
Math 3363 Final Examination Solutions

Spring 2020

Do the problems in the order in which they are listed. Upload your solutions in
a pdf file by 11:59 p.m. Thursday, April 30. You may use your text, notes, and
the material posted on Dr. Walker’s web site, but you must DO YOUR OWN
WORK.

You may use the following information without derivation.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ(0) = 0, and
(iii) ϕ(L) = 0

is {λk}∞k=1 and {ϕk}∞k=1 where λk = (
kπ

L
)2 and ϕk(x) = sin

kπx

L
.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ′(0) = 0, and
(iii) ϕ′(L) = 0

is {λk}∞k=0 and {ϕk}∞k=0 where λk = (
kπ

L
)2 and ϕk(x) = cos

kπx

L
. Note that λ0 = 0 and

ϕ0(x) = 1.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ(0) = 0, and
(iii) ϕ′(L) = 0

is {λk}∞k=1 and {ϕk}∞k=1 where λk =

(
(2k − 1)π

2L

)2
and ϕk(x) = sin

(2k − 1)πx

2L
.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ′(0) = 0, and
(iii) ϕ(L) = 0

is {λk}∞k=1 and {ϕk}∞k=1 where λk =

(
(2k − 1)π

2L

)2
and ϕk(x) = cos

(2k − 1)πx

2L
.
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• A proper listing of eigenvalues and eigenfunctions for

(i) −∇2ϕ(x, y) = λϕ(x, y) for 0 ≤ x ≤ L and 0 ≤ y ≤ H and
(ii) ϕ(x, y) = 0 for (x, y) on the boundary of [0, L]× [0, H]

is {λkj}∞k,j=1 and {ϕkj}∞k,j=1 where λkj = (
kπ

L
)2+(

jπ

H
)2 and ϕkj(x, y) = sin

kπx

L
sin

jπy

H

1. Consider the following nonhomogeneous time dependent heat equation problem.

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + β for t ≥ 0 and 0 ≤ x ≤ 1

u(x, 0) = 1 for 0 ≤ x ≤ 1,

∂u

∂x
(0, t) = −1, and

∂u

∂x
(1, t) = 1 for t ≥ 0.

(a) Find the constant β so that the problem has an equilibrium solution v.

Solution.

0 = v′′ + β, v′(0) = −1 and v′(1) = 1∫ 1

0

v′′(x)dx =

∫ 1

0

(−β)dx

v′(1)− v′(0) = −β
1− (−1) = −β

β = −2

(b) Find the equilibrium solution v with no undetermined constants.

Solution.

v′′ = 2, v′(0) = −1 and v′(1) = 1

v′(x) = 2x+ c1, c1 = −1

v′(x) = 2x− 1

v(x) = x2 − x+ c2
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d

dt

∫ 1

0

u(x, t)dx =

∫ 1

0

∂u

∂t
(x, t)dx

=

∫ 1

0

(
∂2u

∂x2
(x, t)− 2)dx

=
∂u

∂x
(1, t)− ∂u

∂x
(0, t)− 2

= 1− (−1)− 2 = 0∫ 1
0
u(x, t)dx is constant in t.

1 =

∫ 1

0

(1)dx =

∫ 1

0

u(x, 0)dx =

∫ 1

0

u(x, t)dx (any t)

= lim
t→∞

∫ 1

0

u(x, t)dx =

∫ 1

0

lim
t→∞

u(x, t)dx =

∫ 1

0

v(x)dx =

=

∫ 1

0

(x2 − x+ c2)dx =
1

3
− 1

2
+ c2

c2 =
7

6

v(x) = x2 − x+
7

6

2. Let w(x, t) = u(x, t)− v(x) where u and v are as in Problem 1.

(a) State the problem for w. Use the value of β found in Problem 1.

Solution.
∂w

∂t
(x, t) =

∂2w

∂x2
(x, t) for t ≥ 0 and 0 ≤ x ≤ 1

w(x, 0) = u(x, 0)− v(x) = 1− (x2 − x+
7

6
) for 0 ≤ x ≤ 1,

w(x, 0) = −x2 + x− 1

6
∂w

∂x
(0, t) = 0, and

∂w

∂x
(1, t) = 0 for t ≥ 0.

(b) Solve the problem for w, then give the solution u. There should be no undeter-
mined constants in your solution u.

Solution. Using the solution in Section 2.4,

w(x, t) = A0 +

∞∑
k=

Ak cos kπxe−(kπ)
2t
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where

A0 =
1

1

∫ 1

0

g(x)dx =

∫ 1

0

(−x2 + x− 1

6
)dx = 0

and

Ak =
2

1

∫ 1

0

(−x2 + x− 1

6
) cos kπxdx = − 2

π2k2
((−1)k + 1)

w(x, t) = − 2

π2

∞∑
k=

1

k2
((−1)k + 1)(cos kπx)e−(kπ)

2t

hence
u(x, t) = w(x, t) + v(x) =

u(x, t) = x2 − x+
7

6
− 2

π2

∞∑
k=

1

k2
((−1)k + 1)(cos kπx)e−(kπ)

2t

3. Consider the following two-point boundary value problem.

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ 1,
(ii) ϕ(0)− ϕ′(0) = 0, and
(iii) ϕ(1) = 0.

