purpose we opt for (3.18).

From now on, we will focus on problem (3.18), (3.14)–(3.16). This is the Navier–Stokes–Cahn–

Hilliard (NSCH) system that needs to be supplemented with the definitions of mobility M and
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free energy per unit area f0. Following many of the existing analytic studies, as well as numerical

studies, we assume the mobility to be a strictly positive constant (i.e., independent of c). As for

f0, we continue to use (3.8).

For the numerical method, we need a weak (integral) formulation. We define the spaces

VT := {u ∈ H1(Γ)3 | u · n = 0 }, E := {u ∈ VT | Es(u) = 0 }. (3.19)

We define the Hilbert space V0
T as an orthogonal complement of E in VT (hence V0

T ∼ VT /E),

and recall the surface Korn’s inequality [51]:

∥u∥H1(Γ) ≤ CK∥Es(u)∥, ∀u ∈ V0
T . (3.20)

In (3.20) and later, we use short notation ∥·∥ for the L2-norm on Γ. Finally, we define L2
0(Γ) := { p ∈

L2(Γ) |
∫
Γ p ds = 0 }. To devise the weak formulation, one multiplies eq. (3.18) by v ∈ VT , eq. (3.14)

by q ∈ L2(Γ), eq. (3.15) by v ∈ H1(Γ), and eq. (3.16) by g ∈ H1(Γ) and integrates all the equations

over Γ. For eq. (3.18) and (3.15), one employs the integration by parts identity (2.6). Identity

(2.6) is applied to the second term in (3.15) (i.e., g = cu), which leads to no contribution from

the curvature term since u is tangential, and to the third term in (3.15) (i.e., g = M∇Γµ), which

makes the curvature term vanish as well. For a similar reason (component-wise), the curvature

term vanishes also when identity (2.6) is applied to the diffusion term in (3.18).

The weak (integral) formulation of the surface NSCH problem (3.18), (3.14)–(3.16) reads: Find
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(u, p, c, µ) ∈ VT × L2
0(Γ)×H1(Γ)×H1(Γ) such that

∫
Γ
(ρ∂tu · v + ρ(∇Γu)u · v + 2ηEs(u) : Es(v)) ds−

∫
Γ
p divΓv ds = −

∫
Γ
σγc∇Γµ · v ds

+

∫
Γ
M(∇Γ(θu))(∇Γµ) · (θv) ds+

∫
Γ
f · v ds, (3.21)∫

Γ
q divΓu ds = 0, (3.22)∫

Γ
∂tc v ds−

∫
Γ
cu · ∇Γv ds+

∫
Γ
M∇Γµ · ∇Γv ds = 0, (3.23)∫

Γ
µ g ds =

∫
Γ

1

ϵ
f ′
0(c) g ds+

∫
Γ
ϵ∇Γc · ∇Γg ds, (3.24)

for all (v, q, v, g) ∈ VT × L2(Γ)×H1(Γ)×H1(Γ).

Lemma 3.1. The following energy equality holds for a smooth solution to (3.21)–(3.24):

d

dt

∫
Γ

(
ρ

2
|u|2 + σγ

(
1

ϵ
f0 +

ϵ

2
|∇Γc|2

))
ds+

∫
Γ
2η|Es(u)|2ds+

∫
Γ
σγM |∇Γµ|2ds =

∫
Γ
f ·u ds. (3.25)

In other words, model (3.18), (3.14)–(3.16) is thermodynamically consistent, i.e., the system is

dissipative for f = 0.

Proof. We test (3.21) with v = u, (3.22) with q = p, (3.23) with v = µ, and use (3.16). The first

two terms in eq. (3.21) tested with v = u can be handled as follows:

∫
Γ
(ρ∂tu · u+ ρ(∇Γu)u · u) ds =

∫
Γ

(
ρ

2
∂t|u|2 −

1

2
divΓ(ρu)|u|2

)
ds

=

∫
Γ

(
1

2
∂t(ρ|u|2)−

1

2
(∂tρ+ divΓ(ρu)) |u|2

)
ds.

Using a generic ρ = ρ(c), (3.17), and (3.14) we get

∂tρ+ divΓ(ρu) =
dρ

dc
(∂tc+ divΓ(cu)) = θ2 (∂tc+ divΓ(cu)) .
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With the help of (3.15), this yields

∫
Γ
(∂tρ+ divΓ(ρu)) |u|2ds = −

∫
Γ
M(∇Γµ) · (∇Γ|θu|2)ds

= −2
∫
Γ
M(∇Γ(θu))(∇Γµ) · (θu)ds,

which will cancel with the second term at the right-hand side in eq. (3.21) tested with v = u. Thus,

from eq. (3.21) tested with v = u, we obtain the following equality:

1

2

d

dt

∫
Γ
ρ|u|2ds+

∫
Γ
2η|Es(u)|2ds = −

∫
Γ
σγc∇Γµ · u ds+

∫
Γ
f · u ds, (3.26)

where we have also used eq. (3.22) tested with q = p. From eq. (3.23) tested with v = µ and

multiplied by σγ , we get:

∫
Γ
σγ(u · ∇Γc)µds = −

∫
Γ
σγ(u · ∇Γµ) c ds = −

∫
Γ
σγ∂tc µ ds−

∫
Γ
σγM |∇Γµ|2ds. (3.27)

The first term on the right-hand side can be handled using (3.16) as follows:

∫
Γ
∂tc µ ds =

∫
Γ
∂tc

(
1

ϵ
f ′
0 − ϵ∆Γc

)
ds =

d

dt

∫
Γ

(
1

ϵ
f0 +

ϵ

2
|∇Γc|2

)
ds.

Plugging this into (3.27) and then using what we get in (3.26), we obtain the energy balance

(3.25).
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4 Numerical methods

In this chapter, we introduce the numerical methods employed to address our computational

challenges. For the Cahn-Hilliard equations (3.5) – (3.6), we present two distinct solving approaches.

The first method incorporates an additional stabilization term, extensively examined in [115], and is

applied to tackle the Cahn-Hilliard component of the decoupled NSCH problem. The second method

introduces a scalar auxiliary variable, it is a compelling alternative to the stabilized method.

4.1 Stabilized method for the Cahn–Hilliard model

For the numerical method presented in this chapter, we need a variational formulation of surface

problem (3.5)-(3.6). To devise it, we multiply (3.5) by v ∈ H1(Γ) and (3.6) by q ∈ H1(Γ), integrate

over Γ and employ the integration by parts identity (2.6). This leads to the formulation: Find

(c, µ) ∈ H1(Γ)×H1(Γ) such that

∫
Γ
ρ
∂c

∂t
v ds+

∫
Γ
M∇Γµ∇Γv ds = 0, (4.1)∫

Γ
µ q ds−

∫
Γ
f ′
0(c) q ds−

∫
Γ
ϵ2∇Γc∇Γq ds = 0, (4.2)

for all (v, q) ∈ H1(Γ)×H1(Γ).

4.1.1 Space discretization

For the space discretization of the surface Cahn–Hilliard problem, as well as Navier–Stokes–

Cahn–Hilliard system, we apply the trace finite element method (TraceFEM) [83, 115, 88]. This

is an unfitted method that allows to solve for scalar or vector fields on surface Γ without the need

for a parametrization or triangulation of Γ itself. As typical for unfitted methods, TraceFEM relies

on a triangulation of a bulk computational domain Ω (Γ ⊂ Ω holds) into shape regular tetrahedra

“blind” to the position of Γ. Surface Γ is defined implicitly as the zero level set of a sufficiently

smooth (at least Lipschitz continuous) function ϕ, i.e., Γ = {x ∈ Ω : ϕ(x) = 0}, such that
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|∇ϕ| ≥ c0 > 0 in a 3D neighborhood of the surface.

Let Th be the collection of all tetrahedra, such that Ω = ∪T∈ThT . Typically, we refine the grid

Th near Γ. The subset of tetrahedra that have a nonzero intersection with Γ is denoted by T Γ
h .

The domain formed by all tetrahedra in T Γ
h is denoted by ΩΓ

h. On T Γ
h we use a standard finite

element space of continuous functions that are piecewise-polynomials of degree 1. Obviously, other

choices of finite elements are possible (see, e.g., [36]). This bulk (volumetric) finite element space

is denoted by Vh:

Vh = {v ∈ C(ΩΓ
h) : v ∈ P1(T ) for any T ∈ T Γ

h }.

Finally, to define geometric quantities and for the purpose of numerical integration, we approximate

Γ with a “discrete” surface Γh, which is defined as the zero level set of a P1 Lagrangian interpolant ϕh

for level set function ϕ on the given mesh. The (·, ·) inner product and ∥·∥ norm further denotes the

L2(Γh) inner product and norm. The approximate normal vector field nh = ∇ϕh/|∇ϕh| is piecewise

smooth on Γh. The orthogonal projection into tangential space is given by Ph(x) = I−nh(x)n
T
h (x)

for almost all x ∈ Γh. For v ∈ Vh, the surface gradient on Γh is easy to compute from the bulk

gradient ∇Γhv = Ph∇v.

4.1.2 Semi-implicit stabilized TraceFEM for the Cahn–Hilliard model

For time-stepping we apply a semi-implicit stabilized schemes from [97, 115]. At time instance

tk = k∆t, with time step ∆t = T
N , ck denotes the approximation of the concentration c(tk,x); similar

notation is used for other quantities of interest. Further, we need second order approximations of

first and second time derivatives [97, 115]:

[c]kt =
3ck − 4ck−1 + ck−2

2∆t
, [c]ktt =

ck+1 − 2ck + ck−1

|∆t|2
, (4.3)

and linear extrapolation for f ′
0 at time tk: f̃ ′

0(c)
k = 2f ′

0(c
k−1) − f ′

0(c
k−2). Same notations for

differences and extrapolation will be used with other variables.

The finite element discretizations are based on the weak formulation of the surface Cahn–Hilliard
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problem (4.1)–(4.2). The semi-implicit stabilized TraceFEM for the Cahn–Hilliard equations reads:

Given ck−1
h , ck−2

h ∈ Vh and µk−1
h , µk−2

h ∈ Vh, find ckh, µ
k ∈ Vh solving

∫
Γh

ρ [ch]
k
t vh ds+

∫
Γh

M(c̃k)∇Γh
µk
h · ∇Γh

vh ds+ h

∫
ΩΓ

h

(nh · ∇µk
h)(nh · ∇vh) dx︸ ︷︷ ︸
J1

+

∫
Γh

µk
h − βs|∆t|2 [ch]k−1

tt︸ ︷︷ ︸
J2

−f̃ ′
0(ch)

k

 qh ds−
∫
Γh

ϵ2∇Γc
k
h∇Γqh ds

− ϵ2h

∫
ΩΓ

h

(nh · ∇ckh)(nh · ∇qh) dx︸ ︷︷ ︸
J3

= 0

(4.4)

for all vh ∈ Vh and qh ∈ Vh, k = 2, 3, . . . , N . For k = 1, an obvious first order modification is used

and we set βs = 1.

In the equation (4.4), three stabilization terms are introduced. J1 and J3 are included to deal

with possible small cuts of tetrahedra from T Γ
h by the surface [36]. The terms are consistent up to

geometric errors related to the approximation of Γ by Γh and n by nh in the following sense: any

smooth solution c of equations (4.4) can be always extended off the surface along (quasi)-normal

directions so that n · ∇c = 0 in ΩΓ
h. The stabilization term J2 with an user defined parameter βs is

included to relax the stability restriction for the time step ∆t. It introduces the consistency error

of second order in time. This stabilization term is an important ingredient of the formulation (4.4),

and with SAV method presented next we seek remove it.

4.2 A scalar auxiliary variable FEM for the Cahn–Hilliard equations

Straightforward calculations show that for constant mobility M , the Cahn–Hilliard problem

defines gradient flows of the energy functional

E(c) =

∫
Γ
f(c) ds =

∫
Γ

1

2
ϵ2|∇Γc|2 ds+ E1(c), with E1(c) =

∫
Γ
f0(c) ds, (4.5)
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in H−1(Γ) (a dual space to H1(Γ)). For the degenerate mobility, the Cahn–Hilliard problem

is known to define gradient flows in a weighted-Wasserstein metric [70]. Incorporating various

definitions of mobility M(c) into the Cahn-Hilliard equations can exert a notable impact on the

dynamic behavior of c, even without altering the energy landscape. Thanks to gradient structure

mentioned above, the following energy dissipation property holds:

d

dt
E(c) < 0. (4.6)

A time discretization scheme for problem (3.5),(3.6) is said to be energy stable if it satisfies

a discrete energy dissipation law, i.e., it needs to adhere to fundamental property (4.6). In this

paper, we construct an energy stable scheme for (3.5),(3.6) using the scalar auxiliary variable (SAV)

approach. See [96] for a review of SAV methods for a general class of gradient flow problems. As

the name suggests, this method introduces a scalar auxiliary variable

r(t) =
√

E1(c(t)) + C, (4.7)

where a constant C ≥ 0 can be added to ensure that r(t) is well defined. Without loss of generality,

for the rest of the paper we will assume that E1(c) > 0, i.e., C = 0. Then, the system (3.5),(3.6)

can be rewritten as follows:

ρ
∂c

∂t
= divΓ (M(c)∇Γµ) on Γ× (0, T ], (4.8)

µ =
r(t)√
E1(c)

f ′
0 − ϵ2∆Γc on Γ× (0, T ], (4.9)

dr

dt
=

1

2
√

E1(c)

∫
Γ
f ′
0(c)

∂c

∂t
ds on Γ× (0, T ]. (4.10)

System (4.8)-(4.10) represents the starting point for the construction of our energy stable SAV

scheme.

For the numerical method, we need a variational formulation of surface problem (4.8)-(4.10). We
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will write the weak formulation similar to (4.1)–(4.2), which then reads: Find (c, µ) ∈ H1(Γ)×H1(Γ)

such that

∫
Γ
ρ
∂c

∂t
v ds = −

∫
Γ
M(c)∇Γµ∇Γv ds, (4.11)∫

Γ
µ q ds =

∫
Γ

r(t)√
E1(c)

f ′
0(c) q ds+

∫
Γ
ϵ2∇Γc∇Γq ds, (4.12)

for all (v, q) ∈ H1(Γ)×H1(Γ), while (4.10) remains unchanged.

The majority of the papers available in the literature on SAV methods for the Cahn-Hilliard

problem employs constant mobility. Nevertheless, degenerate mobility has been considered in many

practical applications (see, e.g., [115]) and is non-trivial to handle numerically (see, e.g., [39] for

recent advances). The only paper that proposes a SAV approach for the Cahn–Hilliard equation

with degenerate mobility is [49].

4.2.1 Space and time discretization

For spatial discretization, we will use the same approach as in the previous stabilized method.

Then, the variational problem (4.10)–(4.12) discretized in space by TraceFEM and in time by the

implicit Euler (also called BDF1) scheme reads: Given c0 and the associated E1(c0) and r0 (4.7),

for n ≥ 0 at time step tn+1 find (cn+1
h , µn+1

h , rn+1
h ) ∈ Vh × Vh × R such that

ρ(cn+1
h − cnh, vh) = −∆t(M(cn)∇Γhµ

n+1
h ,∇Γhvh)− h∆t

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇vh)dx, (4.13)

(µn+1
h , qh) =

rn+1
h√
E1(cnh)

(f ′
0(c

n
h), qh) + ϵ2(∇Γhc

n+1
h ,∇Γhqh) + h−1ϵ2

∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇qh)dx,

(4.14)

rn+1
h − rnh =

1

2
√
E1(cnh)

(f ′
0(c

n
h), c

n+1
h − cnh) (4.15)

for all (vh, qh) ∈ Vh × Vh. Again, the volumetric terms in (4.13)–(4.14) are included to stabilize

the resulting algebraic systems [14, 36]. Notice that the nonlinear terms in (4.13)–(4.15) have been

20



linearized with a first order extrapolation. We will call this approach SAV-BDF1.

