Introduction to Partial Differential Equations

Dr. Philip Walker

Dr. Philip Walker ()

Mathematics 3363

.∋...>

Section 1.2 Derivation of the Heat Equation in One Space Dimension

- ∢ ∃ →

• An **interval** is a connected set of real numbers containing more than one number.

э

イロト イポト イヨト イヨト

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[\mathsf{a},\mathsf{b}] = \{x | \mathsf{a} \leq x \leq b\}$$
 when $\mathsf{a} < \mathsf{b}$

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \le x \le b\}$$
 when $a < b$

• $(a, b) = \{x | a < x < b\}$

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \leq x \leq b\}$$
 when $a < b$

•
$$(a, b) = \{x | a < x < b\}$$

• $[a, b) = \{x | a \leq x < b\}$

3 1 4 3 1

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

æ

イロト イ理ト イヨト イヨトー

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \le x \le b\}$$
 when $a < b$
• $(a, b) = \{x | a < x < b\}$
• $[a, b) = \{x | a \le x < b\}$
• $(a, b] = \{x | a < x \le b\}$
• $[a, \infty) = \{x | a \le x\}$

3

• • = • • = •

Image: Image:

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \le x \le b\}$$
 when $a < b$
• $(a, b) = \{x | a < x < b\}$
• $[a, b) = \{x | a \le x < b\}$
• $(a, b] = \{x | a < x \le b\}$
• $[a, \infty) = \{x | a \le x\}$
• $(a, \infty) = \{x | a < x\}$

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \le x \le b\}$$
 when $a < b$
• $(a, b) = \{x | a < x < b\}$
• $[a, b) = \{x | a \le x < b\}$
• $(a, b] = \{x | a < x \le b\}$
• $(a, \infty) = \{x | a \le x\}$
• $(a, \infty) = \{x | a < x\}$
• $(-\infty, a] = \{x | x \le a\}$

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \le x \le b\}$$
 when $a < b$
• $(a, b) = \{x | a < x < b\}$
• $[a, b) = \{x | a \le x < b\}$
• $(a, b] = \{x | a < x \le b\}$
• $(a, \infty) = \{x | a < x\}$
• $(a, \infty) = \{x | a < x\}$
• $(-\infty, a] = \{x | x \le a\}$
• $(-\infty, a) = \{x | x < a\}$

- An **interval** is a connected set of real numbers containing more than one number.
- Types of intervals:

•
$$[a, b] = \{x | a \le x \le b\}$$
 when $a < b$
• $(a, b) = \{x | a < x < b\}$
• $[a, b) = \{x | a \le x < b\}$
• $(a, b] = \{x | a < x \le b\}$
• $(a, \infty) = \{x | a \le x\}$
• $(a, \infty) = \{x | a \le x\}$
• $(-\infty, a] = \{x | x \le a\}$
• $(-\infty, a) = \{x | x < a\}$
• $(-\infty, a) = \{x | x < a\}$
• $\mathbb{R} = (-\infty, \infty)$ = the set of real numbers

э

While [a, a] can be used to denote the single number a[a, a] is not an interval

▶ ∢ ∃ ▶

Theorem

If f is continuous and F is an anti-derivative of f on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

æ

3 1 4 3 1

Theorem

If f has a continuous derivative on [a, b], then

$$\int_a^b f'(x) dx = f(b) - f(a).$$

< □ > < ---->

æ

3 1 4 3 1

Corollary

Suppose that f is a real valued function whose domain is a subset of the plane. If $\frac{\partial f}{\partial x}$ is continuous on the segment joining (a, c) to (b, c), then

$$\int_{a}^{b} \frac{\partial f}{\partial x}(x,c) dx = f(b,c) - f(a,c).$$

The integral is order preserving.

Theorem

If each of f and g is integrable on [a, b] and $f(x) \le g(x)$ for all x in [a, b], then

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

.∋...>

The following theorem will be used in the derivation of the heat equation one space dimension.

Theorem

Suppose that f is a continuous real valued function whose domain is an interval J. If

$$\int_{a}^{b} f(x) dx = 0$$

for every pair of numbers a and b in J with a \leq b, then

$$f(x) = 0$$
 for all x in J.

Proof. We will prove the contrapositive: If $f(x_0) \neq 0$ for some x_0 in J, then $\int_a^b f(x) dx \neq 0$ for some pair of numbers a and b in J with $a \leq b$.

So, suppose that $f(x_0) \neq 0$. Then either $f(x_0) > 0$ or $f(x_0) < 0$.

æ

イロト イヨト イヨト イヨト

If $f(x_0) > 0$, let

$$\epsilon = \frac{f(x_0)}{2}.$$

Note that $\epsilon > 0$.

3

イロト イポト イヨト イヨト

Using the usual definition of continuity, let δ be a positive number such that if x is in J and $x_0 - \delta < x < x_0 + \delta$ then $f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$.

3

Since J is an interval, there will be numbers a and b in J with $x_0 - \delta < a < b < x_0 + \delta$.