(a) Find 2× 2 matrices M and N so that conditions (ii) and (iii) are equivalent to

M

[
ϕ(0)
ϕ′(0)

]
+N

[
ϕ(1)
ϕ′(1)

]
=

[
0
0

]
.

Solution.

M =

(
1 −1
0 0

)
and N =

(
0 0
1 0

)

(b) Use the Rayleigh Quotient to show that all eigenvalues are non-negative. How do
you know that 0 is not an eigenvalue?

Solution. Suppose that λ is an eigenvalue and ϕ is a corresponding eigenfunction.
Then

λ =
ϕ(0)ϕ′(0)− ϕ(1)ϕ′(1) +

∫ 1
0

(ϕ′(x))2dx∫ 1
0

(ϕ(x))2dx

=
ϕ(0) · ϕ(0)− 0 · ϕ′(1) +

∫ 1
0

(ϕ′(x))2dx∫ 1
0

(ϕ(x))2dx

=
(ϕ(0))2 +

∫ 1
0

(ϕ′(x))2dx∫ 1
0

(ϕ(x))2dx
≥ 0
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Suppose that ϕ is a solution to (i), (ii), and (iii) when λ = 0. From (i),

ϕ′(x) = c1

and
ϕ(x) = c1x+ c2.

Then from (ii),
c2 − c1 = 0,

and from (iii),
c1 + c2 = 0 ;

so
c1 = c2 = 0.

Thus
ϕ(x) = 0 for 0 ≤ x ≤ 1.

Since the only solution is the zero function, the number zero is not an eigenvalue.

(c) Find the matrix D(λ) and the determinant ∆(λ) in the case where λ > 0.

Solution.

D(λ) =

(
1 −1
0 0

)
Φλ(0) +

(
0 0
1 0

)
Φλ(1)

where

Φλ(x) =

(
cos
√
λx sin

√
λx

−
√
λ sin

√
λx
√
λ cos

√
λx

)
.

D(λ) =

(
1 −1
0 0

)(
1 0

0
√
λ

)
+

(
0 0
1 0

)(
cos
√
λ sin

√
λ

−
√
λ sin

√
λ
√
λ cos

√
λ

)
,

so

D(λ) =

(
1 −

√
λ

cos
√
λ sin

√
λ

)
and

∆(λ) = detD(λ) = sin
√
λ+
√
λ cos

√
λ

(d) Explain how to determine the eigenvalues graphically. Give a proper listing of
eigenvalues and eigenfunctions.
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Solution. λ is an eigenvalue if and only if λ = ρ2 where ρ is the first coordinate of
a point of intersection of the graph where y = −x and the graph where y = tanx.

When λk is an eigenvalue,

D(λk)

(
c1
c2

)
=

(
0
0

)
if and only if

c1 −
√
λkc2 = 0

so a corresponding eigenfunction is ϕk where

ϕk(x) = cos
√
λkx+

1√
λk

cos
√
λkx

4. Suppose that {φk}∞k=1 is orthogonal on [0, L] and < φk, φk >6= 0 for k = 1, . . .. Suppose
that f =

∑∞
k=1 ckφk with convergence in the mean. Derive a formula that gives ck in

terms of f , φk, and the inner product.

Solution.

< f, φk >=<
∞∑
j=1

cjφj,φk > .

Since there is convergence in the mean,

< f, φk >=
∞∑
j=1

cj < φj, φk > .

Since {φk}∞k=1 is orthogonal,

< f, φk >= ck < φk, φk > .

Thus

ck =
< f, φk >

< φk, φk >
.

5. Suppose that each of a, b, c, and d is a real number, at least one of a and b is not zero
and at least one of c and d is not zero. Suppose that each of L and κ is a positive
number, Derive the solution to

∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t) for t ≥ 0 and 0 ≤ x ≤ L, (1)

au(0, t) + b
∂u

∂x
(0, t) = 0 for t ≥ 0, (2)

cu(L, t) + d
∂u

∂x
(L, t) = 0 for t ≥ 0, and (3)

u(x, 0) = f(x) for 0 ≤ x ≤ L. (4)
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Let {λk}∞k=1 and {ϕk}∞k=1 be a proper listing of eigenvalues and eigenfunctions for the
related Sturm-Liouville problem.

Solution. Suppose that u is an elementary separated solution to (1). This means

u(x, t) = ϕ(x)G(t)

for some pair of one-place functions ϕ and G. Inserting this into (1), we have

ϕ(x)G′(t) = κϕ′′(x)G(t). (5)

Assuming for now that
u(x.t) 6= 0,

and dividing each side of (5) by ϕ(x)G(t), we have

ϕ(x)G′(t)

ϕ(x)G(t)
= κ

ϕ′′(x)G(t)

ϕ(x)G(t)
,

so
G′(t)

G(t)
= κ

ϕ′′(x)

ϕ(x)
.