Theorem 4.1. Let

Ẽn+1
h =

ϵ2

2

∥∥∇Γhcn+1
h

∥∥2 + ∣∣rn+1
h

∣∣2 + hϵ2
∥∥nh · ∇cn+1

h

∥∥2
L2(ΩΓ

h)
. (4.16)

be the modified discrete energy. Scheme (4.13)–(4.15) admits the following energy balance

(
Ẽn+1

h − Ẽn
h

)
+

ϵ2

2

∥∥∇Γhcn+1
h −∇Γhc

n−1
h

∥∥2 + ∣∣rn+1
h − rnh

∣∣2 + hϵ2

2

∥∥nh · ∇(cn+1
h − cnh)

∥∥2
L2(ΩΓ

h)

= −∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )− h∆t

ρ

∥∥nh · ∇µn+1
h

∥∥2
L2(ΩΓ

h)
. (4.17)

In particular, this implies that the scheme (4.13)–(4.15) is energy stable in the sense that Ẽn+1
h ≤

Ẽn
h , which is the discrete analogue of (4.6), for all n = 0, 1, 2, . . . .

Proof. Combine the equations obtained from taking vh = µn+1
h /ρ in (4.13) and qh = (cn+1

h − cnh) in

(4.14) to get

rn+1
h√
E1(cnh)

(f ′
0(c

n
h), c

n+1
h − cnh) + ϵ2(∇Γhc

n+1
h ,∇Γh(c

n+1
h − cnh))

+ h−1ϵ2
∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇(cn+1

h − cnh))dx

= −∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )− h∆t

ρ

∥∥nh · ∇µn+1
h

∥∥2
L2(ΩΓ

h)
. (4.18)

By plugging (4.15) multiplied by 2rn+1
h into (4.18), we obtain:

2rn+1
h (rn+1

h − rnh) + ϵ2(∇Γhc
n+1
h ,∇Γh(c

n+1
h − cnh)) + h−1ϵ2

∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇(cn+1

h − cnh))dx

= −∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )− h∆t

ρ

∥∥nh · ∇µn+1
h

∥∥2
L2(ΩΓ

h)
. (4.19)

Using the identity

2
(
ak+1, ak+1 − ak

)
=
∣∣∣ak+1

∣∣∣2 − ∣∣∣ak∣∣∣2 + (ak+1 − ak
)2
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in (4.19) leads to (4.17).

We see that introducing the auxiliary variable r allows for an unconditionally stable scheme

with the explicit treatment of the non-linear term. The same conclusion will be true for the second

order scheme introduced next.

For a second order scheme in time, we adopt Backward Differentiation Formula of order 2

(BDF2). A second order approximation of a first time derivative and a linear extrapolation of

second order at time tn:

∂c

∂t
≈ 3cn − 4cn−1 + cn−2

2∆t
, c̃n = 2cn−1 − cn−2, (4.20)

respectively. Then, the space and time discrete version of problem (4.10)-(4.12) reads: Given c0

and the associated E1(c0) and r0 (4.7), find (c1h, µ
1
h, r

1
h) ∈ Vh × Vh ×R such that (4.13)-(4.15) hold

and for n ≥ 1 at time step tn+1 find (cn+1
h , µn+1

h , rn+1
h ) ∈ Vh × Vh × R such that

ρ

2∆t

(
3cn+1

h − 4cnh + cn−1
h , vh

)
= −(M(c̃nh)∇Γhµ

n+1
h ,∇Γhvh)− h

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇vh)dx,

(4.21)

(µn+1
h , qh) =

rn+1
h√
E1(c̃nh)

(f ′
0(c̃

n
h), qh) + ϵ2(∇Γhc

n+1
h ,∇Γhqh) + h−1ϵ2

∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇qh)dx,

(4.22)

3rn+1
h − 4rnh + rn−1

h =
1

2
√
E1(c̃nh)

(f ′
0(c̃

n
h), 3c

n+1
h − 4cnh + cn−1

h ), (4.23)

for all (vh, qh) ∈ Vh × Vh. We will call this approach SAV-BDF2.

Theorem 4.2. Let

Ẽn+1
h =

ϵ2

2

∥∥∇Γhcn+1
h

∥∥2 + ϵ2

2

∥∥2∇Γhcn+1
h −∇Γhc

n
h

∥∥2 + ∣∣rn+1
h

∣∣2 + ∣∣2rn+1
h − rnh

∣∣2
+

hϵ2

2

∥∥nh · ∇cn+1
h

∥∥2
L2(ΩΓ

h)
+

h−1ϵ2

2

∥∥(nh · ∇(2cn+1
h − cnh)

∥∥2
L2(ΩΓ

h)
(4.24)
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be the modified discrete energy. Scheme (4.13)–(4.15) admits the following energy balance

(
Ẽn+1

h − Ẽn
h

)
+

ϵ2

2

∥∥∇Γhcn+1
h − 2∇Γhc

n
h +∇Γhc

n−1
h

∥∥2 + ∣∣rn+1
h − 2rnh + rn−1

h

∣∣2
+

hϵ2

2

∥∥nh · ∇(cn+1
h − 2cnh + cn−1

h )
∥∥2
L2(ΩΓ

h)
= −2∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )

− 2h∆t

ρ

∥∥nh · ∇µn+1
h

∥∥2
L2(ΩΓ

h)
. (4.25)

In particular, this implies that the scheme (4.13)–(4.15) is energy stable in the sense that Ẽn+1
h ≤

Ẽn
h , which is the discrete analogue of (4.6), for all n = 0, 1, 2, . . . .

Proof. Combine the equations obtained from taking vh = 2∆tµn+1
h /ρ in (4.21), qh = (3cn+1

h −4cnh+

cn−1
h ) in (4.22) to get

rn+1
h√
E1(c̃nh)

(f ′
0(c̃

n
h), 3c

n+1
h − 4cnh + cn−1

h ) + ϵ2(∇Γhc
n+1
h ,∇Γh(3c

n+1
h − 4cnh + cn−1

h ))

+ h−1ϵ2
∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇(3cn+1

h − 4cnh + cn−1
h ))dx = −2∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )

− 2h∆t

ρ

∥∥nh · ∇µn+1
h

∥∥2
L2(ΩΓ

h)
. (4.26)

By plugging (4.23) multiplied by 2rn+1
h into (4.26), we obtain

2rn+1
h (3rn+1

h − 4rnh + rn−1
h ) + ϵ2(∇Γhc

n+1
h ,∇Γh(3c

n+1
h − 4cnh + cn−1

h ))

+ h−1ϵ2
∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇(3cn+1

h − 4cnh + cn−1
h ))dx = −2∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )

− 2h∆t

ρ

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇µn+1

h )dx.

Let us make use of the identity

2
(
ak+1, 3ak+1 − 4ak + ak−1

)
=
∣∣∣ak+1

∣∣∣2 + ∣∣∣2ak+1 − ak
∣∣∣2 + ∣∣∣ak+1 − 2ak + ak−1

∣∣∣2
−
∣∣∣ak∣∣∣2 − ∣∣∣2ak − ak−1

∣∣∣2 (4.27)
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to get:

∣∣rn+1
h

∣∣2 + ∣∣2rn+1
h − rnh

∣∣2 + ∣∣rn+1
h − 2rnh + rn−1

h

∣∣2 − |rnh |2 − ∣∣2rnh − rn−1
h

∣∣2 + ϵ2

2

∥∥∇Γhcn+1
h

∥∥2
+

ϵ2

2

∥∥2∇Γhcn+1
h −∇Γhc

n
h

∥∥2 + ϵ2

2

∥∥∇Γhcn+1
h − 2∇Γhc

n
h +∇Γhc

n−1
h

∥∥2 − ϵ2

2
∥∇Γhc

n
h∥

2 − ϵ2

2

∥∥2∇Γhcnh −∇Γhcn−1
h

∥∥2
+

hϵ2

2

∥∥nh · ∇cn+1
h

∥∥2
L2(ΩΓ

h)
+

hϵ2

2

∥∥nh · ∇(2cn+1
h − cnh)

∥∥2
L2(ΩΓ

h)
+

hϵ2

2

∥∥nh · ∇(cn+1
h − 2cnh + cn−1

h

∥∥2
L2(ΩΓ

h)

− hϵ2

2
∥nh · ∇cnh∥

2
L2(ΩΓ

h)
− hϵ2

2

∥∥nh · ∇(2cnh − cn−1
h )

∥∥2
L2(ΩΓ

h)
= −2∆t

ρ
(M(c̃n)∇Γhµ

n+1
h ,∇Γhµ

n+1
h )

− 2h∆t

ρ

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇µn+1

h )dx,

which corresponds to (4.25).

Note that both SAV-BDF1 and SAV-BDF2 finite element methods preserve the conservation

property d
dt

∫
Γ c dx = 0 of the Cahn-Hilliard equation posed on a closed smooth surface. One can

see this by letting vh = const ̸= 0 in (4.13) and (4.21), which is a legitimate test function from Vh.

4.2.2 Implementation

Schemes (4.13)–(4.15) and (4.21)–(4.23) can be conveniently rewritten as relatively minor mod-

ifications of a “standard” mixed TraceFEM for the surface Cahn–Hilliard problem.

By plugging rn+1
h obtained from (4.15) into eq. (4.14), we can rewrite problem (4.13)–(4.15) as:

Given c0 and the associated E1(c0) and r0 (4.7), for n ≥ 0 at time step tn+1 find (cn+1
h , µn+1

h ) ∈

Vh × Vh

ρ

∆t
(cn+1

h , vh) + (M(cn)∇Γhµ
n+1
h ,∇Γhvh) + h

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇vh)dx =

ρ

∆t
(cnh, vh), (4.28)

(µn+1
h , qh)− ϵ2(∇cn+1

h ,∇qh)− h−1ϵ2
∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇qh)dx

− 1

2E1(cnh)
(f ′

0(c
n
h), c

n+1
h )(f ′

0(c
n
h), qh)

=
rnh√
E1(cnh)

(f ′
0(c

n
h), qh)−

1

2E1(cnh)
(f ′

0(c
n
h), c

n
h)(f

′
0(c

n
h), qh) (4.29)
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for all (vh, qh) ∈ Vh×Vh. The only differences between (4.28)–(4.29) and a standard TraceFEM for

the surface Cahn–Hilliard problem with the implicit Euler scheme for time discretization are the

additional last term at the left-hand side in (4.29), which corresponds to a rank-one matrix in the

algebraic form of the problem, and the modified terms at the right-hand side in (4.29). At every

time step tn+1, the value of the auxiliary variable is computed with (4.15).

In a similar way, we plug rn+1
h obtained from (4.23) into eq. (4.22) and rewrite problem (4.21)–

(4.23) as: Given c0 and the associated E1(c0) and r0 (4.7), find (c1h, µ
1
h) ∈ Vh×Vh such that (4.28)-

(4.29) hold and get r1h from (4.15), then for n ≥ 1 at time step tn+1 find (cn+1
h , µn+1

h ) ∈ Vh × Vh

such that

ρ

2∆t
(3cn+1

h , vh) + (M(c̃n)∇Γhµ
n+1
h ,∇Γhvh) + h

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇vh)dx = bn+1

c , (4.30)

(µn+1
h , qh)− ϵ2(∇Γhc

n+1
h ,∇Γhqh)− h−1ϵ2

∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇qh)dx

− 1

2E1(cnh)
(f ′

0(c̃
n
h), c

n+1
h )(f ′

0(c̃
n
h), qh) = bn+1

µ , (4.31)

for all (vh, qh) ∈ Vh × Vh. The forcing terms in (4.30)–(4.31) are computed from known quantities

bn+1
c =

2ρ

∆t
(cnh, vh)−

ρ

2∆t
(cn−1

h , vh),

bn+1
µ =

4rnh
3
√
E1(cnh)

(f ′
0(c̃

n
h), qh)−

rn−1
h

3
√
E1(cnh)

(f ′
0(c̃

n
h), qh)−

2

3E1(cnh)
(f ′

0(c̃
n
h), c

n
h)(f

′
0(c̃

n
h), qh)

+
1

6E1(cnh)
(f ′

0(c̃
n
h), c

n−1
h )(f ′

0(c̃
n
h), qh).

These forcing terms and the last term at the left-hand side in (4.31) are the only differences

with respect to a standard TraceFEM for the surface Cahn–Hilliard problem with BDF2 for time

discretization. At every time step tn+1, the value of the auxiliary variable is computed with (4.23).

For the numerical results in Chapter 5, we use the SAV-BDF2 scheme. In summary, we

implement it as follows:

- Step 0 : from c0, get E1(c0) as in (4.5) and r0 from (4.7).
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- Step 1 : at t1 = ∆t, solve (4.28)-(4.29) to get (c1h, µ
1
h) and compute r1h from (4.15).

- Step 2 : at time tn+1, n ≥ 1, solve (4.30)-(4.31) to get (cn+1
h , µn+1

h ) and compute rn+1
h from

(4.23).

The implementation described above differs from the one presented in the original papers on

SAV schemes for gradient flows [48, 64, 96]. In those papers, the properties of the finite difference

method on uniform grids were utilized to enhance computational efficiency. However, since we have

chosen to work with finite elements for greater geometric flexibility, we cannot leverage the same

properties. As a result, we decided to rewrite the SAV scheme as a minor modification of a standard

finite element discretization to simplify the implementation process. Consequently, the additional

terms introduced by the SAV method lead to dense matrices in the associated linear systems.

4.2.3 Adaptive time-stepping scheme

The solution of the Cahn–Hilliard equation exhibits significant temporal scale variations. Ini-

tially, a rapid phase of spinodal decomposition is observed, which can be adequately captured with

a small time step (e.g., ∆t = O(10−5)). This phase is followed by a slower process of domain coars-

ening and growth, for which a larger time step can be employed (e.g., ∆t ranging from 10−1 to 10).

As the phase separation process approaches equilibrium, the time step can be further increased

(e.g., up to ∆t = O(103)). In the literature, various approaches can be found where different

time-step sizes are manually set during the simulation. See, e.g., [115]. However, a more intelligent

approach to handle such a wide range of temporal scales is to employ an adaptive-in-time method

that selects the time step based on an accuracy criterion.

We choose to apply the adaptive time stepping technique first presented in [33]. Before ex-

plaining the algorithm and how the time step is chosen, let us write the time discretization of the

space-discrete version of problem (4.10)-(4.2) using the BDF2 scheme with a variable time step.

Let ∆tn = tn+1 − tn be the variable time step and set ωn = ∆tn/∆tn−1. At time tn+1, the time
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derivative is approximated as follows

∂c

∂t
≈ αcn+1 − βcn + γcn−1

∆t
, α =

1 + 2ωn

1 + ωn
, β = 1 + ωn, γ =

(ωn)2

1 + ωn
.

Then, the fully discrete problem reads: for n ≥ 1 at time step tn+1 find (cn+1
h , µn+1

h , rn+1
h ) ∈

Vh × Vh × R such that

ρ

∆t

(
αcn+1

h − βcnh + γcn−1
h , vh

)
= −(M(c̃nh)∇Γhµ

n+1
h ,∇Γhvh)− h

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇vh)dx,

(4.32)

αrn+1
h − βrnh + γrn−1

h =
1

2
√

E1(c̃nh)
(f ′

0(c̃
n
h), αc

n+1
h − βcnh + γcn−1

h ), (4.33)

and (4.22) hold for all (vh, qh) ∈ Vh × Vh. The formula to compute c̃nh is (4.20).