æ

イロト イポト イヨト イヨト

Then when $a \le x \le b$ we have $f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$. Since $f(x_0) - \epsilon = f(x_0) - \frac{f(x_0)}{2} = \frac{f(x_0)}{2}$ we have $\frac{f(x_0)}{2} < f(x)$ for all x in [a, b]. Thus $\int_a^b \frac{f(x_0)}{2} dx \le \int_a^b f(x) dx$. Since $\int_a^b \frac{f(x_0)}{2} dx = \frac{f(x_0)}{2} (b-a) > 0$ it follows that $0 < \int_a^b f(x) dx$. Of course, this implies that $\int_a^b f(x) dx \neq 0$.

The argument for the case where $f(x_0) < 0$ is similar.

End of Proof.

A rod of length L (units of length), insulated except perhaps at its ends, lies along the x-axis with its left end at coordinate 0 and its right end at coordinate L.

Suppose that the mass density ρ (units of mass divided by units of length) and thermal conductivity K_0 ((energy×length)/(time ×temperature)) and specific heat c (energy/(mass×temperature)) at each point in the rod depend only on the x-coordinate of the point.

Let e, ϕ , and Q be as follows.

The thermal energy density (energy/length) at t (units of time after the time origin) at points with first coordinate x is e(x, t).

The heat flux (energy/time) to the right at time t through the cross section consisting of points with first coordinate x is $\phi(x, t)$. (A negative value for $\phi(x, t)$ indicates heat flow to the left.)

The heat energy per unit length being generated per unit time inside the rod at time t at points with first coordinate x is Q(x, t). (A negative value for Q indicates a heat sink.)

Suppose that $0 \le a \le b \le L$. Conservation of thermal energy tells us that the time-rate-of-change in thermal energy in the section of the rod consisting of points with first coordinate x satisfying $a \le x \le b$ is the net heat energy flowing per unit time across the boundaries of this section plus the net heat energy being generated internally in the section. Thus

$$\frac{d}{dt}\int_a^b e(x,t)dx = \phi(a,t) - \phi(b,t) + \int_a^b Q(x,t)dx.$$

$$\frac{d}{dt}\int_a^b e(x,t)dx = \phi(a,t) - \phi(b,t) + \int_a^b Q(x,t)dx.$$

Assuming that e and ϕ have continuous first order partial derivatives, we have

$$\int_{a}^{b} \frac{\partial e}{\partial t}(x,t) dx = -\int_{a}^{b} \frac{\partial \phi}{\partial x}(x,t) dx + \int_{a}^{b} Q(x,t) dx.$$

Thus

$$\int_{a}^{b} \left(\frac{\partial e}{\partial t}(x,t) + \frac{\partial \phi}{\partial x}(x,t) - Q(x,t) \right) dx = 0.$$

Since this is true for each choice of a and b with $0 \le a \le b \le L$, if Q is continuous and e and ϕ have continuous first order partials, it follows that

$$rac{\partial e}{\partial t}(x,t) = -rac{\partial \phi}{\partial x}(x,t) + Q(x,t) ext{ for } 0 \leq x \leq L ext{ and } t \geq 0.$$

By definition, the temperature u and thermal energy density u are related by

$$e(x, t) = c(x)\rho(x)(u(x, t) - Z)$$
 for $0 \le x \le L$ and $t \ge 0$.

where Z is absolute zero on the temperature scale being used. So from

$$rac{\partial e}{\partial t}(x,t) = -rac{\partial \phi}{\partial x}(x,t) + Q(x,t) ext{ for } 0 \leq x \leq L ext{ and } t \geq 0.$$

we have

$$c(x)
ho(x)rac{\partial u}{\partial t}(x,t)=-rac{\partial \phi}{\partial x}(x,t)+Q(x,t) ext{ for } 0\leq x\leq L ext{ and } t\geq 0.$$

→ Ξ →

According to Fourier's law of heat conduction

$$\varphi(x,t) = -K_0(x) \frac{\partial u}{\partial x}(x,t)$$
 for $0 \le x \le L$ and $t \ge 0$.

So from

$$c(x)
ho(x)rac{\partial u}{\partial t}(x,t)=-rac{\partial \phi}{\partial x}(x,t)+Q(x,t) ext{ for } 0\leq x\leq L ext{ and } t\geq 0.$$

we arrive at the heat diffusion equation in one space dimension:

$$c
ho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_0 \frac{\partial u}{\partial x} \right) + Q \text{ for } 0 \le x \le L \text{ and } t \ge 0.$$
 (*)

$$c
ho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(\kappa_0 \frac{\partial u}{\partial x} \right) + Q \text{ for } 0 \le x \le L \text{ and } t \ge 0.$$
 (**)

If each of c, ρ , and K_0 is constant and there are no internal sinks or sources so that Q is zero, we have

$$\frac{\partial u}{\partial t}(x,t) = \kappa \frac{\partial^2 u}{\partial x^2}(x,t) \text{ for } 0 \le x \le L \text{ and } t \ge 0$$
 (*)

where

$$\kappa = \frac{K_0}{c\rho}$$

is the thermal diffusivity.

We will refer to (*) as the simplified heat equation in one space dimension.

イロト イポト イヨト イヨト

If the rod is in thermal equilibrium

$$\frac{\partial u}{\partial t} = 0.$$

and two-place functions become one-place functions. The heat flux and temperature are related by

$$\varphi(x)=-K_0(x)u'(x).$$

Equation (**) becomes

$$0=(K_0u')'+Q$$

and equation (*) becomes

$$0=u''.$$

A B F A B F