This holds for all t ≥ 0 and x with 0 ≤ x ≤ L, so there is a constant C such that

G′(t)

G(t)
= C = κ

ϕ′′(x)

ϕ(x)
(6)

for all t ≥ 0 and x with 0 ≤ x ≤ L. As a matter of notational convenience and so
that we can more easily make use of our earlier work on two-point boundary value
problems, we let

λ = −C
κ
.

From (6) we then have

−ϕ′′(x) = λϕ(x) for all x in [0, L] (7)

and
G′(t) = −κλG(t) for all t ≥ 0. (8)

It is worth noting that if
u(x, t) = ϕ(x)G(t)

and (7) and (8) hold, then

∂u

∂t
(x, t) = ϕ(x)G′(t) = −ϕ(x)κλG(t)

= κϕ′′(x)G(t) = κ
∂2u

∂x2
(x, t)

so the PDE (1)
∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t)
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will be satisfied, and we no longer need to assume that u(x, t) 6= 0. Continuing with
our assumption that

u(x, t) = ϕ(x)G(t)

we have from conditions (2) and (3) that

aϕ(0) + bϕ′(0) = 0 (9)

and
cϕ(L) + dϕ′(L) = 0. (10)

Let
{λk}∞k=1 and {ϕk}∞k=1

be a proper listing of eigenvalues and eigenfunctions for (7), (9), and (10). When

λ = λk

the solutions to (8) are constant multiples of Gk where

Gk(t) = e−κλkt.

The problem consisting of (1), (2), and (3) is linear and homogeneous, so if {Bk}nk=1is
a finite sequence of numbers and

u(x, t) =
n∑
k=1

Bkϕk(x)Gk(t),

then u will be a solution to (1), (2), and (3). Thus we hope that the solution to the
problem consisting of (1) through (4) will be of the form

u(x, t) =
∞∑
k=1

Bkϕk(x)Gk(t)

for some sequence of constants {Bk}∞k=1. Noting that Gk (0) = 1, we see that condition
(4),

u(x, 0) = f(x) for x in [0, L],

implies

f =

∞∑
k=1

Bkϕk.

Since {ϕk}∞k=1 is an orthogonal sequence of nonzero functions, this implies

Bk =
< f, ϕk >

< ϕk, ϕk >

for k = 1, 2, . . .In summary, the solution to the original problem (1) through (4) is u
where

u(x, t) =
∞∑
k=1

Bkϕk(x)e−κ(
kπ
L
)2t

in which

Bk =

∫ L
0
f(x)ϕk(x)dx∫ L
0

(ϕk(x))2dx
for k = 1, 2, . . .
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6. Suppose that each of a, b, c, and d is a real number, at least one of a and b is not zero
and at least one of c and d is not zero. Suppose that each of L and H is a positive
number. Derive the solution to

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0 for 0 ≤ x ≤ L and 0 ≤ y ≤ H, (1)

au(0, y) + b
∂u

∂x
(0, y) = 0 for 0 ≤ y ≤ H, (2)

cu(L, y) + d
∂u

∂x
(L, y) = 0 for 0 ≤ y ≤ H, (3)

u(x,H) = 0 for 0 ≤ x ≤ L, and (4)

u(x, 0) = f(x) for 0 ≤ x ≤ L. (5)

Let {λk}∞k=1 and {ϕk}∞k=1 be a proper listing of eigenvalues and eigenfunctions for the
related Sturm-Liouville problem. Suppose that all of the eigenvalues are positive.

Solution. Suppose that u is an elementary separated solution to (1). This means

u(x, y) = ϕ(x)h(y) (6)

for some pair of one-place functions ϕ and h. Inserting this into (1), we have

ϕ′′(x)h(y) + ϕ(x)h′′(y) = 0. (7)

Assuming for now that
u(x.y) 6= 0,

and dividing each side of (7) by ϕ(x)h(y), we have

ϕ′′(x)h(y)

ϕ(x)h(y)
+
ϕ(x)h′′(y)

ϕ(x)h(y)
= 0,

so
h′′(y)

h(y)
= −ϕ

′′(x)

ϕ(x)
.

This holds for all y with 0 ≤ y ≤ H and x with 0 ≤ x ≤ L, so there is a constant λ
such that

h′′(y)

h(y)
= λ = −ϕ

′′(x)

ϕ(x)
(8)

for all y with 0 ≤ y ≤ H and x with 0 ≤ x ≤ L. From (8) we then have

−ϕ′′(x) = λϕ(x) for all x in [0, L] (9)

and
h′′(y) = λh(y) for all y in [0, H]. (10)
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It is worth noting that if
u(x, y) = ϕ(x)h(y)

and (9) and (10) hold, then

∂2u

∂x2
(x, y) = ϕ′′(x)h(y) = −λϕ(x)h(y)