For the implementation of (4.22),(4.32),(4.33), we proceed as explained in Sec. 4.2.2, i.e., we

plug rn+1
h obtained from (4.33) into eq. (4.22) and rewrite problem (4.22),(4.32),(4.33) as: for n ≥ 1

at time step tn+1 find (cn+1
h , µn+1

h ) ∈ Vh × Vh such that

ρ

∆t
(αcn+1

h , vh) + (M(c̃n)∇Γhµ
n+1
h ,∇Γhvh) + h

∫
ΩΓ

h

(nh · ∇µn+1
h )(nh · ∇vh)dx = dn+1

c , (4.34)

(µn+1
h , qh)− ϵ2(∇Γhc

n+1
h ,∇Γhqh)− h−1ϵ2

∫
ΩΓ

h

(nh · ∇cn+1
h )(nh · ∇qh)dx

− 1

2E1(cnh)
(f ′

0(c̃
n
h), c

n+1
h )(f ′

0(c̃
n
h), qh) = dn+1

µ , (4.35)

for all (vh, qh) ∈ Vh × Vh. The forcing terms in (4.34)-(4.35) are computed from known quantities

dn+1
c =

ρ

∆t
(βcnh, vh)−

ρ

∆t
(γcn−1

h , vh),

dn+1
µ =

βrnh
α
√
E1(cnh)

(f ′
0(c̃

n
h), qh)−

γrn−1
h

α
√
E1(cnh)

(f ′
0(c̃

n
h), qh)−

β

2αE1(cnh)
(f ′

0(c̃
n
h), c

n
h)(f

′
0(c̃

n
h), qh)

+
γ

2αE1(cnh)
(f ′

0(c̃
n
h), c

n−1
h )(f ′

0(c̃
n
h), qh).
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Now, let us describe the adaptive time stepping technique. Let us call cn+1
h,1 and cn+1

h,2 the

solutions at time tn+1 of (4.28)-(4.29) and (4.34)-(4.35), respectively. We define

en+1 =
∥cn+1

h,1 − cn+1
h,2 ∥

∥cn+1
h,2 ∥

, (4.36)

which is taken as input to update the time step:

∆tn+1 ← F (en+1,∆tn+1) = ζ
( tol

en+1

)1/2
∆tn+1, (4.37)

where ζ is a “safety” coefficient and tol is a user prescribed tolerance. Algorithm 1 describes the

steps to take at time tn+1 in order to adapt the time step.

Algorithm 1 Adaptive time-stepping algorithm at time tn+1

Given cn and ∆tn

1: Solve (4.28)-(4.29) with ∆tn+1 = ∆tn to get cn+1
h,1

2: Solve (4.34)-(4.35) with ∆tn+1 = ∆tn to get cn+1
h,2

3: Compute en+1 using (4.36)
4: if en+1 > tol then
5: Update ∆tn+1 using (4.37)
6: goto 1
7: else
8: Set ∆tn+1 = F (en+1,∆tn+1)
9: end if

Continue to tn+2

Approximately 40 years ago, it was demonstrated that a variable step BDF2 method for ordinary

initial-value problems is zero-stable if ωn+1 < 1 +
√
2 [37]. Advancing beyond this classical result

has proven to be a challenging task, which has recently gained attention. Through the utilization of

techniques involving discrete orthogonal convolution kernels, it has been possible to establish that

variable time step BDF2 methods are computationally robust, with 0 < ωn+1 < 3.561, for linear

diffusion models [68], a phase-field crystal model [66], and the molecular beam epitaxial model

without slope selection [67]. These techniques have been extended to the Cahn-Hilliard model in

[65]. The complexity associated with proving the energy stability of the scheme presented in this
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section is significant, to the extent that it could be the subject of a separate research project.

Therefore, we will not delve into it in this work.

4.3 Numerical method for the Navier-Stokes-Cahn-Hilliard equations

For the discretization of the variational problem (3.21)–(3.24) we also apply an unfitted finite

element method TraceFEM. For convenience, let us briefly revisit the TraceFEM. To discretize

surface equations, the TraceFEM relies on a tessellation of a 3D bulk computational domain Ω

(Γ ⊂ Ω holds) into shape regular tetrahedra untangled to the position of Γ.

We start with required definitions to set up finite element spaces and variational form. A few

auxiliary results will be proved. Then we proceed to the fully-discrete method by introducing a

splitting time discretization, which decouples (3.21)–(3.24) into one linear fluid problem and one

phase-field problem per every time step.

On T Γ
h we use a standard finite element space of continuous functions that are polynomials of

degree k on each T ∈ T Γ
h . This bulk (volumetric) finite element space is denoted by V k

h :

V k
h = {v ∈ C(ΩΓ

h) : v ∈ Pk(T ) for any T ∈ T Γ
h }.

In the trace finite element method formulated below, the traces of functions from V k
h on Γ are used

to approximate the surface fraction and the chemical potential. Our bulk velocity and pressure

finite element spaces are either Taylor–Hood elements on ΩΓ
h,

Vh = (V m+1
h )3, Qh = V m

h ∩ L2
0(Γ), (4.38)

or equal order velocity–pressure elements

Vh = (V m
h )3, Qh = V m

h ∩ L2
0(Γ), m ≥ 1. (4.39)

These spaces are employed to discretize the surface Navier–Stokes system. Surface velocity and
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pressure will be represented by the traces of functions from Vh and Qh on Γ. In general, approx-

imation orders k (for the phase-field problem) and m (for the fluid problem) can be chosen to be

different.

Assumption 4.1. We assume that integrals over Γ can be computed exactly, i.e., we do not

consider geometry errors.

In practice, Γ has to be approximated by a (sufficiently accurate) “discrete” surface Γh ≈ Γ

in such a way that integrals over Γh can be computed accurately and efficiently. For first order

finite elements (m = 1, k = 1), a straightforward polygonal approximation of Γ ensures that the

geometric approximation error is consistent with the finite element interpolation error; see, e.g.,

[84]. For higher order elements, numerical approximation of Γ based on, e.g., isoparametric trace

FE can be used to recover the optimal accuracy [36] in a practical situation when parametrization

of Γ is not available explicitly.

There are two well-known issues related to the fact that we are dealing with surface and unfitted

finite elements:

1. The numerical treatment of condition u · n. Enforcing the condition uh · n = 0 on Γ for

polynomial functions uh ∈ Vh is inconvenient and may lead to locking (i.e., only uh = 0

satisfies it). Instead, we add a penalty term to the weak formulation to enforce the tangential

constraint weakly.

2. Possible small cuts of tetrahedra from T Γ
h by the surface. For the standard choice of finite

element basis functions, this may lead to poorly conditioned algebraic systems. We recover

algebraic stability by adding certain volumetric terms to the finite element formulation similar

to the finite element formulation (4.4) and (4.13)-(4.15).

To make the presentation of the finite element formulation more compact, we introduce the
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following finite element bilinear forms related to the Cahn–Hilliard part of the problem:

aµ(µ, v) :=

∫
Γ
M∇Γµ · ∇Γv ds+ τµ

∫
ΩΓ

h

(n · ∇µ)(n · ∇v) dx, (4.40)

ac(c, g) := ϵ

∫
Γ
∇Γc · ∇Γg ds+ τc

∫
ΩΓ

h

(n · ∇c)(n · ∇g) dx. (4.41)

Forms (4.40)–(4.41) are well defined for µ, v, c, g ∈ H1(ΩΓ
h). The last terms in (4.40) and (4.41) take

care of the issue of the small element cuts (the above issue 2), i.e., it holds ∥µ∥2
L2(ΩΓ

h)
≤ Caµ,c(µ, µ),

µ ∈ H1(ΩΓ
h), with a constant C independent of h and how Γ intersects the mesh, ensuring well-

conditioned stiffness matrices [36]. These terms are consistent up to geometric errors related to the

approximation of Γ by Γh and n by nh in the following sense: any smooth solution µ and c can be

extended off the surface along (quasi)-normal directions so that n · ∇µ = 0 and n · ∇c = 0 in ΩΓ
h.

We set the stabilization parameters as follows:

τµ = h, τc = ϵ h−1.

This different scaling of parameters with respect to h is required by the analysis. In particular,

we will need to control the L∞(Γ) norm of the finite element approximation of the phase-field

parameter, but not the approximation of the chemical potential. This is done in Lemma 4.4, which

shows the scaling of the volume normal derivative with a negative power of h.

For the stability of a numerical method, it is crucial that the computed density and viscosity

stay positive. The polynomial double-well potential does not enforce c to stay within [0, 1] interval

and hence ρ and η may eventually take negative values, if one adopts the linear relation between c

and ρ in (3.10) or between c and η in (3.11). Numerical errors may be another reason for the order

parameter to depart significantly from [0, 1]. Therefore, assuming without loss of generality that

ρ1 ≥ ρ2 and η1 ≥ η2, we first replace (3.10) and (3.11) with the following cut-off functions that

31



ensure density and viscosity stay positive:

ρ(c) =

 ρ2 c ≤ 0

cρ1 + (1− c)ρ2 c > 0
η(c) =

 η2 c ≤ 0

cη1 + (1− c)η2 c > 0
(4.42)

Note that unlike some previous studies, we clip the linear dependence (3.10) and (3.11) only from

below. The resulting convexity of ρ(c) plays a role in the stability analysis later. Nevertheless,

(4.42) is not completely satisfactory since θ2 = δρ
δc is discontinuous, while we need θ to be from

C1. To this end, we approximate ρ(c) from (3.10) by a smooth monotone convex and uniformly

positive function. In our implementation we let θ2 = ρ1−ρ2
2 (tanh(c/α) + 1), with α = 0.1, and

ρ(c) =
∫ c
0 θ2(t)dt+ ρ2.

Later we make use of the decomposition of a vector field on Γ into its tangential and normal

components: u = u+ (u · n)n. For the Navier–Stokes part, we introduce the following forms:

a(η;u,v) :=

∫
Γ
2ηEs(u) : Es(v) ds+ τ

∫
Γ
(n · u)(n · v) ds+ βu

∫
ΩΓ

h

[(n · ∇)u] · [(n · ∇)v] dx, (4.43)

c(ρ;w,u,v) :=

∫
Γ
ρvT (∇Γu)w ds+

1

2

∫
Γ
ρ̂( divΓw)u · v ds, (4.44)

b(u, q) =

∫
Γ
u · ∇Γq ds, (4.45)

s(p, q) := βp

∫
ΩΓ

h

(n · ∇p)(n · ∇q) dx, (4.46)

with ρ̂ = ρ − dρ
d cc. Forms (4.43)–(4.46) are well defined for p, q ∈ H1(ΩΓ

h) ∩ H1(Γ), u,v,w ∈

H1(ΩΓ
h)

3 ∩ H1(Γ)3. In (4.43), τ > 0 is a penalty parameter to enforce the tangential constraint

(i.e., to address the above issue 1), while βu ≥ 0 in (4.43) and βp ≥ 0 in (4.46) are stabilization

parameters to deal with possible small cuts. They are set according to [52]:

τ = h−2, βp = h, βu = h−1. (4.47)

If one uses equal order pressure-velocity trace elements instead of Taylor–Hood elements, then form
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(4.46) should be replaced by

s(p, q) := βp

∫
ΩΓ

h

∇p · ∇q dx.

The second term in (4.44) is consistent since the divergence of the true tangential velocity is zero.

To avoid differentiation of the projector operator, one may use the identity ∇Γu = ∇Γu− (u ·n)H

to implement the a-form and c-form. For the analysis, we need the identity for the form (4.44)

given in the following elementary lemma.

Lemma 4.3. For any u,w ∈ H1(Γ)3, it holds

c(ρ;w,u,u) = −1

2

∫
Γ
θ2 divΓ(cw)|u|2 ds.

Proof. Using the definition of the covariant gradient in terms of tangential operators, ∇Γu =

P(∇u)P, and the integration by parts (2.6), we compute for the first integral term in (4.44)

∫
Γ
ρuT (∇Γu)w ds =

∫
Γ
ρuT (∇Γu)w ds = −

∫
Γ
divΓ(ρu⊗w) · u ds

= −
∫
Γ
ρdivΓ(w)|u|2 ds−

∫
Γ
u∇Γ(ρu)w ds

= −
∫
Γ
ρ divΓ(w)|u|2 ds−

∫
Γ
ρuT (∇Γu)w ds−

∫
Γ
(w · ∇Γρ)|u|2 ds

From this equality and using ∇Γρ = dρ
dc∇Γc we obtain:

∫
Γ
ρuT (∇Γu)w ds = −1

2

∫
Γ
ρ divΓ(w)|u|2 ds− 1

2

∫
Γ

dρ

d c
(w · ∇Γc)|u|2 ds (4.48)

We recall that ρ̂ = ρ − dρ
d cc and substitute (4.48) into the definition of the form (4.44). After
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straightforward computations, we arrive at the result:

c(ρ;w,u,u) =

∫
Γ
ρuT (∇Γu)w ds+

1

2

∫
Γ
(ρ− dρ

d c
c)( divΓw)|u|2 ds

= −1

2

∫
Γ
ρ divΓ(w)|u|2 ds− 1

2

∫
Γ

dρ

d c
(w · ∇Γc)|u|2 ds+

1

2

∫
Γ
(ρ− dρ

d c
c)( divΓw)|u|2 ds

= −1

2

∫
Γ

dρ

d c
(w · ∇Γc)|u|2 ds−

1

2

∫
Γ

dρ

d c
c( divΓw)|u|2 ds

= −1

2

∫
Γ

dρ

d c
divΓ(cw)|u|2 ds = −1

2

∫
Γ
θ2 divΓ(cw)|u|2 ds.

For the numerical experiments in Chapter 5, we also add to bilinear form (4.43) the grad-div

stabilization term [82], γ̂
∫
Γ divΓu divΓv ds. This term is not essential, in particular for the analysis

in Sec. 4.3.2, but we find it beneficial for the performance of the iterative algebraic solver and for

the overall accuracy of the solution. We set the grad-div stabilization parameter γ̂ = 1.

The semi-discrete finite element formulation of (3.21)–(3.24) then reads: Find ch(t), µh(t) :

(0, T ]→ V k
h , uh(t) : (0, T ]→ Vh, ph(t) : (0, T ]→ Qh satisfying initial conditions solving

(ρ∂tuh,vh) + c(ρ;uh,uh,vh) + a(η;uh,vh) + b(vh, ph) = −(σγch∇Γµh,vh)

+M (∇Γ(θuh)∇Γµh, θvh) + (fh,vh),

b(uh, qh)− s(ph, qh) = 0,

(∂tch, vh)− (uhch,∇Γvh) + aµ(µh, vh) = 0,(
µh −

1

ϵ
f ′
0(ch), gh

)
− ac(ch, gh) = 0,

for all t ∈ (0, T ], (vh, gh) ∈ V k
h × V k

h , (vh, qh) ∈ Vh × Qh. Next, we are interested in time

discretization.
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4.3.1 Splitting scheme

At time instance tn = n∆t, with time step ∆t = T
N , ζn denotes the approximation of generic

variable ζ(tn,x). Further, we introduce the following notation for a first order approximation of

the time derivative:

[ζ]nt =
ζn − ζn−1

∆t
. (4.49)

The decoupled linear finite element method analyzed and tested in this paper reads as follows.

