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@ An interval is a connected set of real numbers containing more than
one number.
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An interval is a connected set of real numbers containing more than
one number.

Types of intervals:

[a,b] = {x|a < x < b} whena<b
(a, b) = {x]a < x < b}

[a,b) = {x|a < x < b}

e (a,b] = {x]a< x < b}

e [a,00) = {x]a < x}

o (a,09) = {x] < x}

o (—o0,a] = {x|x < a}

o (—o0,a) = {x|x < a}

o R=(—o0, oo) = the set of real numbers
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While [a, a] can be used to denote the single number a
[a, a] is not an interval
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If f is continuous and F is an anti-derivative of f on [a, b, then

/ab F(x)dx = F(b) — F(a).
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If f has a continuous derivative on [a, b|, then

/b F(x)dx = F(b) — £(a).

a
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Corollary

Suppose that f is a real valued function whose domain is a subset of the

plane. If — is continuous on the segment joining (a, c¢) to (b, ¢), then

ox

/ab %(X c)dx = f(b,c) —f(a,c).
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The integral is order preserving.

If each of f and g is integrable on [a, b] and f(x) < g(x) for all x in
[a, b], then

/ab f(x)dx < /abg(x)dx.
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The following theorem will be used in the derivation of the heat equation
one space dimension.

Theorem

Suppose that f is a continuous real valued function whose domain is an
interval J. If

/abf(x)dx —0

for every pair of numbers a and b in J with a < b, then

f(x) =0 forall x in J.
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Proof. We will prove the contrapositive: If f(xp) # 0 for some xp in J,
then fab f(x)dx # 0 for some pair of numbers a and b in J with a < b.
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So, suppose that f(xg) 7 0.Then either f(xg) > 0 or f(xp) < O.
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If f(x0) >0, let

Note that € > 0.
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Using the usual definition of continuity, let 4 be a positive number such
that if x isin Jand xg —J < x < xg + J then
f(xo) —€e < f(x) < f(x)+e.
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Since J is an interval, there will be numbers a and b in J with
Xx—d0<a<b<x+09.
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Then when a < x < b we have f(x)) —e < f(x) < f(xp) + €. Since
f(xo) —€="f(x)— f(;o) = f(z )we have f( o) < f( ) for all x in [a, b].
Thus [7 00 ax < [P £(x) i o) (p—a) > 0it
follows that 0 < fab f(x)dx. Of course, thls |mpI|es that fab f(x)dx # 0.

The argument for the case where f(xp) < 0 is similar.

End of Proof.
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A rod of length L (units of length), insulated except perhaps at its ends,
lies along the x-axis with its left end at coordinate 0 and its right end at
coordinate L.
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Suppose that the mass density p (units of mass divided by units of length)
and thermal conductivity Ky ( (energyxlength)/(time xtemperature))
and specific heat ¢ (energy/(massxtemperature)) at each point in the rod
depend only on the x-coordinate of the point.
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Let e, ¢, and Q be as follows.

The thermal energy density (energy/length) at t (units of time after the
time origin) at points with first coordinate x is e(x, t).

The heat flux (energy/time) to the right at time t through the cross
section consisting of points with first coordinate x is ¢(x, t). (A negative
value for ¢(x, t) indicates heat flow to the left.)

The heat energy per unit length being generated per unit time inside the
rod at time t at points with first coordinate x is Q(x, t). (A negative
value for Q indicates a heat sink.)
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Suppose that 0 < a < b < L. Conservation of thermal energy tells us that
the time-rate-of-change in thermal energy in the section of the rod
consisting of points with first coordinate x satisfying a < x < b is the net
heat energy flowing per unit time across the boundaries of this section plus
the net heat energy being generated internally in the section. Thus

d

at /ab e(x t)dx =¢(at) — (b, t) + /ab Q(x, t)dx.
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jt/ab e(x, t)dx = ¢(a, t) —p(b, t) + /ab Q(x, t)dx.

Assuming that e and ¢ have continuous first order partial derivatives, we
have

by by b
/a a—j(x, t)dx = —/a £(X t)dx+/a Q(x, t)dx.
Thus

/ab (gi(x, t) + g()f:(x, t) — Q(x, t)) dx — 0.

Since this is true for each choice of aand bwith0 <a<b< L ifQis
continuous and e and ¢ have continuous first order partials, it follows that

%€ () =~ 22 (x,£) + Q(x,£) for 0 < x < Land t > 0.
X
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By definition, the temperature u and thermal energy density u are related
by
e(x,t) = c(x)p(x)(u(x,t) —Z) for 0 < x < Land t > 0.

where Z is absolute zero on the temperature scale being used. So from

gi(x, t) = —gf(x, t)+ Q(x,t) for 0 < x < Land t>0.

we have

c()p(x) == (x 1) = —g*f(X. t)+ Q(x,t) for 0 < x < Land t>0.
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According to Fourier's law of heat conduction

p(x,t) = —Ko(x)?(x, t)for0 <x < Landt>0.

X
So from

()P0 22 (x, ) = =2 (x,£) + QUx, 1) for 0 < x < Land £ 2.0

we arrive at the heat diffusion equation in one space dimension:

Ju 0 al
09

° <x< > 0. *
cpat Ix >—|—Qfor0_x_Landt_0 (*)
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= — <x < > *ok
cpat x Koax>+QforO_x_Landt_0. (**)

If each of ¢, p, and Kj is constant and there are no internal sinks or
sources so that @ is zero, we have

Ju 8( Ju

ou %u
- =Kk <x< > *
at(X't) Kaxz(x,t)forO_x_Landt_O *)
where
_ K
= o

is the thermal diffusivity.

We will refer to (*) as the simplified heat equation in one space
dimension.
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If the rod is in thermal equilibrium

ou

— =0.

ot
and two-place functions become one-place functions. The heat flux and
temperature are related by

¢(x) = —Ko(x)u'(x).

Equation (**) becomes
0= (Kou/)/ + Q

and equation (*) becomes
0=1ud".
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