= −ϕ(x)h′′(y) = −∂
2u

∂y2
(x, y)

so the PDE (1)
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0

will be satisfied, and we no longer need to assume that u(x, y) 6= 0. Continuing with
our assumption that

u(x, y) = ϕ(x)h(y)

we have from conditions (2) and (3) that either h(y) = 0 for all y in [0, H] which we
reject because of (4) or

aϕ(0) + bϕ′(0) = 0 (11)

and
cϕ(L) + dϕ′(L) = 0 (12)

which we must accept. In a similar way we have from (4) that

h(H) = 0 (13)

Let
{λk}∞k=1 and {ϕk}∞k=1

be a proper listing of eigenvalues and eigenfunctions for(9), (11), and (12). The equa-
tion (10)

h′′(y) = λh(y)

is equivalent to
h′′(y)− λh(y) = 0. (14)

When λ > 0 as it must be because all eigenvalues for the problem (9), (11), and (12)
are positive, a linearly independent pair of solutions to (14) is the pair whose values
at y are

sinh
√
λy and sinh

√
λ(H − y).

Since h is a solution to (14), we have

h(y) = c1 sinh
√
λy + c2 sinh

√
λ(H − y).

We have from (13) that h(H) = 0, so

c1 sinhλH + c2 sinh
√
λ · 0 = 0,
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Using the fact that sinh 0 = 0 and sinh z 6= 0 when z 6= 0, we have that c1 = 0 and
see that when λ = λk then the solutions to (13) and (14) are constant multiples of hk
where

hk(y) = sinh
√
λk(H − y).

The problem consisting of (1), (2), (3), and (4) is linear and homogeneous, so if
{Ek}nk=1is a finite sequence of numbers and

u(x, y) =
n∑
k=1

Ekϕk(x)hk(y),

then u will be a solution to (1), (2), (3), and (4). Thus we hope that the solution to
the problem consisting of (1) through (5) will be of the form

u(x, y) =

∞∑
k=1

Ekϕk(x)hk(y)

for some perhaps infinite sequence of constants {Ek}∞k=1.Condition (5)

u(x, 0) = f(x) for x in [0, L],

implies

f =
∞∑
k=1

Ekϕkhk(0) =
∞∑
k=1

(Ek sinh
√
λkH)ϕk.

Since {ϕk}∞k=1 is an orthogonal sequence of non zero function this implies

(Ek sinh
√
λkH) =

< f, ϕk >

< ϕk, ϕk >

so

Ek =
< f, ϕk >

sinh
√
λkH < ϕk, ϕk >

for k = 1, 2, . . .In summary, the solution to the original problem (1) through (5) is u
where

u(x, y) =

∞∑
k=1

Ekϕk(x) sinh
√
λk(H − y)

in which

Ek =

∫ L
0
f(x)ϕk(x)dx

sinh
√
λkH

∫ L
0

(ϕk(x))2dx
for k = 1, 2, . . .

7. Suppose that each of α, β, γ, and δ is a real number, at least one of α and β is not
zero and at least one of γ and δ is not zero. Suppose that each of c and L is a positive
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number. Derive the solution to

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) for 0 ≤ x ≤ L and all t in R, (1)

αu(0, t) + β
∂u

∂x
(0, t) = 0 for all t in R, (2)

γu(L, t) + δ
∂u

∂x
(L, t) = 0 for all t in R, (3)

u(x, 0) = f(x) for 0 ≤ x ≤ L, and (4)
∂u

∂t
(x, 0) = g(x) for 0 ≤ x ≤ L. (5)

Let {λk}∞k=1 and {ϕk}∞k=1 be a proper listing of eigenvalues and eigenfunctions for the
related Sturm-Liouville problem. Suppose that all of the eigenvalues are positive.

Solution. Suppose that u is an elementary separated solution to (1). This means

u(x, t) = ϕ(x)h(t)

for some pair of one-place functions ϕ and h. Inserting this into (1), we have

ϕ(x)h′′(t) = c2ϕ′′(x)h(t). (6)

Assuming for now that
u(x.t) 6= 0,

and dividing each side of (6) by ϕ(x)h(t), we have

ϕ(x)h′′(t)

ϕ(x)h(t)
= c2

ϕ′′(x)h(t)

ϕ(x)h(t)
,

so
h′′(t)

h(t)
= c2

ϕ′′(x)

ϕ(x)
.

This holds for all t and all x with 0 ≤ x ≤ L, so there is a constant K such that

h′′(t)

h(t)
= K = c2

ϕ′′(x)

ϕ(x)
(7)

for all t and all x with 0 ≤ x ≤ L. As a matter of notational convenience and so that we
can more easily make use of our earlier work on two-point boundary value problems,
we let

λ = −K
c2
so K = −c2λ.