At time step tn+1, perform:

- Step 1: Given un
h ∈ Vh and cnh ∈ V k

h , find (cn+1
h , µn+1

h ) ∈ V k
h × V k

h such that:

(
[ch]

n+1
t , vh

)
−
(
un
hc

n+1
h ,∇Γvh

)
+ aµ(µ

n+1
h , vh) = 0, (4.50)(

µn+1
h − γc∆t

ϵ
[ch]

n+1
t − 1

ϵ
f ′
0(c

n
h), gh

)
− ac(c

n+1
h , gh) = 0, (4.51)

for all (vh, gh) ∈ V k
h × V k

h .

- Step 2: Set θn+1 =
√

dρ
dc (c

n+1
h ). Find (un+1

h , pn+1
h ) ∈ Vh ×Qh such that

(ρn [uh]
n+1
t ,vh) + c(ρn+1;un

h,u
n+1
h ,vh) + a(ηn+1;un+1

h ,vh) + b(vh, p
n+1
h )

= −(σγcn+1
h ∇Γµ

n+1
h ,vh) +M

(
(∇Γ(θ

n+1un+1
h ))∇Γµ

n+1
h , θn+1vh

)
+ (fn+1

h ,vh) (4.52)

b(un+1
h , qh)− s(pn+1

h , qh) = 0 (4.53)

for all (vh, qh) ∈ Vh ×Qh.

At each sub-step of the scheme, a linear problem (Cahn–Hilliard type system at step 1 and

linearized Navier–Stokes system at step 2) has to be solved. This allows us to achieve low compu-

tational costs, while the scheme is provably stable under relatively mild restrictions. Moreover, the

results of numerical experiments in Chapter 5 do not show that any restrictions on the discretization

parameters are required in practice, Remark 4.6 discusses what arguments in our analysis require
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these restrictions. We note that an attractive alternative to treating f ′
0 explicitly would be the

convex–concave splitting [28], which does not require the additional stabilizing term in (4.51).

Before proceeding with analysis, we note that the above scheme does not modify the advection

velocity in (4.50) for the purpose of analysis, unlike some other linear decoupled schemes for the

NSCH equations found in the literature. We also avoid another common helpful trick to prove

energy stability of the variable density NSCH, namely the modification of the momentum equation

based on a mass conservation condition of the form ∂tρ + u · ∇Γc − divΓ (M∇Γµ) = 0, which

follow from (3.15) and (3.10). This modification, however, is not consistent if a non-linear relation

between ρ and c is adopted; also it introduces several extra terms in the finite element formulation.

4.3.2 Analysis of the decoupled finite element method

For the analysis in this section, we assume no forcing term, i.e., fn+1 = 0 for all n. To avoid

technical complications related to handling Killing vector fields (see, e.g., the discussion in [10] and

FE analysis for the surface Navier–Stokes equation in [86]), we shall also assume that the surface

does not support any tangential rigid motions, and so V0
T = VT .

We further use the a ≲ b notation if inequality a ≤ c b holds between quantities a and b with a

constant c independent of h, ∆t, ϵ, and the position of Γ in the background mesh. We give similar

meaning to a ≳ b, and a ≃ b means that both a ≲ b and a ≳ b hold.

The following lemma will be useful in the proof of the main result, which is reported in Theorem

4.5.

Lemma 4.4. There exists h0 ≃ 1 such that for h ≤ h0 it holds

∥vh∥L∞(Γ) ≲ | lnh|
1
2 ∥vh∥H1(Γ) + h−

1
2 ∥n · ∇vh∥L2(ΩΓ

h)
∀ vh ∈ V k

h . (4.54)

For vh satisfying
∫
Γ vh ds = 0, the factor ∥vh∥H1(Γ) on the r.h.s. can be replaced by ∥∇Γvh∥L2(Γ).

Proof. Denote by p(x) ∈ Γ, x ∈ Ω, the closest point projection on Γ. Since Γ is smooth, there is a
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tubular neighborhood of Γ

U = {x ∈ R3 : dist(x,Γ) < d},

with some d > 0 depending on smoothness of Γ, such that x = p(x) + sn, x ∈ U , defines the local

coordinate system (s,y), with y = p(x) and |s| = dist(x,Γ). We can always assume h ≤ h0 = O(1),

such that ΩΓ
h ⊂ U . For u ∈ H1(U), we have in U

u(x) = u(y) +

∫ s

0
n · ∇u(r,y) dr. (4.55)

Denote by Ω̃Γ
h a “reachable from Γ” part of ΩΓ

h in the following sense: for any x ∈ Ω̃Γ
h the interval

(x,p(x)) is completely inside ΩΓ
h. Let

g±(y) = ± sup{s ∈ R : (y ± sn,y) ⊂ Ω̃Γ
h}, y ∈ Γ,

where g±(y) are piecewise smooth and ∥g±∥L∞(Γ) ≲ h. Thanks to the co-area formula and the

smoothness of Γ, it holds

∫
Ω̃Γ

h

|f | dx ≃
∫
Γ

∫ g+

g−

|f | dy ds, for any f ∈ L1(Ω̃Γ
h). (4.56)

From (4.55) and (4.56), we have:

∥u(x)∥
Lp(Ω̃Γ

h)
≃
(∫

Γ

∫ g+

g−

∣∣∣∣u(y) + ∫ s

0
n · ∇u(r,y) dr

∣∣∣∣p ds dy

) 1
p

,

for any real exponent p ≥ 1. Triangle inequality and inequality:

(∫
Γ

∫ g+

g−

|u(y)|p ds dy

) 1
p

≤ |g+ − g−|
1
p ∥u∥Lp(Γ)

yield

∥u∥
Lp(Ω̃Γ

h)
≲ h

1
p ∥u∥Lp(Γ) +

(∫
Γ

∫ g+

g−

∣∣∣∣∫ s

0
n · ∇u(r,y) dr

∣∣∣∣p ds dy

) 1
p

. (4.57)
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To handle the second term on the right-hand side, we apply Hölder’s inequality with p′ = p/(p−1):

(∫
Γ

∫ g+

g−

∣∣∣∣∫ s

0
n · ∇u(r,y) dr

∣∣∣∣p ds dy

) 1
p

≤

(∫
Γ

∫ g+

g−

∣∣∣∣∣
(∫ s

0
|n · ∇u(r,y)|p dr

) 1
p
(∫ s

0
dr

) 1
p′
∣∣∣∣∣
p

ds dy

) 1
p

=

(∫
Γ

∫ g+

g−

(∫ s

0
|n · ∇u(r,y)|p dr

)
sp−1 ds dy

) 1
p

≤
(∫

Γ

∫ g+

g−

|n · ∇u(r,y)|p dr dy

) 1
p
(∫ g+

g−

sp−1 ds

) 1
p

≲ h ∥n · ∇u∥
Lp(Ω̃Γ

h)

Substituting this in (4.57) and using Ω̃Γ
h ⊂ ΩΓ

h we get

∥u∥
Lp(Ω̃Γ

h)
≲ h

1
p ∥u(x)∥Lp(Γ) + h ∥n · ∇u∥Lp(ΩΓ

h)
. (4.58)

Letting u = uh ∈ V k
h and applying FE inverse inequality to treat the last term in (4.58), we arrive

at

∥uh∥Lp(Ω̃Γ
h))

≲ h
1
p ∥uh∥Lp(Γ) + h

3
p
− 1

2 ∥n · ∇uh∥L2(ΩΓ
h)
. (4.59)

Next, we need the following technical result from Lemma 7.9 in [36]: There is δ ≃ h, depending

only on the shape regularity of the mesh T Γ
h such that for any T ∈ T Γ

h there exists a ball Bδ(T ) ⊂

T ∩ Ω̃Γ
h of radius δ. Since on every tetrahedron uh is polynomial function of a fixed degree, by the

standard norm equivalence argument, we have

(∫
T
|uh|p dx

) 1
p

≤ C

(∫
Bδ(T )

|uh|p dx

) 1
p

,

with C depending only on δ and the shape regularity of T . Raising both parts of this inequality to

power p, summing over all T ∈ T Γ
h , raising both parts to power 1/p and using Bδ(T ) ⊂ Ω̃Γ

h, we get

∥uh∥Lp(ΩΓ
h)

≲ ∥uh∥Lp(Ω̃Γ
h)
.
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We now use this in (4.59) and apply another FE inverse inequality to get

∥uh∥L∞(Γ) ≤ ∥uh∥L∞(ΩΓ
h)

≲ h
− 3

p ∥uh∥Lp(ΩΓ
h)

≲ h
− 2

p ∥uh∥Lp(Γ) + h−
1
2 ∥n · ∇uh∥L2(ΩΓ

h)
. (4.60)

For u ∈ H1(Γ), recall that the Sobolev embedding theorem implies u ∈ Lp(Γ), p ∈ [1,∞), and

∥u∥Lp(Γ) ≤ c p
1
2 ∥u∥H1(Γ).

This result follows from the corresponding embedding theorem in R2 by standard arguments based

on the surface local parametrization and partition of unity. Using this in (4.60), we obtain the

estimate

∥uh∥L∞(Γ) ≲ h
− 2

p p
1
2 ∥uh∥H1(Γ) + h−

1
2 ∥n · ∇uh∥L2(ΩΓ

h)
. (4.61)

Letting p = | lnh| proves the result in (4.54). Applying the Poincaré inequality for the function uh

satisfying
∫
Γ uh ds = 0 proves the second claim of the lemma.

Following [97], we modify the double-well potential in (3.8) for the purpose of analysis so that

it is C2 smooth but has quadratic growth for large |c|. Straightforward calculations give us the

following expression for f ′
0(c) with sufficiently large but fixed α > 1:

f ′
0(c) =



3α2−1
4 c−

(
α3

4 + 3
8α

2 − 1
8

)
, c > 1+α

2 ,(
c2 − 3

2c+
1
2

)
c, c ∈

[
1−α
2 , 1+α

2

]
,

3α2−1
4 c+

(
α3

4 −
3
8α

2 + 1
8

)
, c < 1−α

2 .

Function f ′
0(x) satisfies the following Lipschitz condition with L = 3α2−1

4 :

−1

4
≤ f ′

0(x)− f ′
0(y)

x− y
≤ L, ∀x, y ∈ R, x ̸= y, (4.62)
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and growth condition

|f ′
0(x)| ≤ L|x|. (4.63)

Theorem 4.5. Assume h and ∆t satisfy ∆t ≤ c| lnh|−1ϵ and h ≤ c| lnh|−1min{∆t, | lnh|−
1
2 ϵ|∆t|

1
2 }

for some sufficiently small c > 0, independent of h, ∆t, ϵ and position of Γ in the background mesh.

Then, it holds

∫
Γ

(
ρN |uN

h |2 +
σγ
ϵ
f0(c

N
h )
)
ds+ ac(c

N
h , cNh ) +

N∑
n=1

∆t (a(ηn;un
h,u

n
h) + aµ(µ

n, µn) + sh(p
n
h, p

n
h)) ≤ K,

(4.64)

for all N = 1, 2, . . . , with K =
∫
Γ

(
ρ0|u0

h|2 +
σγ

ϵ f0(c
0
h)
)
ds+ ac(c

0
h, c

0
h).

Proof. We use induction on N to prove (4.64). For N = 0, the estimate is trivial and provided by

the initial condition. For the induction step, assume that it holds with N = n.

Letting vh = µn+1
h in (4.50) and gh = − [ch]

n+1
t in (4.51) and adding the two equations together,

we get

− (cn+1
h un

h,∇Γµ
n+1
h ) + aµ(µ

n+1
h , µn+1

h ) +

(
1

ϵ
[ch]

n+1
t , f ′

0(c
n
h)

)
+

1

2∆t

(
ac(c

n+1
h , cn+1

h )− ac(c
n
h, c

n
h) + |∆t|2ac([ch]n+1

t , [ch]
n+1
t )

)
+

γc∆t

ϵ
∥ [ch]n+1

t ∥2 = 0. (4.65)

With the truncated Taylor expansion f0(c
n+1
h ) = f0(c

n
h)+|∆t| [ch]n+1

t f ′
0(c

n
h)+

1
2 |∆t|2| [ch]n+1

t |2f ′′
0 (ξ

n),

and (4.62), we get:

(
1

ϵ
[ch]

n+1
t , f ′

0(c
n
h)

)
=

1

ϵ

∫
Γ

f0(c
n+1
h )− f0(c

n
h)

∆t
ds− ∆t

2ϵ

∫
Γ
| [ch]n+1

t |2f ′′
0 (ξ

n)ds

≥ 1

ϵ

∫
Γ

f0(c
n+1
h )− f0(c

n
h)

∆t
ds− L∆t

2ϵ
∥ [ch]n+1

t ∥2.

Since the second term on the right-hand side has a negative sign, we let γc be large enough in order
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to cancel it with the 1
2 of the last term on the left-hand side of (4.65). We obtain

aµ(µ
n+1
h , µn+1

h ) +
1

ϵ

∫
Γ

f0(c
n+1
h )− f0(c

n
h)

∆t
ds+

1

2∆t

(
ac(c

n+1
h , cn+1

h )− ac(c
n
h, c

n
h)
)

+∆t

(
1

2
ac([ch]

n+1
t , [ch]

n+1
t ) +

γc
2ϵ
∥ [ch]n+1

t ∥2
)
≤ (cn+1

h un
h,∇Γµ

n+1
h ). (4.66)

After re-arranging terms, multiplying by ∆t, and dropping some non-negative terms on the left-

hand side, we obtain the following inequality

1

ϵ

∫
Γ
f0(c

n+1
h )ds+∆taµ(µ

n+1
h , µn+1

h ) +
1

2
ac(c

n+1
h , cn+1

h ) + ∆t2
γc
2ϵ
∥ [ch]n+1

t ∥2

≤ 1

ϵ

∫
Γ
f0(c

n
h)ds+

1

2
ac(c

n
h, c

n
h) + ∆t(cn+1

h un
h,∇Γµ

n+1
h ). (4.67)

The first two terms on the right-hand side of (4.67) are bounded due to the induction as-

sumption. To handle the third term on the right-hand side, we let c0 = |Γ|−1
∫
Γ c

n+1
h ds and use

Lemma 4.4 that yields ∥cn+1
h − c0∥L∞(Γ) ≲ | lnh|

1
2 ϵ−

1
2 |ac(cn+1

h , cn+1
h )|

1
2 by the definition of the ac

form in (4.41). This, the Cauchy inequality, and the equality un
h · ∇Γµ

n+1
h = un

h · ∇Γµ
n+1
h help us

with the following estimate:

∆t|(cn+1
h un

h,∇Γµ
n+1
h )| ≤ ∆t|( (cn+1

h − c0)u
n
h,∇Γµ

n+1
h )|+∆t|(c0un

h,∇Γµ
n+1
h )|

≤ ∆t∥un
h∥∥cn+1

h − c0∥L∞(Γ)∥∇Γµ
n+1
h ∥+∆t∥un

h∥|c0|∥∇Γµ
n+1
h ∥

≤ C∆t√
ϵ
∥un

h∥| lnh|
1
2 |ac(cn+1

h , cn+1
h )|

1
2 ∥∇Γµ

n+1
h ∥+∆t∥un

h∥|c0|∥∇Γµ
n+1
h ∥

≤ ∆t|aµ(µn+1
h , µn+1

h )|
1
2

√
K

ρ2M

(
C| lnh|

1
2

√
ϵ
|ac(cn+1

h , cn+1
h )|

1
2 + |c0|

)
.

(4.68)

In the last inequality in (4.68), we used the induction assumption to estimate ∥un
h∥ and the fact

that ρn ≥ ρ2 by definition of the ρ(c) function. Letting vh = 1 in (4.50) we have

∫
Γ
[ch]

n+1
t ds = 0 ⇒ c0 = |Γ|−1

∫
Γ
c0h ds.
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We conclude that |c0| in (4.68) can be bounded by a constant depending only on the initial data.

