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Section 1.2
Derivation of the Heat Equation in One Space

Dimension
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An interval is a connected set of real numbers containing more than
one number.

Types of intervals:

[a, b] = {x |a ≤ x ≤ b} when a < b
(a, b) = {x |a < x < b}
[a, b) = {x |a ≤ x < b}
(a, b] = {x |a < x ≤ b}
[a,∞) = {x |a ≤ x}
(a,∞) = {x |a < x}
(−∞, a] = {x |x ≤ a}
(−∞, a) = {x |x < a}
R = (−∞,∞) = the set of real numbers
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While [a, a] can be used to denote the single number a
[a, a] is not an interval

Dr. Philip Walker () Mathematics 3363 4 / 24



Theorem
If f is continuous and F is an anti-derivative of f on [a, b], then∫ b

a
f (x)dx = F (b)− F (a).
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Theorem
If f has a continuous derivative on [a, b], then∫ b

a
f ′(x)dx = f (b)− f (a).

Dr. Philip Walker () Mathematics 3363 6 / 24



Corollary
Suppose that f is a real valued function whose domain is a subset of the

plane. If
∂f
∂x
is continuous on the segment joining (a, c) to (b, c), then

∫ b

a

∂f
∂x
(x , c)dx = f (b, c)− f (a, c).
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The integral is order preserving.

Theorem
If each of f and g is integrable on [a, b] and f (x) ≤ g(x) for all x in
[a, b], then ∫ b

a
f (x)dx ≤

∫ b

a
g(x)dx .
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The following theorem will be used in the derivation of the heat equation
one space dimension.

Theorem
Suppose that f is a continuous real valued function whose domain is an
interval J. If ∫ b

a
f (x)dx = 0

for every pair of numbers a and b in J with a ≤ b, then

f (x) = 0 for all x in J.
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Proof. We will prove the contrapositive: If f (x0) 6= 0 for some x0 in J,
then

∫ b
a f (x)dx 6= 0 for some pair of numbers a and b in J with a ≤ b.
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So, suppose that f (x0) 6= 0.Then either f (x0) > 0 or f (x0) < 0.
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If f (x0) > 0, let

ε =
f (x0)
2
.

Note that ε > 0.
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Using the usual definition of continuity, let δ be a positive number such
that if x is in J and x0 − δ < x < x0 + δ then
f (x0)− ε < f (x) < f (x0) + ε.
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Since J is an interval, there will be numbers a and b in J with
x0 − δ < a < b < x0 + δ.
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Then when a ≤ x ≤ b we have f (x0)− ε < f (x) < f (x0) + ε. Since
f (x0)− ε = f (x0)− f (x0)

2 = f (x0)
2 we have f (x0)

2 < f (x) for all x in [a, b].

Thus
∫ b
a
f (x0)
2 dx ≤

∫ b
a f (x)dx . Since

∫ b
a
f (x0)
2 dx = f (x0)

2 (b− a) > 0 it
follows that 0 <

∫ b
a f (x)dx . Of course, this implies that

∫ b
a f (x)dx 6= 0.

The argument for the case where f (x0) < 0 is similar.

End of Proof.
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A rod of length L (units of length), insulated except perhaps at its ends,
lies along the x-axis with its left end at coordinate 0 and its right end at
coordinate L.
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Suppose that the mass density ρ (units of mass divided by units of length)
and thermal conductivity K0 ( (energy×length)/(time ×temperature))
and specific heat c (energy/(mass×temperature)) at each point in the rod
depend only on the x-coordinate of the point.
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Let e, φ, and Q be as follows.

The thermal energy density (energy/length) at t (units of time after the
time origin) at points with first coordinate x is e(x , t).

The heat flux (energy/time) to the right at time t through the cross
section consisting of points with first coordinate x is φ(x , t). (A negative
value for φ(x , t) indicates heat flow to the left.)

The heat energy per unit length being generated per unit time inside the
rod at time t at points with first coordinate x is Q(x , t). (A negative
value for Q indicates a heat sink.)
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Suppose that 0 ≤ a ≤ b ≤ L. Conservation of thermal energy tells us that
the time-rate-of-change in thermal energy in the section of the rod
consisting of points with first coordinate x satisfying a ≤ x ≤ b is the net
heat energy flowing per unit time across the boundaries of this section plus
the net heat energy being generated internally in the section. Thus

d
dt

∫ b

a
e(x , t)dx = φ(a, t)− φ(b, t) +

∫ b

a
Q(x , t)dx .
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d
dt

∫ b

a
e(x , t)dx = φ(a, t)− φ(b, t) +

∫ b

a
Q(x , t)dx .

Assuming that e and φ have continuous first order partial derivatives, we
have ∫ b

a

∂e
∂t
(x , t)dx = −

∫ b

a

∂φ

∂x
(x , t)dx +

∫ b

a
Q(x , t)dx .

Thus ∫ b

a

(
∂e
∂t
(x , t) +

∂φ

∂x
(x , t)−Q(x , t)

)
dx = 0.

Since this is true for each choice of a and b with 0 ≤ a ≤ b ≤ L, if Q is
continuous and e and φ have continuous first order partials, it follows that

∂e
∂t
(x , t) = −∂φ

∂x
(x , t) +Q(x , t) for 0 ≤ x ≤ L and t ≥ 0.
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By definition, the temperature u and thermal energy density u are related
by

e(x , t) = c(x)ρ(x)(u(x , t)− Z ) for 0 ≤ x ≤ L and t ≥ 0.
where Z is absolute zero on the temperature scale being used. So from

∂e
∂t
(x , t) = −∂φ

∂x
(x , t) +Q(x , t) for 0 ≤ x ≤ L and t ≥ 0.

we have

c(x)ρ(x)
∂u
∂t
(x , t) = −∂φ

∂x
(x , t) +Q(x , t) for 0 ≤ x ≤ L and t ≥ 0.
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According to Fourier’s law of heat conduction

ϕ(x , t) = −K0(x)
∂u
∂x
(x , t) for 0 ≤ x ≤ L and t ≥ 0.

So from

c(x)ρ(x)
∂u
∂t
(x , t) = −∂φ

∂x
(x , t) +Q(x , t) for 0 ≤ x ≤ L and t ≥ 0.

we arrive at the heat diffusion equation in one space dimension:

cρ
∂u
∂t
=

∂

∂x

(
K0

∂u
∂x

)
+Q for 0 ≤ x ≤ L and t ≥ 0. (*)
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cρ
∂u
∂t
=

∂

∂x

(
K0

∂u
∂x

)
+Q for 0 ≤ x ≤ L and t ≥ 0. (**)

If each of c , ρ, and K0 is constant and there are no internal sinks or
sources so that Q is zero, we have

∂u
∂t
(x , t) = κ

∂2u
∂x2

(x , t) for 0 ≤ x ≤ L and t ≥ 0 (*)

where

κ =
K0
cρ

is the thermal diffusivity.

We will refer to (*) as the simplified heat equation in one space
dimension.
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If the rod is in thermal equilibrium

∂u
∂t
= 0.

and two-place functions become one-place functions. The heat flux and
temperature are related by

ϕ(x) = −K0(x)u′(x).

Equation (**) becomes
0 = (K0u′)′ +Q

and equation (*) becomes
0 = u′′.
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