From (7) we then have

−ϕ′′(x) = λϕ(x) for all x in [0, L] (8)

and
h′′(t) = −λc2h(t) for all t. (9)
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It is worth noting that if
u(x, t) = ϕ(x)h(t)

and (8) and (9) hold, then

∂2u

∂t2
(x, t) = ϕ(x)h′′(t) = −λc2ϕ(x)h(t)

= c2ϕ′′(x)h(t) = c2
∂2u

∂x2
(x, t)

so the PDE (1)
∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t)

will be satisfied, and we no longer need to assume that u(x, t) 6= 0. Continuing with
our assumption that

u(x, t) = ϕ(x)h(t)

We have from conditions (2) and (3)

αϕ(0) + βϕ′(0) = 0 (10)

and
γϕ(L) + δϕ′(L) = 0. (11)

Let
{λk}∞k=1 and {ϕk}∞k=1

be a proper listing for (8), (10), and (11). The equation (9)

h′′(t) = −c2λh(t)

is equivalent to
h′′(t) + c2λh(t) = 0. (12)

When λ > 0 as it must be because all eigenvalues for the problem (8), (10), and (11)
are positive, a linearly independent pair of solutions to (12) is the pair whose values
at t are

cos
√
λct and sin

√
λct.

Thus when λ = λk the solutions to (9) are linear combinations of the functions h1k and
h2k where

h1k(t) = cos
√
λkct and h2k(t) = sin

√
λkct.

We expect that the solution to the problem consisting of (1) through (5) will be of the
form

u(x, t) =

∞∑
k=1

ϕk(x)[Akh1k(t) +Bkh2k(t)] (13)

for some sequences of constants {Ak}∞k=1 and {Bk}∞k=1.
Condition (4)

u(x, 0) = f(x) for x in [0, L],
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implies

f =
∞∑
k=1

ϕk[Akh1k(0) +Bkh2k(0)] =
∞∑
k=1

[Ak cos 0 +Bk sin 0]ϕk =
∞∑
k=1

Akϕk.

Since {ϕk}∞k=1 is an orthogonal sequence of non zero functions this implies

Ak =
< f, ϕk >

< ϕk, ϕk >

so for k = 1, 2, . . .Returning to (13) we expect

∂u

∂t
(x, t) =

∞∑
k=1

ϕk(x)[Akh
′
1k(t) +Bkh

′
2k(t)].

Condition (5)
∂u

∂t
(x, 0) = g(x) for all x in [0, L]

implies

g =
∞∑
k=1

ϕk[Akh
′
1k(0)+Bkh

′
2k(0)] =

∞∑
k=1

(
√
λkc)[−Ak sin 0+Bk cos 0]ϕk =

∞∑
k=1

(
√
λkc)Bkϕk

so
(
√
λkc)Bk =

< g, ϕk >

< ϕk, ϕk >
or Bk =

< g, ϕk >√
λkc < ϕk, ϕk >

for k = 1, 2, 3, . . ..In summary, the solution to the original problem (1) through (5) is
u where

u(x, t) =
∞∑
k=1

[Ak cos
kπ

L
ct+Bk sin

kπ

L
ct]ϕk(x)

in which

Ak =
< f, ϕk >

< ϕk, ϕk >

and
Bk =

< g, ϕk >√
λkc < ϕk, ϕk >

for k = 1, 2, . . .

8. Consider the following problem for Laplace’s equation in a rectangle.

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0 (1)

for all (x, y) in the rectangle [0, 4] × [0, 2] which is all (x, y) where 0 ≤ x ≤ 4 and
0 ≤ y ≤ 2 and

u(x, y) = B(x, y) (2)

for all (x, y) on the boundary of [0, 4]× [0, 2] where

B(x, y) = x2 + y3 + xy + 1.

14



Find the function v of the form

v(x, y) = ax+ by + cxy + d

such that
v(x, y) = B(x, y)

at each of the four corners of the rectangle. Then let w be given by

w(x, y) = u(x, y)− v(x, y)

for all (x, y) in the rectangle [0, 4] × [0, 2]. Complete but do not solve the following
problem statement for w.

∂2w

∂x2
(x, y) +

∂2w

∂y2
(x, y) =?

for all (x, y) in the rectangle [0, 4]× [0, 2] ,

w(x, 0) =?

for 0 ≤ x ≤ 4,
w(x, 2) =?

for 0 ≤ x ≤ 4,
w(0, y) =?

for 0 ≤ y ≤ 2, and
w(4, y) =?

for 0 ≤ y ≤ 2.

Solution.

d = v(0, 0) = B(0, 0) = 1

4a+ d = v(4, 0) = B(4, 0) = 17

4a = 16

a = 4

2b+ d = v(0, 2) = B(0, 2) = 9

2b = 8

b = 4

4 · 4 + 4 · 2 + 8c+ 1 = v(4, 2) = B(4, 2) = 33

c = 1

v(x, y) = 4x+ 4y + xy + 1
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∂2w

∂x2
(x, y) +

∂2w

∂y2
(x, y) = (

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y))− (

∂2v

∂x2
(x, y) +

∂2v

∂y2
(x, y))

= 0− 0 = 0

w(x, 0) = u(x, 0)− v(x, 0) = B(x, 0)− v(x, 0)

= x2 − 4x

w(x, 2) = u(x, 2)− v(x, 2) = B(x, 2)− v(x, 2)

= x2 − 4x

w(0, y) = u(0, y)− v(0, y) = B(0, y)− v(0, y)

= y3 − 4y

w(4, y) = u(4, y)− v(4, y) = B(4, y)− v(4, y)

= y3 − 4y

9. Let f be given by

f(x) =

{
1 if −1 ≤ x < 0

2 + x2 if 0 ≤ x ≤ 1
.