Then, using Young’s inequality in (4.68) we get the following bound

∆t|(un
h · ∇Γµ

n+1
h , cn+1

h )| ≤ 1

4
ac(c

n+1
h , cn+1

h ) + |∆t|2C1| lnh|
ϵ

aµ(µ
n+1
h , µn+1

h ) + C2,

with some constants C1, C2 independent of h, ∆t, ϵ, and position of Γ in the background mesh.

Using this back in (4.67) with ∆t satisfying assumptions of the theorem, and applying (4.64) for

N = n for the remainder terms on the right-hand side of (4.67), we get:

1

ϵ

∫
Γ
f0(c

n+1
h )ds+

∆t

2
aµ(µ

n+1
h , µn+1

h ) +
1

4
ac(c

n+1
h , cn+1

h ) +
∆t2γc
2ϵ
∥ [ch]n+1

t ∥2 ≤ C, (4.69)

with some C > 0 independent of h, ∆t, ϵ and the position of Γ in the mesh. We need this bound

later in the proof.

Let vh = un+1
h in (4.52) and qh = −pn+1

h in (4.53), and add the two equations together. We

also apply Lemma 4.3 to handle the c-form. This brings us to the following equality:
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h un
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h ) + s(pn+1
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h )
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h ,un+1

h ) +M
(
(∇Γ(θ

n+1un+1
h ))∇Γµ

n+1
h , θn+1un+1

h

)
.

By adding ± 1
2∆t∥(ρ

n+1)
1
2un+1

h ∥2 and re-arranging terms, we get
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. (4.70)
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Denote by Ph : H1(Γ)→ V k
h an H1-type projection into V k

h given by the aµ bilinear form:

aµ(Ph(u), vh) = M (∇Γu,∇Γvh) ∀ vh ∈ V k
h .

By standard analysis of the TraceFEM for the Laplace-Beltrami problem, e.g. [89], we have

∥u− Ph(u)∥ ≲ h∥∇Γu∥. (4.71)

Since ρ is a convex function of c and dρ
dc ≥ 0, we have

ρn+1 − ρn ≤ dρ

dc

∣∣∣
cn+1
h

(cn+1
h − cnh) = |θn+1|2(cn+1

h − cnh). (4.72)

Using (4.72) and eq. (4.50) with vh = Ph
(
|θn+1un+1

h |2
)
, for the terms on the second line of (4.70)

we obtain

∫
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h |2 + |θn+1|2 divΓ(cn+1
h un

h)|un+1
h |2 ds

≤
∫
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(
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h |2 ds

= −
∫
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M∇Γµ
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h · ∇Γ|θn+1un+1

h |2 ds+ I(eh), (4.73)

with

I(eh) =

∫
Γ

(
cn+1
h − cnh

∆t
+ divΓ(c

n+1
h un

h)

)
eh ds, eh := |θn+1un+1

h |2 − Ph
(
|θn+1un+1

h |2
)
.

Next, we use (4.73) to simplify (4.70) as follows:
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h ) + I(eh). (4.74)
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After adding (4.66) multiplied by σγ to (4.74) and dropping some non-negative terms on the left-

hand side, we arrive at

1
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It remains to estimate the terms on the right-hand side of (4.75). We handle the first term by

invoking the result of Lemma 4.4 as follows:
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Thanks to the a priori bound ac(c
n+1
h , cn+1

h ) ≤ C from (4.69), estimate (4.76) yields
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With the help of ∆t ≤ C| lnh|−1ϵ for sufficiently small C and ϵ ≲ 1 we obtain
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Now, we proceed with the terms in Ih(eh). For the first terms in Ih(eh), the Cauchy-Schwarz
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inequality and estimate (4.71) for the L2(Γ) norm of eh gives:
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To estimate the right-most factor, we need the inequalities
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which follow by applying Lemma 4.4 componentwise and then using the Korn inequality (3.20)

and the fact that ηn+1 is uniformly bounded from below (see the definition in (4.42)). Thanks to
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Using this together with the a priori bound for ∥ [ch]n+1
t ∥ from (4.69) in (4.79) and using the

assumption h ≤ c| lnh|−1∆t for sufficiently small c, we have
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Next, we treat the second term in I(eh). Using Cauchy–Schwarz inequality and estimating ∥eh∥

as above we have
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By the triangle inequality
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Each term on the right hand side can be treated individually by invoking Lemma 4.4, a priori
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Using these estimates back into (4.81) and with the assumption h ≤ c| lnh|−
3
2 ϵ|∆t|−

1
2 for sufficiently

small c, we arrive at the estimate

|I(eh)| ≤
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2
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h ). (4.82)

Finally, we substitute (4.78) and (4.82) in (4.75) to obtain
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This completes the induction step.
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Remark 4.6. From the proof, we see that the assumption h ≤ c| lnh|−1min{∆t, | lnh|−
1
2 ϵ|∆t|

1
2 }

results from the fact that at the discrete level we cannot test the transport equation for the order

parameter with vh = |un+1
h |2, and so we have to project |un+1

h |2 (or |un+1
h |2 for surfaces) in the

finite element space V k
h and handle the resulting inconsistency. If the finite element velocity space

is such that |vh|2 ∈ V k
h for vh ∈ Vh, then the upper bound on h is not needed in the analysis (in

the surface case we still would need to handle |un+1
h |2 − |un+1

h |2, but this is possible due to the

control over ∥n · un+1
h ∥2 that we have thanks to penalty term in the TraceFEM formulation). An

example, when |vh|2 ∈ V k
h holds, is P1–P1 stabilized velocity–pressure element combined with P2

element for the order parameter and chemical potential.

In the numerical experiments however, we observed only a restriction of the form h ≲ ϵ, which

is very typical for a phase field approach. We hypothesize that our analysis may not be sharp with

respect to the assumption on h in the theorem statement. We also note that the failure of mesh to

resolve the interface, i.e., h ≥ ϵ, led to inaccurate FE solutions rather than a blow-up in time.
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5 Numerical experiments

5.1 Numerical experiments with the Cahn–Hilliard model

After validating the accuracy of the numerical methods presented in Sec. 4.2.2, we compare the

numerical results obtained with our SAV methods against the results obtained with a stabilized

scheme inspired from [97] and presented in [115]. We will start by comparing the numerical results

produced by the different methods on a sphere in Sec. 5.1.2. Then, in Sec. 5.1.3 we will present

results on a more complex surface that represents an idealized cell.

For the implementation of the methods in Sec. 4.2.1 and 4.2.3, we use open source Finite

Element package DROPS [23].

5.1.1 Convergence test

To assess our implementation of the SAV schemes presented in Sec. 4.2.2, we consider the fol-

lowing exact solution to the non-homogeneous surface Cahn–Hilliard equations on the unit sphere,

centered at the origin:

c∗(t,x) =
1

2

(
1 + tanh

x3

2
√
2ϵ

)
, t ∈ [0, 1]. (5.1)

Here, x = (x1, x2, x3)
T denotes a point in R3. The exact chemical potential µ∗ can be readily

computed from eq. (3.6) using the free energy per unit surface in (3.8) and the above c∗. The

non-zero forcing term is computed by plugging c∗ and µ∗ into (3.5). We set ρ = 1 and mobility

M as in (3.7). In (4.7), we take C = 1. Since it is known that smaller values ϵ are numerically

challenging (see, e.g., [30, 97]), we consider decreasing values of ϵ: ϵ = 1, 0.1, 0.05.

We characterize the surface Γ as the zero level set of function ϕ(x) = ∥x∥2 − 1, and embed

Γ in an outer cubic domain Ω = [−5/3, 5/3]3. The initial triangulation Thℓ
of Ω consists of 8

sub-cubes, where each of the sub-cubes is further subdivided into 6 tetrahedra. Further, the mesh

is refined towards the surface, and ℓ ∈ N denotes the level of refinement, with the associated mesh
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size hℓ =
10/3
2ℓ+1 . Fig. 1 shows the approximation of (5.1) with ϵ = 0.05 computed with mesh level

ℓ = 6 and a magnified view of the interface thickness with the bulk mesh near the surface. The

time step is also refined with the mesh as specified below. Time step adaptivity is not used for this

test.

Figure 1: Approximation of exact solution (5.1) with ϵ = 0.05 computed with mesh level ℓ = 6 and
a magnified view of the interface thickness with the bulk mesh near the surface.

Fig. 2 shows the evolution of the L2 errors of c computed with the SAV-BDF1 and SAV-BDF2

methods for ϵ = 0.05, 0.1, 1. We used P1 elements and for each panel in Fig. 2 we report the L2

errors associated to four mesh refinement levels. We see that in all the cases the errors increase

slightly at the beginning of the time interval and then they tend to reach a plateau. The thinner

the interface between phases is (i.e., the smaller ϵ), the faster the plateau is reached. In the case

of the smallest ϵ, i.e., ϵ = 0.05, Fig. 3 displays the evolution of modified energy (4.16), which is

associated to the SAV-BDF1 method, and modified energy (4.24), which is associated to the SAV-

BDF2 method, for mesh level ℓ = 5. As expected, the modified energies decay in time. Note that

SAV-BDF1 modified energy approximates E(c) from (4.5), while the SAV-BDF2 modified energy

approximates 2E(c).

Tables 1 and 2 report the L2 errors of c at the end of the time interval (i.e., t = 1) computed

with the SAV-BDF1 and SAV-BDF2 method, respectively. Mesh refinement level and associated

time steps are reported in the tables, which provide the order of convergence too. We see that while

the L2 errors are somewhat different, the order of convergence is the same. It is around 2, especially
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Figure 2: Convergence test: evolution of the L2 errors of c computed with the SAV-BDF1 method
(top row) or SAV-BDF2 method (bottom row) for ϵ = 0.05 (left), ϵ = 0.1 (center), and ϵ = 1
(right).
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Figure 3: Convergence test, ϵ = 0.05: decay of modified energy (4.16) (left) and (4.24) (right) for
mesh level ℓ = 5.

when going from ℓ = 5 to ℓ = 6, which is the optimal order of convergence for P1 elements. We

believe that the order of convergence is not spoiled when using BDF1 for time discretization because

the time step value is small enough to prevent the time discretization error from dominating over

the space discretization error. Table 2 can be compared with Table 3, which provides L2 errors
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of c at t = 1 computed with the stabilized method in [115] and BDF2, together with the rates of

convergence. Not just the convergence rates are the same, but the errors are also very similar. We

have highlighted in red the digits in Table 3 that differ from Table 2.

Table 1: Convergence test, ϵ = 0.05, 0.1, 1: L2 errors of c at t = 1 computed with the SAV-BDF1
method and P1 elements for different meshes and time steps, together with the rates of convergence

ϵ = 0.05 ϵ = 0.1 ϵ = 1

mesh level ∆t error rate error rate error rate

3 0.02 2.8247 ·10−2 1.3409·10−2 0.3453·10−2

4 0.01 0.9720 ·10−2 1.54 0.3816·10−2 1.81 0.0765·10−2 2.18

5 0.005 0.2909·10−2 1.76 0.1139·10−2 1.91 0.0181·10−2 2.07

6 0.0025 0.0735·10−2 1.96 0.0267·10−2 1.98 0.0045·10−2 2.01

Table 2: Convergence test, ϵ = 0.05, 0.1, 1: L2 errors of c at t = 1 computed with the SAV-BDF2
method and P1 elements for different meshes and time steps, together with the rates of convergence

ϵ = 0.05 ϵ = 0.1 ϵ = 1

mesh level ∆t error rate error rate error rate

3 0.02 2.8338 ·10−2 1.3438·10−2 0.3474·10−2

4 0.01 0.9727 ·10−2 1.54 0.3824·10−2 1.81 0.0767·10−2 2.18

5 0.005 0.2869·10−2 1.76 0.1013·10−2 1.91 0.0181·10−2 2.07

6 0.0025 0.0732·10−2 1.96 0.0255·10−2 1.98 0.0045·10−2 2.01

Table 3: Convergence test, ϵ = 0.05, 0.1, 1: L2 errors of c at t = 1 computed with the stabilized
method in [115], P1 elements, and BDF2 for different meshes and time steps, together with the
rates of convergence

ϵ = 0.05 ϵ = 0.1 ϵ = 1

mesh level ∆t error rate error rate error rate

3 0.02 2.8335·10−2 1.3434·10−2 0.3475 ·10−2

4 0.01 0.9725·10−2 1.54 0.3823·10−2 1.81 0.0767·10−2 2.18

5 0.005 0.2869·10−2 1.76 0.1013·10−2 1.91 0.0182 ·10−2 2.07

6 0.0025 0.0732·10−2 1.96 0.0255·10−2 1.98 0.0045·10−2 2.01

The results in this section give us confidence in our implementation of the SAV methods within

DROPS. In addition, they suggest that for the values of ϵ we consider ℓ = 5 and ∆t = 0.005 are

appropriate levels of refinement for mesh size and time step as they provide small discretization

errors and are more computationally efficient than ℓ = 6 and ∆t = 0.0025. Hence, for the results

in the next section we will use ℓ = 5 and ∆t = 0.005.
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5.1.2 Phase separation on the sphere

Our interest in surface phase field problems, such as the Cahn–Hilliard equation [88, 111, 115,

116, 117], stems from their practical applications in targeted drug delivery. The phenomenon of lipid

phase separation has been utilized to enhance the delivery performance of targeted lipid vesicles

[8, 55], as the formation of phase-separated patterns on the vesicle surface has been associated

with increased target selectivity, cell uptake, and overall efficacy. In our previous works [111, 117],

we validated our numerical results obtained using the approaches described in [88, 115] against

laboratory experiments. We achieved good agreement between the numerical and experimental

results for different lipid membrane compositions.

In this dissertation, we consider 3 membrane compositions. Each membrane composition corre-

sponds to a certain fraction a of the sphere surface area (since these vesicles are spherical) covered

by one representative phase. In this section, we present results for a = 0.5, 0.3, 0.7, which are

experimentally relevant values.

In order to model an initially homogenous mix of components, the initial composition c0 is

defined as a realization of Bernoulli random variable crand ∼ Bernoulli(a) with mean value a, i.e.,

we set:

c0 := crand(x) for active mesh nodes x. (5.2)

As mentioned at the end of the previous section, the interface thickness ϵ is set to 0.05, which is a

realistic value for lipid vesicles.

Let us start with the results obtained with the SAV-BDF2 method without time step adaptivity

and compare them with the results obtained with the stabilized method in [115]. Fig. 4 shows the

evolution of phases for a = 0.5, which means that 50% of the sphere surface is covered by the

representative phase (red in the figure) and the remaining 50% is covered by the other phases (blue

in the figure). There is no observable difference in the spinodal decomposition and subsequent

domain ripening given by the two methods.

Fig. 5 and 6 display the evolution of phases for a = 0.3 and a = 0.7, respectively. Notice that
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t = 0

Stabilized

t = 0.01 t = 0.5 t = 2 t = 5 t = 50

BDF2
SAV

Figure 4: Phase separation on the sphere, a = 0.5: evolution of phases computed with the stabilized
method in [115] (top) and the SAV-BDF2 method without time step adaptivity (bottom).

there are opposite cases: 30% of the sphere surface is covered by the representative (red) phase for

a = 0.3, while 30% of the sphere surface is covered by the opposite (blue) phase for a = 0.7. If

we were to use opposite initial conditions in these two cases, Fig. 5 and 6 would look identical just

with inverted colors (red to blue and viceversa). However, the initial conditions were generated

randomly according to (5.2) and so the evolution of the red domains in Fig. 5 looks similar (but

not identical) to the evolution of the blue domains in Fig. 6. For both values of a though, we see

that again there is no observable difference in the solution computed with the stabilized method in

[115] and the solution give by the SAV-BDF2 method without time step adaptivity.
t = 0

Stabilized

t = 1 t = 2 t = 10 t = 20 t = 25

BDF2
SAV

Figure 5: Phase separation on the sphere, a = 0.3: evolution of phases computed with the stabilized
method in [115] (top) and the SAV-BDF2 method without time step adaptivity (bottom).
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t = 0

Stabilized

t = 1 t = 2 t = 10 t = 20 t = 25

BDF2
SAV

Figure 6: Phase separation on the sphere, a = 0.7: evolution of phases computed with the stabilized
method in [115] (top) and the SAV-BDF2 method without time step adaptivity (bottom).