Let h be the limit of the Fourier Series ( L = 1 ) for f. Sketch the graph of h over
[−3, 3]. Be sure to show the value of h at each number in [−3, 3].

Solution. 
f(x+ 2) if −3 < x < −1

f(x) if −1 < x < 1
f(x− 2) if 1 < x < 3

1.5
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10. Let f be given by
f(x) = 2− x for 0 ≤ x ≤ 1.

(a) Let g be the limit of the sine series ( L = 1 ) for f . Sketch the graph of g over
[−3, 3]. Be sure to show the value of g at each number in [−3, 3].

Solution.

­3 ­2 ­1 1 2 3

­2

­1

1

2

x

y

g
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(b) Let h be the limit of the cosine series ( L = 1 ) for f . Sketch the graph of h over
[−3, 3]. Be sure to show the value of h at each number in [−3, 3].

Solution.

­3 ­2 ­1 0 1 2 3

0.5

1.0

1.5

2.0

x

y

g

11. Suppose that f is a differentiable function with domain R.

(a) Show that if f is an even function, then f ′ is an odd function.

Solution. If f is even
f(x) = f(−x)

so by the chain rule,

f ′(x) = f ′(−x)(−1) = −f ′(−x).

Thus f ′ is odd.

(b) Show that if f is an odd function , then f ′ is an even function.

Solution. If f is odd
f(x) = −f(−x)
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so by the chain rule,

f ′(x) = −f ′(−x)(−1) = f ′(−x).

Thus f ′ is even.

12. Find the solution to

∂ϕ

∂t
(x, t) =

∂2ϕ

∂x2
(x, t) + xt for 0 ≤ x ≤ 1 and t ≥ 0, (1)

ϕ(0, t) = 0 for t ≥ 0, (2)

ϕ(1, t) = 0 for t ≥ 0, and (3)

ϕ(x, 0) = sinπx for 0 ≤ x ≤ 1. (4)

Solution. The related Sturm-Liouville problem is

−ψ′′(x) = λψ(x) for 0 ≤ x ≤ 1,

ψ(0) = 0, and

ψ(1) = 0.

A proper listing of eigenvalues and eigenfunctions is {λk}∞k=1 and {ψk}∞k=1 where

λk = (kπ)2 and ψk(x) = sin kπx.

Look for a solution to (1)-(4) in the form

u(x, t) =
∞∑
k=1

bk(t)ψk(x) (5)

where the functions bk are to be determined.

Putting (5) into (1) produces

∞∑
k=1

b′k(t)ψk(x) =

[ ∞∑
k=1

bk(t)ψ
′′
k(x)

]
+ xt.

Using
−ψ′′k = λkψk

this becomes
∞∑
k=1

b′k(t)ψk(x) =

[
−
∞∑
k=1

bk(t)λkψk(x)

]
+ xt.
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or
∞∑
k=1

(b′k(t) + λkbk(t))ψk(x) = xt (6)

Expanding xt in terms of {ψk} for each t we have

xt =

∞∑
k=1

γk(t)ψk(x)

where

γk(t) =

∫ 1
0
xtψk(x)dx∫ 1

0
|ψk(x)|2dx

=
t
∫ 1
0
xψk(x)dx∫ 1

0
|ψk(x)|2dx

=
t
∫ 1
0
x sin kπxdx∫ 1

0
(sin kπx)2dx

= 2t
(−1)k+1

kπ

From (6) we have

∞∑
k=1

(b′k(t) + λkbk(t))ψk(x) =
∞∑
k=1

γk(t)ψk(x). (7)

Equating coeffi cients on ψk we have

b′k(t) + λkbk(t) = γk(t) (8)

for t ≥ 0 and k = 1, 2, . . .. To complete the determination of each bk we need an initial
condition to go with (8). From (4) and (5) we have

f(x) =
∞∑
k=1

bk(0)ψk(x).

where, in this problem,
f(x) = sin πx

Thus

bk(0) =
< f, ψk >

< ψk, ψk >
=

{
1 if k = 1
0 if k = 2, 3, . . .

.

The function b1 is determined by

b′1(t) + π2b1(t) = −2t

π
b1(0) = 1.

Solving the first order linear initial value problem, we have

b1(t) =
1

π5

(
(π5 − 2)e−π

2t + 2(1− π2t)
)
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For k = 2, 3, . . ., bk is determined by

b′k(t) + (kπ)2bk(t) = 2t
(−1)k+1

kπ
bk(0) = 0

Solving the first order linear initial value problem, we have

bk(t) =
2(−1)k+1

π5k5

(
e−π

2k2t − (1− π2k2t)
)

The solution ϕ to (1)-(4) is given by

ϕ(x, t) =
1

π5

(
(π5 − 2)e−π

2t + 2(1− π2t)
)

sinπx

+
2

π5

∞∑
k=2

(−1)k+1

k5

(
e−π

2k2t − (1− π2k2t)
)

sin kπx

13. Suppose that each of L, H, and T is a positive number. Find the eigenvalues and
eigenfunctions for

−
(
∂2ψ

∂x2
(x, y, z) +

∂2ψ

∂y2
(x, y, z) +

∂2ψ

∂z2
(x, y, z)

)
= λψ(x, y, z) (1)

ψ(0, y, z) = 0 (2)

ψ(L, y, z) = 0 (3)

ψ(x, 0, z) = 0 (4)

ψ(x,H, z) = 0 (5)

ψ(x, y, 0) = 0 and (6)

ψ(x, y, T ) = 0 (7)

for 0 ≤ x ≤ L, 0 ≤ y ≤ H, and 0 ≤ z ≤ T . Start by looking for elementary separated
solutions of the form

ψ(x, y, z) = ϕ(x, y)h(z). (8)

Solution. Suppose that
ψ(x, y, z) = ϕ(x, y)h(z). (8)

From (1) it follows that

−
(
∂2ϕ

∂x2
(x, y) +

∂2ϕ

∂y2
(x, y)

)
h(z)− ϕ(x, y)h′′(z) = λϕ(x, y)h(z).

Dividing each side by ϕ(x, y)h(z) (assuming for now that it is not zero) produces

−
∂2ϕ
∂x2

(x, y) + ∂2ϕ
∂y2

(x, y)

ϕ(x, y)
= λ+

h′′(z)

h(z)
.

21



Letting µ be the common constant value, we have

−
(
∂2ϕ

∂x2
(x, y) +

∂2ϕ

∂y2
(x, y)

)
= µϕ(x, y) (9)

for 0 ≤ x ≤ L and 0 ≤ y ≤ H and

h′′(z) = (µ− λ)h(z)

or
−h′′(z) = δh(z) for 0 ≤ z ≤ T (10)

where
δ = λ− µ.

Note that
λ = µ+ δ. (11)

From (8) and conditions (2)-(7) we have

ϕ(x, y) = 0 for (x, y) on the boundary of [0, L]× [0, H], (12)

h(0) = 0, (13)

and
h(T ) = 0. (14)

A proper listing of eigenvalues and eigenfunctions for (9) and (12) is {µkj}∞k,j=1 and
{ϕkj}∞k,j=1 where

µkj = (
kπ

L
)2 + (

jπ

H
)2 and ϕkj(x, y) = sin

kπx

L
sin

jπy

H
.

A proper listing of eigenvalues and eigenfunctions for (10), (13), and (14) is {δl}∞l=1
and {hl}∞l=1 where

δl = (
lπ

T
)2 and hl(z) = sin

lπz

T
.

In view of (8) and (11), a proper listing of eigenvalues and eigenfunctions for (1)-(7) is
{λkjl}∞k,j,l=1 and {ψkjl}∞k,j,l=1 where

λkjl = µkj + δl = (
kπ

L
)2 + (

jπ

H
)2 + (

lπ

T
)2

and

ψkjl(x, y, z) = ϕkj(x, y)hl(z) = sin
kπx

L
sin

jπy

H
sin

lπz

T
.

14. Solve the following differential equation which we encountered when deriving d’Alembert’s
solution to the wave equation.

∂2w

∂t∂x
(x, t) = 0 for all x and t.
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Solution. From
∂2w

∂t∂x
(x, t) = 0

we get
∂w

∂x
(x, t) = h(x)

for some one-place function h. From this we get

w(x, t) = f(x) + g(t)

where f is an anti-derivative of h and g is a one-place function.

15. Let u be the solution to

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t) for all x and t in R,

u(x, 0) = ϕ(x) for all x in R, and
∂u

∂t
(x, 0) = ψ(x) for all x in R.

where
ϕ(x) = 0 for all x and

ψ(x) =


0 for x < −1

2x+ 2 for −1 ≤ x ≤ 0
2− 2x for 0 ≤ x ≤ 1

0 for x > 1

.

Let
h(x) = u(x, 3) for all x in R.

Sketch the graph of h on the interval [−6, 6].

Suggestion: Show that
u(x, t) = F (x+ t)− F (x− t)

where

F (x) =
1

2

∫ x

0

ψ(s)ds.

The graph of h is the graph of F shifted 3 units to the left plus the graph of −F shifted
3 units to the right.
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Solution.

u(x, t) =
1

2

∫ x+t

x−t
ψ(s)ds =

1

2

∫ 0

x−t
ψ(s)ds+

1

2

∫ x+t

0

ψ(s)ds

=
1

2

∫ x+t

0

ψ(s)ds− 1

2

∫ x−t

0

ψ(s)ds

= F (x+ t)− F (x− t)

where

F (x) =
1

2

∫ x

0

ψ(s)ds.