Fig. 7 displays the decay of modified energy (4.24) for the three values of a. We see that the

decay is more or less rapid depending on the value of a. However, in no case at t = 25 the system

is close to an energy plateau, which we observed already at t = 1 for the simple convergence test

in Sec 5.1.1. See the graphs in Fig. 3.
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Figure 7: Phase separation on the sphere: decay of modified energy (4.24) for a = 0.3 (left), a = 0.5
(center), and a = 0.7 (right).

Next, we compare the results obtained with the time-adaptive SAV-BDF2 method to those

obtained with the stabilized method in [115] in its time adaptive version. For this comparison, we

select only one representative value of a, namely a = 0.5. In Fig. 8, which illustrates the evolution

of phases until reaching the equilibrium configuration, we once again observe no difference in either

the spinodal decomposition or the domain ripening between the two methods.

A comparison of the time step sizes and time step number over time is shown in Fig. 9. From
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t = 0

Time
adaptive
stabilized

t = 1 t = 5 t = 20 t = 100 t = 200

Time
adaptive
SAV

Figure 8: Phase separation on the sphere, a = 0.5: evolution of phases computed with the time-
adaptive stabilized method in [115] (top) and the time-adaptive SAV-BDF2 method (bottom).

Fig. 9 (left), we can see that the time step grows for both methods until approximately t = 50, after

which it fluctuates around ∆t = 1. Although the time step sizes are generally comparable for both

methods, the SAV method utilizes slightly larger time steps during this initial integration stage.

Consequently, time step number n required to integrate the system up to any t ≤ 200 is smaller for

the time-adaptive SAV-BDF2 method compared to the time-adaptive stabilized method in [115].

However, the difference is not significant. See Fig. 9 (right).

Figure 9: Phase separation on the sphere, a = 0.5: evolution of the time step size ∆t (left) and
number of the time steps required at each time instant (right) for the time-adaptive stabilized
method from [115] and the BDF2-SAV method with time step adaptivity.

We conclude this section with a comment on the computational time. All the computations were

executed on a machine with an AMD EPYC 7513 32-Core Processor and 512 GB RAM. Fig. 10

reports the computational time needed by the simulations whose results are shown in Fig. 4, 5,

55



and 6 to complete the first 100 time steps. The time required by the stabilized method in [115]

varies between one half and two thirds of the time required by the SAV method with no time

step adaptivity. Let us now turn to the simulations in Fig. 8, i.e., those with time adaptivity.

The time-adaptive SAV-BDF2 method takes 319 time steps in time interval (0, 200] for a total

computational time of about 41 minutes, while the time-adaptive stabilized method in [115] takes

about 9 minutes to complete 379 time steps in the same time interval. The simulation with the

time-adaptive SAV-BDF2 method requires less time steps but takes longer overall. As mentioned

at the end of Sec. 4.2.2, the reason for this difference in the computational times is due to the fact

that the extra terms introduced by the SAV method make the matrices of the associated linear

systems dense. If one used a finite difference method on uniform grids for space discretization as in

[48, 64, 96], higher computational efficiency could be achieved for the SAV method. Our preference

for a finite element method and non-uniform meshes is for greater geometric flexibility, as shown

in the next subsection.

a = 0.3

a = 0.5

a = 0.7

624

401

570

385

191

380

SAV scheme
Stabilized scheme

Figure 10: Phase separation on the sphere: computational time (in s) needed by the stabilized
method in [115] and the SAV method with no time step adaptivity to complete the first 100 time
steps of the simulations in Fig. 4 (a = 0.5), 5 (a = 0.3), and 6 (a = 0.7)

5.1.3 Phase separation on a complex manifold

Because of our interest in phase separation on biological membranes in general, not just lipid

vescicles, we need to be able to handle surfaces that are more complex than the sphere. Here, we

56



consider an idealized cell with surface Γ given by the zero level set of following function [25, 115]:

ϕ(x) =
1

4
x21 + x22 +

4x23
(1 + 1

2 sin(πx1))
2
− 1.

Fig. 11 illustrates a side view of this complex manifold and an angle view of the surface mesh.

Figure 11: Illustration of the complex manifold

We embed surface Γ in bulk domain Ω = [−2, 2] × [−4/3, 4/3] × [−4/3,−4/3]. A tetrahedral

mesh for Ω is generated in the same way as for the cases in the previous subsection, i.e., by diving Ω

into cubes and then diving the cubes into tetrahedra. The active elements, which are the elements

that intersect surface, are further refined for a total of 14298 degrees of freedom. This mesh has a

level of refinement comparable to mesh ℓ = 5 in Sec. 5.1.2. We fix the time step to ∆t = 0.005 and

do not allow for time step adaptivity.

We set the interface thickness ϵ to 0.05, like in Sec. 5.1.2. Fig. 12 compares the evolution of

the phases given by SAV- BDF2 method without time step adaptivity with the evolution given by

the stabilized method in [115] for a = 0.5. We recall that a = 0.5 means that 50% of the idealized

cell surface is covered by the representative (red) phase and the remaining 50% is covered by the

other phases. Just like in the case of the sphere (see Fig. 4), there is no observable difference in

the results given by the two methods.
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t = 0

Stabilized

t = 0.1 t = 1 t = 5 t = 15

BDF2

SAV

Figure 12: Phase separation on an idealized cell: evolution of phases computed with the stabilized
method in [115] (top) and the SAV method and BDF2 without time step adaptivity (bottom).

5.2 Numerical experiments with the Navier–Stokes–Cahn–Hilliard equations

After checking the convergence orders of the method described in Sec. 4.3, we present a series

of numerical tests to study well-known two-phase fluid flows (the Kelvin–Helmholtz and Rayleigh–

Taylor instabilities) on surfaces. Thanks to our method, we can investigate the effect of line tension

on such instabilities. In addition, for the Rayleigh–Taylor instability we assess the effect of viscosity

and surface shape.

For all the tests, we choose P2–P1 finite elements for fluid velocity and pressure and P1–P1

finite elements for surface fraction and chemical potential.

5.2.1 Convergence test

We proceed with checking the spatial accuracy of the finite element method described in Sec. 4.3

with a benchmark test. The aim is to validate our implementation of the method. For this purpose,

we consider the two-phase fluid system on the unit sphere centered at the origin. The surface is

characterized as the zero level set of function ϕ(x) = ∥x∥2 − 1 and is embedded in an outer cubic

domain Ω = [−5/3, 5/3]3. We choose Van der Waals “tanh” exact solution for the surface fraction

and solenoidal Killing vector field for velocity:

c∗(t,x) =
1

2

(
1 + tanh

z cos(πt)− y sin(πt)

2
√
2ϵ

)
, u∗(t,x) = π (0,−z, y)T .
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Killing vectors fields such u∗ have been excluded from the analysis in Sec. 4.3.2 for simplicity, but

they allow us to build a relatively easy analytical solution. The nonzero CH equation forcing term

is computed from (3.15). We set ϵ = 0.05. Fig. 13 (leftmost panel) displays c(0,x). For this test, we

consider fluids with matching densities and viscosities: ρ1 = ρ2 = 1 and η1 = η2 = 1. In addition,

we set M = 0.05 and σγ = 0. The time interval of interest is t ∈ [0, 1], during which the initial

configuration c0 is rotated by 180◦. See Fig. 13. Notice that by setting σγ = 0 the NSCH system

one-way coupled: phase-separation is affected by the fluid flow, but not vice versa.

t = 0 t = 0.2 t = 0.6 t = 1

Figure 13: Evolution of the surface fraction c over time computed with mesh ℓ = 5.

The initial triangulation Thℓ
of Ω consists of eight sub-cubes, where each of the sub-cubes

is further subdivided into six tetrahedra. Further, the mesh is refined towards the surface, and

ℓ ∈ N denotes the level of refinement, with the associated mesh size hℓ = 10/3
2ℓ+1 . For the purpose

of numerical integration, we apply several “virtual” levels of refinements for the tetrahedra cut

by the mesh and integrate our bilinear forms over a piecewise planar approximation of Γ on this

virtual grid. This allowed us to apply a standard quadrature rule and reduce the geometric error

in our convergence test. The time step is refined together with the mesh size according to ∆t =

1/(25 ·4ℓ−2). First, we show the convergence results obtained with BDF1 for the time discretization

of the Cahn–Hilliard problem, which is what we used in (4.50). Table 4 reports the H1 and L2 errors

for the velocity and the L2 error for the order parameter at the end of the time interval, i.e., t = 1,

for levels ℓ = 3, 4, 5. For each mesh, Table 4 gives the number of sublevels (virtual levels) used for

more accurate numerical integration. We observe slightly better than expected convergence rates

for the velocity, which might be the effect of the interplay between interpolation and geometric

error reduction. We notice that we are able to refine the time step more aggressively than the
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spacial mesh size. Thus, we hypothesize that the restrictions on h in terms of ∆t in Theorem 4.5

may be an artifact of the analysis.

Table 4: H1 and L2 errors for the velocity and the L2 error for surface fraction at t = 1 for levels
ℓ = 3, 4, 5 and rate of convergence when BDF1 is used for the time discretization of the Cahn–
Hilliard problem

ℓ sublevels ||u∗ − uh||H1(Γ) rate ||u∗ − uh||L2(Γ) rate ||c∗ − ch||L2(Γ) rate

3 1 0.097166 0.009215 0.448303

4 2 0.019923 2.29 0.000572 4.01 0.174764 1.36

5 4 0.004541 2.13 0.000059 3.28 0.048930 1.84

Next, we switch to BDF2 for the time discretization of the Cahn–Hilliard problem and allow

for a larger time step: ∆t = 1/(25 · 2ℓ−2). Notice that the time step is refined linearly to compare

with the results in Table 4. Table 5 reports the corresponding errors and rates of convergence. In

this case, we observe a slightly better than expected convergence rate for c too.

Table 5: H1 and L2 errors for the velocity and the L2 error for surface fraction at t = 1 for levels
ℓ = 3, 4, 5 and rate of convergence when BDF2 is used for time discretization of the Cahn–Hilliard
problem

ℓ sublevels ||u∗ − uh||H1(Γ) rate ||u∗ − uh||L2(Γ) rate ||c∗ − ch||L2(Γ) rate

3 1 0.081485 0.010026 0.311232

4 2 0.016800 2.28 0.000619 4.02 0.081597 1.93

5 4 0.003905 2.10 0.000046 3.75 0.015086 2.43

5.2.2 The Kelvin–Helmholtz instability

While the Kelvin–Helmholtz (KH) instability is a classical example of two-phase fluid flow in

planar or volumetric domains, the number of numerical studies on curved surfaces is limited. The

KH instability arises when there is a difference in velocity at the interface between the two fluids

and a perturbation is added to the interface. This perturbation eventually makes the interface

curl up and generates a vortex strip. Here, we will simulate the KH instability on a sphere and

investigate the effect of varying line tension.

To design this experiment, we follow what is done in [61, 52, 87]. The initial velocity field is

given by the counter-rotating upper and lower hemispheres with speed approximately equal 1 closer
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to equator and vanishing at the poles. The velocity field has a sharp transition layer along the

equator, where the perturbation is added. See, e.g., [87] for details on the perturbation. The initial

surface fraction is given by

c0 =
1

2

(
1 + tanh

z

2
√
2ϵ

)
,

where ϵ = 0.01. Also for this test, we consider fluids with matching densities and viscosities:

ρ1 = ρ2 = 1 and η1 = η2 = 10−5. In addition, we set M = 0.01. We consider time interval [0, 10].

We select mesh level ℓ = 6 (see mesh description for the previous test). We choose ∆t = 1/640.

Fig. 14 and 15 show the evolution of surface fraction and vorticity for three different values of line

tension: σγ = 0, 0.01, 0.1. The evolution of both quantities does not vary significantly when going

from σγ = 0 to σγ = 0.01, although some differences can be noticed from t = 4.5 on. Changing

to σγ = 0.1 produces more evident differences, starting already from t = 1.375. When σγ ̸= 0, the

NS part of the CHNS system is two-way coupled to the CH part. So, the differences are significant

both for surface fraction and vorticity.

σγ = 0

t = 1 t = 1.375 t = 2 t = 4.5 t = 5.5 t = 8.5 t = 10

σγ = 0.01

σγ = 0.1

Figure 14: KH instability: evolution of order parameter for different values of line tension: σ = 0
(top), σ = 0.01 (center), and σ = 0.1 (bottom).

61



σγ = 0

t = 1 t = 1.375 t = 2 t = 4.5 t = 5.5 t = 8.5 t = 10

σγ = 0.01

σγ = 0.1

Figure 15: KH instability: evolution of the vorticity for different values of line tension: σγ = 0
(top), σγ = 0.01 (center), and σγ = 0.1 (bottom).

5.2.3 The Rayleigh–Taylor instability

The Rayleigh–Taylor (RT) instability occurs when a gravity force (taken to be (0, 0,−1)) is

acting on a heavier fluid that lies above a lighter fluid. As the RT instability develops, “plumes” of

the lighter fluid flow upwards (with respect to the gravitational field) and “spikes” of the heavier

fluid fall downwards. We will simulate the RT instability on a sphere and on a torus with the aim

of investigating the effect of the geometry. In addition, we will vary line tension and fluid viscosity.

We take two fluids with densities ρ2 = 3, ρ1 = 1 and matching viscosities η1 = η2 = η, which

will be specified for each test. The initial surface fraction is given by

c0 =
1

2

(
1 + tanh

z + zrand

2
√
2ϵ

)
,

where ϵ = 0.025 and zrand is a uniformly generated random number from the range (−0.1ϵ, 0.1ϵ).

The role of the perturbation generated by zrand is to onset the RT instability. We set M = 0.0025.

Let us start with the sphere. We select mesh level ℓ = 5 (see mesh description for the convergence

test) and set ∆t = 0.1. Fig. 16 shows the evolution of the surface fractions and velocity field for

η = 10−2 and two values of line tension: σγ = 0 and σγ = 0.025. At time t = 7, for σγ = 0.025 we
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observe the characteristic flow structures of the RT instability. Instead, for σγ = 0 such structures

have already broken up at t = 7. The effect of line tension is also seen at t = 30: for σγ = 0.025 we

observe that the heavier fluid has already settled at the bottom of the sphere, while for σγ = 0 that

has not happened yet. It takes till t = 55 to have the heavier fluid at the bottom in the absence

of line tension. After the revolution, the fluid phases do not achieve steady state quickly but the

waves keep traveling along the equator.

σγ = 0

t = 0 t = 7 t = 14 t = 20 t = 30 t = 55

σγ = 0.025

Figure 16: RT instability on the sphere: evolution of the order parameter (color) and velocity field
(arrows) for η = 10−2 and different values of line tension: σγ = 0 (top) and σγ = 0.025 (bottom).