F (x) =


−1
2

if x < −1
1
2
x2 + x if −1 ≤ x < 0
x− 1

2
x2 if 0 ≤ x ≤ 1
1
2

if x > 1

­10 ­8 ­6 ­4 ­2 2 4 6 8 10
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F (x+ 3)− F (x− 3)

24



­6 ­5 ­4 ­3 ­2 ­1 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

x

y

h

16. Find the solution to Laplace’s equation in polar coordinates

∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
(r, θ) +

1

r2
∂2u

∂θ2
(r, θ) = 0 (1)

in the half-annulus where 2 ≤ r ≤ 4 and 0 ≤ θ ≤ π subject to

u(r, 0) = 0 for 2 ≤ r ≤ 4 (2)

u(r, π) = 0 for 2 ≤ r ≤ 4 (3)

u(2, θ) = f(θ) for 0 ≤ θ ≤ π and (4)

u(4, θ) = g(θ) for 0 ≤ θ ≤ π. (5)

Solution. Suppose that u is an elementary separated solution to (1). This means

u(r, θ) = ϕ(θ)G(r)

for some pair of one-place functions ϕ and G. Inserting this into (1), we have

ϕ(θ)G′′(r) +
1

r
ϕ(θ)G′(r) +

1

r2
ϕ′′(θ)G(r) = 0 (6)

Assuming for now that
u(r, θ) 6= 0,

and dividing each side of (6) by
ϕ(θ)G(r)

r2
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we have

r2
G′′(r)

G(r)
+ r

G′(r)

G(r)
= −ϕ

′′(θ)

ϕ(θ)

This holds for all r with 2 ≤ r ≤ 4 and θ with 0 ≤ θ ≤ π; so there is a constant λ such
that

r2
G′′(r)

G(r)
+ r

G′(r)

G(r)
= −ϕ

′′(θ)

ϕ(θ)
= λ (7)

for all r with 2 ≤ r ≤ 4 and θ with 0 ≤ θ ≤ π. From (7) we then have

−ϕ′′(θ) = λϕ(θ) for all θ in [0, π] (8)

and
r2G′′(r) + rG′(r)− λG(r) = 0 for all r in [2, 4]. (9)

If
u(r, θ) = ϕ(θ)G(r)

and (8) and (9) hold, then

∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
(r, θ) +

1

r2
∂2u

∂θ2
(r, θ) = ϕ(θ)G′′(r) +

1

r
ϕ(θ)G′(r) +

1

r2
ϕ′′(θ)G(r)

= ϕ(θ)

(
G′′(r) +

1

r
G′(r)

)
+

(
1

r2
ϕ′′(θ)G(r)

)
= ϕ(θ)λ

1

r2
G(r)− 1

r2
λϕ(θ)G(r)

= 0

so the PDE (1) will be satisfied, and we no longer need to assume that u(r, θ) 6= 0.

Continuing with our assumption that

u(r, θ) = ϕ(θ)G(r)

we have from conditions (2) and (3) that either G(r) = 0 for all r in [2, 4] which we reject
because of (5) and (4) or

ϕ(0) = 0 (10)

and
ϕ(π) = 0 (11)

which we then must accept.
The two-point boundary value problem consisting of (8), (10), and (11) is one which we have
studied. A proper listing of eigenvalues and eigenfunctions for this problem is {λk}∞k=1 and
{ϕk}∞k=1 where

λk = k2 for k = 1, 2, 3, . . . , and

ϕk(θ) = sin kθ for k = 1, 2, 3, . . . and 0 ≤ θ ≤ π.

Equation (9) is a Cauchy-Euler equation. When k is a positive integer and λ = k2 then

G(r) = c1r
k + c2r

−k.
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Considering the possible combinations, we expect the solution to (1)-(5) to be of the form

u(r, θ) =
∞∑
k=1

(
Akr

k +Bkr
−k) sin kθ. (12)

for 2 ≤ r ≤ 4 and 0 ≤ θ ≤ π.
In order that (4) and (5) hold it is necessary and suffi cient that

f(θ) =

∞∑
k=1

[(
Ak2

k +Bk2
−k) sin kθ

]
(13)

and

g(θ) =
∞∑
k=1

(
Ak4

k +Bk4
−k) sin kθ (14)

for 0 ≤ θ ≤ π. Thus

Ak2
k +Bk2

−k =
2

π

∫ π

0

f(θ) sin kθdθ, (15)

and

Ak4
k +Bk4

−k =
2

π

∫ π

0

g(θ) sin kθdθ. (16)

The solution is given by (12) where for each k, the coeffi cients Ak and Bk are determined by
(15) and (16).

.

1. Heat is flowing in a region in the plane with flux ϕ given by

ϕ(x, y) = (1 + xy, 1 + x2y) = (1 + xy)i+ (1 + x2y)j.

The rectangle R which consists of all (x, y) where 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2 is contained
in this region. There are no sinks or sources in R. Find the rate at which the total
heat energy in R is changing.

Solution. The rate of change of heat energy in R is

−
∮
C

ϕ · nds

where C is the boundary of the rectangle traversed once in the positive direction and
n is the outward unit normal vector. The divergence theorem in the plane tell us that
this is the same as

−
∫∫

R

∇ ·ϕdA

−
∫∫

R

∇ ·ϕdA = −
∫ x=4

x=0

∫ y=2

y=0

(y + x2)dydx = −152

3
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