Next, we consider an asymmetric torus with constant distance from the center of the tube

to the origin R = 1 and variable radius of the tube: rmin = 0.3 ≤ r(x, y) ≤ rmax = 0.6, with

r(x, y) = rmin + 0.5(rmax − rmin)(1− x√
x2+y2

). We characterize the torus surface as the zero level

set of function ϕ = (x2+y2+z2+R2−r(x, y)2)2−4R2(x2+y2). The torus is embedded in an outer

domain Ω = [−5/3, 5/3]3, just like the sphere. We also selected same mesh level (l = 5) and same

time step (∆t = 0.1) as for the sphere. We set the line tension to σ = 0.025 and vary the viscosity:

η = 10−2, 10−1, 1. Fig. 17 displays the evolution of the surface fractions for these three values of

viscosity. First, we observe that in all cases the instability develops more slowly on the “skinny”

side of the torus. See second column in Fig. 17. The fact that geometry has a considerable effect

on the surface RT instability is also clear when one compares the results on the sphere and the

torus for the same values of σγ and η, i.e., the top row in Fig. 17 with the bottom row in Fig. 16.

63



In particular, notice that while the heavier fluid reaches the bottom of the sphere around t = 30

(Fig. 16, bottom second-last panel), the two fluids are still very much mixed on the torus at t = 160

(Fig. 17, top left panel). We need to increase the viscosity value to 1 to be able to see most of the

heavier fluid at the bottom of the torus at t = 160 (Fig. 17, bottom left panel), although that is

still far from being settled.

η = 10−2

t = 0 t = 2 t = 4 t = 10 t = 40 t = 160

η = 10−1

η = 1

Figure 17: RT instability on the torus: evolution of the order parameter for σγ = 0.025 and different
values of viscosity: η = 10−2 (top), η = 10−1 (center), and η = 1 (bottom).
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6 Applications

6.1 Mathematical model

In this section, we apply our NSCH model to investigate i) the coarsening and fluidity of lipid

vesicles and ii) the fusogenicity of lipid vesicles. In order to reproduce and predict experimentally

observed phenomena, the mathematical model needs to account for three major physical factors:

i) phase separation, ii) surface density flow, and iii) electrostatic forces. The thermodynamically

consistent NSCH model accounts only for i) and ii), i.e., only phase separation and flow phenomena

occurring in lipid membranes can be modeled computationally. Here, we extend the NSCH model

to include the electrostatic forces between the positively charged lipids in the SUVs and the GUVs,

whose average measured zeta potential is negative (see Table 7).

Let Γ be a sphere representing the lipid vesicles let Fe denote the electrostatic force per unit

surface area acting on the lipid vesicle. The NSCH equations (3.13)-(3.16) with the electrostatic

force term are used to model membranes. Specifically, the NSCH system with electrostatic forcing

that governs the evolution of c, u, p, and µ in time t and space x ∈ Γ ⊂ R3 is given by:

ρ(∂tu+ (∇Γu)u)︸ ︷︷ ︸
inertia

−divΓ(2ηEs(u)) +∇Γp︸ ︷︷ ︸
lateral stresses

= Fe−σγϵ
2 divΓ (∇Γc⊗∇Γc)︸ ︷︷ ︸

line tension

+ Mθ(∇Γ(θu) )∇Γµ︸ ︷︷ ︸
chemical momentum flux

(6.1)

divΓu = 0︸ ︷︷ ︸
membrane inextensibility

(6.2)

∂tc+ divΓ(cu)︸ ︷︷ ︸
transport of phases

− divΓ (M∇Γµ)︸ ︷︷ ︸
phase masses exchange

Fick’s law

= 0, µ = f ′
0(c)− ϵ2∆Γc︸ ︷︷ ︸

mixture free energy variation

(6.3)

on Γ for t ∈ (0, tfinal].

In the next Section 6.2, we investigate the coarsening and fluidity of lipid vesicles. For the

purposes of this section we set Fe = 0. In the subsection 6.3, we discuss the fusogenicity of lipid

vesicles. Further details are provided in the corresponding subsections.
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6.2 Lipid domain coarsening and fluidity in multicomponent lipid vesicles

Biological membranes are heterogenous and this characteristic is critical for their functionality.

The lipid bilayer in these membranes hosts a variety of lipid species that may be organized into one

of the two phases: liquid disordered and liquid ordered [107]. The tight packing of saturated lipids

and cholesterol in the liquid ordered phase, in contrast to the loosely packed unsaturated lipids

present in the liquid disordered phase leads, under certain conditions, to the lipid phase separation

in membranes [13]. The liquid ordered domains - also known as lipid rafts - that are surrounded

with liquid disordered phase in biological membranes, have been recognized as a key platform for

cell signaling and membrane trafficking among other cellular processes [13, 12, 69, 7, 104]. Thus,

these domains have received growing interest in the past few decades and have been the focus of

numerous experimental and theoretical studies [62, 9].

More recently, domain formation on membranes has also been utilized to create novel membrane-

based materials with heterogenous surfaces. When explored for drug delivery applications, these

heterogenous membrane materials showed clear advantage over their homogenous membrane coun-

terparts [8, 91]. With the increasing number of available lipid-conjugated molecules (e.g., peptides,

polymers, etc.), lipid membranes with heterogenous and spatially-organized surfaces can open new

avenues for the design of novel materials. However, efficient design of such heterogenous membrane-

based materials requires computer-aided modeling that can predict the lipid domain formation and

dynamics on a given membrane composition in a reliable and quantitative manner.

Our current understanding of membrane phase separation is mainly based on the experimental

studies performed on model membranes with well-defined lipid compositions. Amongst these model

membranes, giant unilamellar vesicles (GUVs) have provided a particularly suitable platform for

studying membrane phase behavior as their free-standing lipid bilayer closely mimics the natural

membranes and their large size (micron-scale) makes them resolvable under optical microscopy

[112]. The combined use of GUVs and advanced fluorescence-based microscopy techniques have,

for instance, shaped our knowledge on membrane domains’ thermodynamic equilibria [106, 31]
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and their coarsening dynamics [101]. These studies have also provided us with an insight into the

distinct characteristics (e.g. morphology and fluidity) of liquid ordered and liquid disordered phases

[54, 92, 93].

It has been demonstrated that membrane fluidity within the liquid ordered domains can be

substantially lower than that in the liquid disordered phase [93]. Such a difference can affect the

coarsening dynamics of domains on membranes [101]. This interesting aspect of lipid domains

was not considered in our previous study [117] as fluidity is not accounted for in the Cahn–Hilliard

model. Hence, we apply the Navier–Stokes–Cahn–Hilliard model, and compare its numerical results

to our experimental data on GUVs with ternary membrane compositions. Specifically, we examine

the phase separation on GUVs with two distinct compositions (with opposite and nearly inverse

phase behavior) and monitor the number of lipid domains, area fraction and perimeter over time

and compare these results to those from our computational model. It is noteworthy that the Cahn–

Hilliard model would predict nearly the same evolution of the domain ripening process for these

two compositions. However, our experiments reveal different domain ripening dynamics, which can

be captured by the more complex Navier–Stokes–Cahn–Hilliard model.

Lipid compositions applied in this study were (i) DOPC: DPPC with a 1:1 molar ratio and

15% Chol, referred to as 1:1:15% composition, and (ii) DOPC: DPPC with a 1:2 molar ratio and

25% Chol, referred to as 1:2:25% composition. Details of GUV preparation, materials and imaging

process can be found in the following paper [111].

Several experimental works help with the settings of viscosity [90] and line tension [45, 58, 59].

For density, we calculated the value for each phase using the estimated molecular weight and

molecular surface area for the corresponding phase [111].

In order to model an initially homogenous liposome, the surface fraction c0 is defined as a

realization of Bernoulli random variable crand ∼ Bernoulli(aD) with mean value aD, where aD

denotes domain area fraction, i.e., we set:

c0 := crand(x) for active mesh nodes x. (6.4)
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Following the thermodynamic principles described in our previous work [117], we set aD = 0.71 for

the 1:2:25% (DOPC :DPPC :Chol) composition and aD = 0.29 for the 1:1:15% composition.

6.2.1 Results and Discussion

We focused on a ternary membrane composition DOPC:DPPC:Chol, which is known to separate

into co-existing liquid ordered (lo) and liquid disordered (ld) phases near room temperature when

mixed in proper ratios [53, 105]. Upon phase separation, the ld phase is composed primarily of

DOPC and the lo phase is primarily composed of Chol and DPPC. The relative size of these two

phases can be tuned by adjusting the molar ratio of the lipid components. To assess our model of

phase separation, we decided to focus our experiments on two membrane compositions that provide

distinct and nearly opposite phase-behavior: one composition with majority lo phase and the other

one with a minority lo phase. We chose membranes composed of DOPC:DPPC:Chol at molar ratio

of 1:1:15%, in which the lo phase is predicted to occupy about 29% of the membrane surface at 25°C

and 1:2:25%, in which the lo phase would occupy about 70% of the membrane area at 15°C. These

area fractions were calculated using an approach described in [117] that relies on the composition

of each phase (determined based on the phase diagram tie-lines [106]) and the molecular area of

the lipid components. The Cahn–Hilliard model, as well as continuum based models applied in

other studies [109, 74, 100, 63, 32], would predict nearly the same evolution of the domain ripening

process for these two compositions since it does not account for in-membrane viscous and transport

effects. However, the experimental data presented in this section reveal a different domain ripening

dynamics, which can be correctly captured by the more complex NSCH model (6.1)-(6.3).

Using confocal fluorescence microscopy, our collaborators examined a minimum of 18 GUVs

(from 4-5 independent experiments) for the number of their lipid domains as well as area and

perimeter of domains at different time points, for each GUV composition. The fraction of vesicle

surface area occupied by the lo phase, i.e., lipid domain area fraction, in GUVs was calculated from

the confocal images.
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Independent of the experimental results, 10 numerical simulations were run for each composi-

tion. All the simulated liposomes had a 10 µm diameter and they differed in the realization of the

random variable used to set up initial state. For each simulation, we tracked the total lipid domain

perimeter and the total number of lipid domains in order to compare with the experimental data.

The computed lipid domain area fraction is not reported since, the NSCH model is conservative

and thus the lipid domain area fraction stays constant over time.
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Figure 18: Total lipid domain perimeter in µm over time for composition 1:2:25% (left) and 1:1:15%
(right): numerical results average (solid line) and experimental data (markers).

In order to compare the total lipid domain perimeter between simulations and experiments,

we first scaled all dimensional observables that depend on a length unit by the radius of the

corresponding GUV, since the diameter of GUVs varied in the experiments (between 9-16 µm) while

it was constant in the simulations. Fig. 18 reports all the rescaled experimental measurements with

markers (a different marker for each GUV) and the average of the computed total lipid domain

perimeter from all the simulations with a solid line for compositions 1:2:25% and 1:1:15%. In

both cases, the average of the computed total lipid domain perimeters falls within the cloud of

experimental measurements. We note that no experimental measurement is available before 40 s

because no lipid domains were observed in this time frame, presumably due to the small size of

domains that could not be resolved under fluorescence microscopy. We introduced a time shift

to match the time in the computations with the time in the experiments (i.e., the time on the

horizontal axis) in Fig. 18. Indeed, the initial time for the computations is the time when phase
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separation is initiated, which is hard to observe experimentally.
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Figure 19: Total number of lipid domains over time for composition 1:2:25% (left) and 1:1:15%
(right): numerical results average (solid blue line), minimum and maximum values found numeri-
cally (solid orange and yellow lines, respectively), and experimental data (circles).

Next, we performed a quantitative comparison for the total number of lipid domains on a GUV

over time. Fig. 19 shows the experimentally measured and numerically computed data for both

examined compositions. The measurements are reported with a circle, while for the simulations we

reported three solid lines corresponding to the numerical results average, minimum, and maximum

number of lipid domains found in the simulations. We see that the vast majority of the experimental

data (89% for composition 1:2:25% and 91% for composition 1:1:15%) falls within the computed

extrema.

In order to facilitate the understanding of the different domain ripening dynamics for the two

membrane compositions under consideration, we superimpose the experimental data for total lipid

domain perimeter and total number of lipid domains in Fig. 20. We observe in average faster

dynamics towards the equilibrium state (i.e., one domain of the minority phase within a background

of the majority phase) for composition 1:1:15%, which has majority ld phase. This is correctly

captured by the NSCH model. Indeed, we see that the solid blue curve (corresponding to the

computed mean for composition 1:1:15%) lies below the red curve (corresponding to the computed

mean for composition 1:2:25%) for the majority of the time interval under consideration in both

graphs in Fig. 20. With consideration of membrane viscosity in each phase, the NSCH model
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Figure 20: Superimposition of experimental data for composition 1:2:25% (red dots) and 1:1:15%
(blue triangles) with the corresponding computed means (solid line with corresponding color) for
the total lipid domain perimeter (left) and total number of lipid domains (right).

provides a more accurate prediction of phase separation dynamics in membranes with the opposite

phase behavior.

To further compare the experimental data to the simulation results, we present a qualitative

comparison between images acquired with epi-fluorescence microscopy and images obtained from

post-processing the numerical results. Fig. 21 and Fig. 22 present such comparison for compositions

1:2:25% and 1:1:15%, respectively. Overall, from Fig. 21 and 22 we see an excellent qualitative

agreement between experiments and simulations.

Beyond the experimental validation presented above, numerical simulations can provide infor-

mation about quantities that cannot be measured experimentally or phenomena that cannot be

visualized, e.g., the flow field. Fig. 23 shows the evolution of the computed velocity vectors su-

perimposed to the computed surface fraction for both compositions. We observe a larger velocity

magnitude when there are several lipid domains on the surface that are in the process of merging.

The velocity magnitude becomes smaller as the number of lipid domain decreases and the system

gets closer to an equilibrium. Such flow field details could be of interest in other contexts, such as

evolution of rafts in cell membranes.
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t = 102 t = 145 t = 408 t = 1030

Figure 21: Qualitative comparison for 1:2:25%: epi-fluorescence microscopy images (with black
background) and numerical results (with white background) at four different times in time interval
[102, 1030] s.

t = 73 t = 166 t = 225 t = 244 t = 322

Figure 22: Qualitative comparison for 1:1:15%: epi-fluorescence microscopy images (with black
background) and numerical results (with white background) at five different times in time interval
[73, 322] s.
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Figure 23: Composition 1:2:25%: Evolution of the velocity vectors superimposed to the lipid do-
mains and maximum speed in µm/s for composition 1:2:25% (top) and 1:1:15% (bottom). The
velocity vectors are magnified by a factor 100, 300, 300, 700, and 1500 (from left to right) for
visualization purposes.

6.3 On fusogenicity of positively charged phased-separated lipid vesicles

Liposomes that contain cationic lipids [50, 6], such as 1,2-dioleoyl-3-trimethylammonium-propane

(DOTAP), are known for their high fusogenicity [99]. Cationic lipids, with their conical shape and

cationic headgroup, are critical for fusion [72, 46, 57]. While these lipids are typically non-toxic at

lower concentrations, concerns arise regarding their toxicity when used at higher concentrations,

attributed to their tetraalkylammonium moiety [75]. Therefore, designing delivery liposomes that

offer both high fusogenicity and low toxicity is a challenge. This challenge may be overcome by

controlling the surface density of cationic DOTAP on the surface of liposomes using the membrane

phase separation phenomenon.

Phase separation is a fundamental process that occurs in multicomponent lipid membranes

with substantial unfavorable interactions among their lipid components [44]. Ternary mixture of

DOPC:DPPC:Chol is an example of a phase-separating composition that can, for instance, form a

tightly-packed liquid ordered phase and a loosely-packed liquid disordered phase at certain molar

ratios. We previously combined experiments and modeling to investigate the phase behavior in this

lipid mixture. Here, we aim to explore the use of phase-separation in DOTAP:DOPC:DPPC:Chol

mixture to modulate surface density of DOTAP on liposomes and hence their fusogenicity.
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We hypothesize that concentrating DOTAP into small patches on the liposome’s surface, through

phase separation, can enhance the liposome’s fusogenicity without the need for high DOTAP con-

centrations. We further postulate that liposomes with the smallest patch area (i.e., the highest

local density of DOTAP when the amount of DOTAP is kept fixed) would exhibit the highest level

of fusogenicity into target membranes when compared to other liposomes with similar DOTAP

content. To test these hypotheses, we examine the fusogenicity of nano-scale liposomes (referred

to as small unilamellar vesicles - SUVs) of three different phase-separating compositions containing

DOTAP (referred to as patchy liposomes - PAT) into micron-sized liposomes (referred to as giant

unilamellar vesicles - GUVs) as model target membranes. Fluorescence microscopy was used as a

tool to assess the level of SUV fusogenicity. To enable fluorescence microscopy as a gauge tool,

different fluorescent lipids, Rho-PE and AF488-PE, were added to SUV and GUV membranes,

respectively. The setup is schematically illustrated in Fig. 24.

Figure 24: Schematic illustration of the phase-separated cationic SUVs (labeled with red-fluorescent
lipids) fusing in to GUVs (labeled with green-fluorescent lipids).

To set viscosity and line tension, we referred to experimental work from [90, 45, 58, 59]. In

[111], we calculated the value of density for each phase using the estimated molecular weight and

molecular surface area for the corresponding phase. However, those values do not take into account

the fact that the vesicle is loaded with and surrounded by an aqueous solution. Hence, in this work

we have increased the values to account for the “added mass” coming from such solution. Table 6

reports the domain (Lo phase) area fraction aD and the values or range of values for viscosity,

line tension, and density for the compositions under consideration. We note that temperature
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does not appear in eq. (6.1)–(6.3), which describe the evolution of phases and coupled surface flow

independently of what initiates phase separation. Indeed, the same model could be used if phase

separation was triggered by, e.g., pH [7] instead of temperature. This assumes that variations of the

temperature are small (thermodynamically insignificant) after the phase separation is initiated.

Table 6: Domain (Lo phase) area fraction aD (at the given temperature), value or range of values
for the density of liquid ordered (ρLo) and liquid disordered (ρLd

) phases in Kg/(mol·Å2), viscosity
of liquid ordered (ηLo) and liquid disordered (ηLd

) phases in 10−8 Pa·s·m, and line tension in pN
for the three membrane compositions under consideration

Composition aD ρLo ρLd
ηLo ηLd

σγ
PAT1 10.8% (15°C) 1401 1172 0.5− 6 0.2− 0.4 1.2− 1.4

PAT2 34.57% (17.5°C) 1401 1172 0.43− 5.7 0.2− 0.4 1.2− 1.6

PAT3 70.37% (15°C) 1435 1172 5− 8 0.2− 0.4 1.2− 1.8

In the simulations, we exposed one SUV to one GUV. Because the GUVs are significantly

larger than the SUVs, the curvature of a GUV is negligible at the scale given by the size of an

SUV. Hence, we will approximate a GUV with a plane for the computation of the electrostatic

force Fe. Therefore, the electric field E generated by a GUV can be (locally) computed by:

E =
σ

2ε0
, (6.5)

where σ is the GUV surface charge density and ε0 is the vacuum permittivity (8.85 · 10−12 Fm−1).

The value of σ is estimated from a linear approximation of Grahame’s formula [42], which is valid

in low-potential situations:

σ ≈ ε · ε0 · κ ·Ψ0, Ψ0 =
ζ

exp(−κ · x)
, (6.6)

where ε is the relative permittivity of water (about 80 at 20°C), κ is the Debye length parameter

for a NaCl solution (10/7 nm−1 [20]), Ψ0 is the surface potential [20], x is the slip plane (0.24 nm

[20]), and ζ is the zeta potential. The measured average zeta potentials for the GUVs and SUVs

are reported in Table 7.
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Table 7: Measured average zeta potentials for the GUVs composed of DOPC (in sucrose solution)
and patchy SUVs (in dilute PBS) used in the experiments

Vesicle Zeta Potential

GUV -8.56mV

PAT1 18.35mV

PAT2 18.87mV

PAT3 20.41mV

Once the electric field E is computed, the electrostatic force Fe in (6.1) is given by Fe(x) =

Eq(x), where q is a point charge located at x on an SUV (see Fig. 25). Since we cannot measure a

point charge on an SUV, we resort to an approximation. We find the surface charge density (6.6)

for an SUV using the measured zeta potentials reported in Table 7 for each composition under

consideration. With the SUV surface charge density, we get the total attraction force density and

we distribute it proportionally to the SUV surface. To exemplify the calculation, we consider a

PAT3 SUV, which has aD = 70.37%, i.e., about 70% of the surface of the SUV is covered by the

Lo phase (red in Fig. 25). For composition PAT3, the concentration of DOTAP in the Ld phase

(blue in Fig. 25) is 41.8% (see Table 8), corresponding to 67.15% of the total DOTAP in the SUV.

So, we uniformly distribute 67.15% of the total charge density, and hence force, to the Ld phase.

x

GUV -○ -○ -○ -○ -○ -○ -○

-○-○ -○ -○ -○ -○ -○ -○ -○

PAT3 SUV

+○ +○+○

+○ +○

Homo SUV

+○

+○

+○

+○

+○

Figure 25: Relative positions of GUV, represented as a plane, and a positively charged SUV, homo-
geneous (sphere on the left) or phase-separated PAT3 SUV (sphere on the right), in a simulation.
The Lo phase in the phase-separated SUV is colored in red, while the Ld phase is blue.

76



6.3.1 Results and Discussion

In order to investigate the effect of surface density of cationic lipid DOTAP on liposomes’

fusogenicity, we selected a phase-separating lipid composition DOPC:DPPC:Chol and focused on

three different molar ratios reported in Table 6 with distinct domain (Lo) area fractions aD. We

replaced 15 mol% of DOPC in these liposomal formulations with DOTAP. Given that DOTAP’s

acyl-chain chemistry is similar to that of DOPC, we assumed that this lipid would have similar

phase partitioning behavior as DOPC and would mostly partition into the Ld phase. Table 8

summarizes the lipid distribution among Lo and Ld phases. These lipid distributions are estimated

based on the tie-lines available in literature [106] and as described in [111, 117]. With the same

DOTAP content, composition PAT3 is expected to have the highest surface density of DOTAP

in Ld phase because it has the largest aD, and composition PAT1 is expected to have the lowest

density of DOTAP in its Ld phase because it has the smallest aD.

Table 8: Lipid distribution among the two phases in the examined phase-separated SUVs

Ld phase Lo phase

Composition DOTAP DOPC DPPC Chol DOTAP DOPC DPPC Chol

PAT1 (15%) 16.67% 49.33% 16% 18% 5.56% 16.44% 43% 35%

PAT2 (15%) 22.91% 41.09% 29% 7% 4.65% 8.35% 61% 26%

PAT3 (15%) 41.80% 26.20% 24% 8% 8.61% 5.39% 57% 29%

Here, we present the computational data and show how they corroborate the observations made

from the experiments. Details of laboratory experiments can be found in [110]. As mentioned in

before, in phase-separated SUVs with cationic lipids there is a complex interplay of the forces

driving phase separation, forces driving surface flow, and electrostatic forces. In order to facilitate

our understanding of how patches of fusogenic lipids promote fusion, we let the SUVs undergo

phase-separation before exposing them to the target model membranes both in the simulations and

in the experiments. This serves the purpose of disentangling the effect of phase separation forces

from the effect of electrostatic forces. By the time the SUVs are exposed to the model membranes

(i.e., > 60 min after formation), most SUVs have reached the equilibrium phase-separated state,
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mostly with one patch of the minority phase against the background of the majority phase. From

results in the previous section, we know that membranes of different lipid compositions take different

times to reach the equilibrium state, specifically it happens faster for compositions with smaller

Lo domain area fractions. See Fig. 26 for the average time needed to reach the equilibrium for the

three lipid compositions under consideration. The average is taken over five simulations with the

given composition and random initial distributions. We see that a PAT3 SUV (aD ≈ 70%) takes

more than the double of the time a PAT1 SUV (aD ≈ 11%) needs to reach the equilibrium state.

We remark that the time in the simulations correspond to physical time.

PAT1

PAT2

PAT3

Figure 26: Average time needed for a simulated SUV to reach the equilibrium state (i.e., one patch
of the minority phase against the background of the majority phase) for the three compositions
under consideration.

Once a SUV has reached the phase-separated equilibrium, it is exposed to the target model

membrane (equivalent of GUV in experiments), which is represented as a horizontal plane below

the SUV in the simulations. Initially, we place the Ld phase, which is the phase with the majority

of the positive charge, opposite to the model membrane, i.e., at the top of the SUV. See the first

column in Fig. 27. In a sense, this is the worst-case scenario as it will take the longest to reorient

the Ld phase so that it faces the model membrane. Once the Ld phase faces the model membrane,

the SUV is in the optimal configuration to initiate fusion since the majority of the fusogenic lipids

is in the Ld phase (see Table 8). Fig. 27 shows snapshots of the simulated reorientation process

78



for the three compositions. From Fig. 27, we clearly see that each SUV takes a different amount

of time to have the Ld phase face the model membrane. Fig. 28 reports such (average) time for

each composition. The average is computed again over 5 simulations per composition, as explained

above. We take this time as a proxy for the promotion of fusion since it is the time need to have the

SUV in the optimal configuration for fusion, i.e., with the majority of the fusogenic lipids facing

the GUV. Fig. 28 informs us that in average a PAT1 SUV takes ten times longer than a PAT3

SUV to reorient its Ld phase. In contrast, the PAT1 and PAT2 SUVs exposed to a GUV in the

worst-case scenario (i.e., Ld phase opposite to the GUV) did not have sufficient time to have the

Ld phase face the GUV. This provides an explanation why the PAT3 SUVs outperform both the

PAT1 and PAT2 SUVs.
t = 0

PAT3
aD = 70.37%

t = 3 t = 4 t = 6

t = 0

PAT2
aD = 34.47%

t = 6 t = 10 t = 15

t = 0

PAT1
aD = 10.8%

t = 20 t = 40 t = 60

Figure 27: Snapshots of a simulation with the phase-separated PAT3 SUV (top), PAT2 SUV
(center), and PAT1 SUV (bottom) at different times (min). Red corresponds to the Lo phase and
blue to the Ld phase. For each composition, the Ld phase is initially placed at the top of the SUV
(first column). The model membrane, not seen in the figure, is represented as a horizontal plane
below the SUV.
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PAT1

PAT2
PAT3

Figure 28: Average time needed to have the Ld phase in a simulated SUV face the target model
membrane starting from the worst-case scenario configuration.
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7 Conclusion

In this dissertation, we introduced and investigated an SAV formulation of the geometrically

unfitted trace finite element method for the surface Cahn–Hilliard equations with degenerate mo-

bility. Additionally, we presented an extension of a well-known phase field model for two-phase

incompressible flow, applying and analyzing an unfitted finite element method for its numerical

approximation. Subsequently, we applied our Navier–Stokes–Cahn–Hilliard model to investigate

(i) the coarsening and fluidity of lipid vesicles and (ii) the fusogenicity of lipid vesicles.

Both the BDF1 and BDF2 versions concerning the SAV method were proven to dissipate specific

energy, aligning with the fundamental property of the continuous problem. The method demon-

strated optimal convergence rates for smooth solutions and performed well in predicting phase

separation and pattern formation in spherical and more complex shapes. Thus, it proved to be a

valuable tool in modeling multicomponent lipid vesicles. A comparison with a semi-explicit mixed

trace finite element method formulation with stabilization from [115] shows very similar perfor-

mance of both methods for the given class of problems. Both methods are well-suited for time

adaptation. Experiments suggested that the SAV method allows for somewhat larger time steps

when the same adaptive criteria are used for the SAV and semi-explicit stabilized methods. The

stabilized method requires an additional parameter to be chosen, while the SAV method adds a

rank-one dense matrix to the resulting system of algebraic equations, which must be solved at

each time step. The availability of a fast algebraic solver for such systems may determine one’s

preference between these two solid methods.

The advantage of our surface Navier–Stokes–Cahn–Hilliard model is its thermodynamic con-

sistency for a general monotone relation of density and the phase-field variable. To reduce the

computational cost, the discrete scheme we proposed decouples the fluid problem (a linearized

Navier–Stokes type problem) from the phase-field problem (a Cahn–Hilliard type problem with

constant mobility) at each time step. An attractive feature of our scheme is that the numerical
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solution satisfies the same stability bound as the solution of the original system under some restric-

tions on the discretization parameters. We validated our implementation of the proposed numerical

scheme with a benchmark problem and applied it to simulate well-known two-phase fluid flows: the

Kelvin–Helmholtz and Rayleigh–Taylor instabilities. We investigated the effect of line tension on

such instabilities. For the Rayleigh–Taylor instability, we also assessed the effect of viscosity and

surface shape, which plays an important role in the evolution of the instability.

Finally, the surface Navier–Stokes–Cahn–Hilliard model incorporating electrostatic forces was

employed to investigate the fusogenicity of positively charged lipid vesicles. Experimental obser-

vations in the laboratory align with numerical simulations conducted using a mathematical model

for phase-separated charged liposomes. The surface Navier–Stokes–Cahn–Hilliard model offers a

valuable framework for designing and developing highly fusogenic liposomes with minimal toxicity.
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8 Appendix

For the implementation of the methods in this work, the open source Finite Element package

DROPS [23] was used. The version of the package to reproduce the results from this work can be

found here: https://github.com/56th/drops.

In order to reproduce simulations with the Navier-Stokes-Cahn-Hilliard model build the direc-

tory surfnsch, and for the implementations related to SAV method refer to the directory savch.

The readme page of the repository contains detailed instructions.
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element methods for incompressible flows on surfaces. International Journal for Numerical
Methods in Engineering 121, 11 (2020), 2503–2533.

[62] Levental, I., Levental, K., and Heberle, F. Lipid rafts: Controversies resolved,
mysteries remain. Trends Cell Biol. 30, 5 (2020), 341–353.

[63] Li, S., Lowengrub, J., and Voigt, A. Locomotion, wrinkling, and budding of a multi-
component vesicle in viscous fluids. Communications in Mathematical Sciences 10 (2012),
645–670.

[64] Li, X., Shen, J., and Rui, H. Stability and error analysis of a second-order SAV scheme
with block-centered finite differences for gradient flows. Math. Comp. 88 (2019), 2047–2068.

[65] Liao, H.-l., Ji, B., Wang, L., and Zhang, Z. Mesh-robustness of an energy stable BDF2
scheme with variable steps for the Cahn–Hilliard model. Journal of Scientific Computing 92,
2 (2022), 52.

[66] Liao, H.-l., Ji, B., and Zhang, L. An adaptive BDF2 implicit time-stepping method for
the phase field crystal model. IMA Journal of Numerical Analysis 42, 1 (2022), 649–679.

[67] Liao, H.-L., Song, X., Tang, T., and Zhou, T. Analysis of the second-order BDF scheme
with variable steps for the molecular beam epitaxial model without slope selection. Science
China Mathematics 64 (2021), 887–902.

[68] Liao, H.-l., and Zhang, Z. Analysis of adaptive BDF2 scheme for diffusion equations.
Mathematics of Computation 90, 329 (2021), 1207–1226.

[69] Lingwood, D., and Simons, K. Lipid rafts as a membrane-organizing principle. Science
327, 5961 (2010), 46–50.
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