Math 3363 Final Examination Solutions
Spring 2020

Do the problems in the order in which they are listed. Upload your solutions in
a pdf file by 11:59 p.m. Thursday, April 30. You may use your text, notes, and
the material posted on Dr. Walker’s web site, but you must DO YOUR OWN
WORK.

You may use the following information without derivation.

e A proper listing of eigenvalues and eigenfunctions for

(i) —¢"(z)=Ap(x) for0<z<L,
(i) ¢(0) =0, and
(iii) (L)=0

kra

: km :
is { A}, and {p,}32, where A\, = (7)2 and @, () = sin A

e A proper listing of eigenvalues and eigenfunctions for
()  —¢"(z)=
(i) ’( )=0,a
(iii) ¢'(L)=0

(m) for 0 <z <L,

k k
is {172, and {¢, }72, where A\, = (%)2 and ¢, (r) = cos %3: Note that Ay = 0 and
pol(z) = 1.
e A proper listing of eigenvalues and eigenfunctions for

(i) —¢"(z) =Ap(x) for0<z <L,
(i) ¢(0) =0, and
(iii) ¢'(L)=0

2k — 1)m\ 2 2k — 1
is {\}%2, and {p,}32, where A\, = (—( 5T )W> and ¢, () = sin ( 5T )Wx.

e A proper listing of eigenvalues and eigenfunctions for
(i) —¢"(z) =Ap(z) for0<z<L,
(i) ¢'(0) =0, and
(i) (L) =0

, 2k — )’ 2k — 1)z
is {\e 172, and {¢,}72, where A\, = <%) and @ (x) = cos%



e A proper listing of eigenvalues and eigenfunctions for

(i) —VZ%p(z,y) = Ap(z,y) for0<z < Land0<y< H and

(i) ¢(z,y)=0 for (x,y) on the boundary of [0, L] x [0, H]
i ~ - N K . kmx | gmy
is { Ak ti—1 and {gp;}ir—1 where Ag; = (f) +(ﬁ) and ¢;(z, y) = sin Mg

1. Consider the following nonhomogeneous time dependent heat equation problem.

du 0*u
— = > <z<
at(x,t) axQ(x,t)—i—ﬁfort_OandO_x_l
u(z,0)=1for0 <z <1,
ou

%(O,t) = —1, and %(l,t) =1fort>0.

(a) Find the constant [ so that the problem has an equilibrium solution v.

Solution.

V(1) =0'(0) = —p
1= (-1) = -5
3 9

(b) Find the equilibrium solution v with no undetermined constants.

Solution.

v = 2,0 (0)=—-1and (1) =1
) = 2x+4c¢,0=-1

v(z) = 2z -1
)

= x°—x+cy



d (! L ou
E/o u(z,t)de = i E(x,t)dx

= /0(%(%15)—2)6[:5

ou ou
- %(Lt) - _1,(07t> -2

= 1-(-1)—=2=0

fol u(x,t)dz is constant in t.

1 = /01(1)da: = /01 u(z,0)dx = /01 u(z,t)dz (any t)

1 1 1
= lim [ wu(z,t)dz = / lim u(z,t)de = [ v(zx)dr =
t—o00 0 0 t—o00 0
! 1 1
2
- - dr = = — —
/0 (x° — x4 cp)dx 373 + ¢
P
76

2. Let w(x,t) = u(x,t) — v(x) where v and v are as in Problem 1.

(a) State the problem for w. Use the value of § found in Problem 1.

Solution.
a_w( t) — 82_10
ot Y T ape

w(a:,()):u(x,())—v(x)zl—(x2—x+g) for 0 <x <1,

(x,t)fort >0and 0 <z <1

1
w(zx,0) :—mz—i-x—g

ow ow
e (0,¢) =0, and o (1,£)=0fort >0

(b) Solve the problem for w, then give the solution u. There should be no undeter-
mined constants in your solution wu.

Solution. Using the solution in Section 2.4,

w(z,t) = Ag + Z Ay, cos krze=Fm’t
ki
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where

and
A —2/1(—Q32+$—1)COS/€ rdr = — 2 (-1)F+1)
] ; 6 n T2k
t) = 2 ¢~ 1 DF+1 kra)e (km)t
w(z, )__F ﬁ((— )"+ 1)(cos krx)e
hence

2 = 1 ,
u(z,t) =a2® —a + g - = Z —((=1)* + 1)(cos kmx)e k0"

3. Consider the following two-point boundary value problem.

(i)  —¢"(z) = Ap(x) for 0 <x <1,
(i) (0) - ¢/(0) = 0, and
(i) (1) = 0.

(a) Find 2 x 2 matrices M and N so that conditions (ii) and (iii) are equivalent to

[ Z o2 ]=[o)

1 -1 00
M_<0 O)and]\f—<10)

(b) Use the Rayleigh Quotient to show that all eigenvalues are non-negative. How do
you know that 0 is not an eigenvalue?

Solution.

Solution. Suppose that A is an eigenvalue and ¢ is a corresponding eigenfunction.

Then
L #0F0) — ) 0) + o (@)
fo o(x))2dx
_ 2(0)-#(0) - 0- 90’(1)+f0 ))2da
fo (z))2dzx
_ “+ fo ))?dx -0
fo 2dw



Suppose that ¢ is a solution to (i), (ii), and (iii) when A = 0. From (i),
¢'(z) =

and
o(x) = 1 + co.

Then from (ii),

2 —c1 =0,
and from (iii),

C1+c= 0 3
SO

Cl = Cy = 0.
Thus

p(r)=0for 0 <x < 1.

Since the only solution is the zero function, the number zero is not an eigenvalue.

Find the matrix D(\) and the determinant A()) in the case where A > 0.

Solution.

D) = ( . >¢A<O)+ ( v )qm)

O, (z) = ( _;%szj;x \/SXH;O\S/X\/:EXZ‘ ) '

o= (5 0 ) (o v )+ (9 0) (s i),

) by = ( cos1 A s;\/\/XX>

where

and

A(N) = det D(\) = sin VA 4+ VA cos VA

Explain how to determine the eigenvalues graphically. Give a proper listing of
eigenvalues and eigenfunctions.



Solution. ) is an eigenvalue if and only if A\ = p? where p is the first coordinate of
a point of intersection of the graph where y = —x and the graph where y = tan x.

When )\ is an eigenvalue,

if and only if
—\ /\kCQ =0

so a corresponding eigenfunction is ¢, where

—cos\/_x—i- cos\/_x

4. Suppose that {¢;}72; is orthogonal on [0, L] and < ¢, ¢, ># 0 for k = 1,.... Suppose
that f = ).~ cx¥, with convergence in the mean. Derive a formula that gives ¢ in
terms of f, ¢,, and the inner product.

Solution.

<[y >=< ) cid; by >
Jj=1

Since there is convergence in the mean,
o0
< >=) ¢ <8, >
=1

Since {¢ }72, is orthogonal,

< foop >=cr < Oy, Op >
Thus
<f7¢k>
<¢k7¢k>

C =

5. Suppose that each of a, b, ¢, and d is a real number, at least one of a and b is not zero
and at least one of ¢ and d is not zero. Suppose that each of L and x is a positive
number, Derive the solution to

du 0*u
— = — > <z<
T (x,t) Ko (x,t)fort >0and 0 <x <L, (1)
au(0,t) + b%(o,t) = 0fort>0, (2)
T
cu(L,t) + d?(L, t) = Ofort >0, and (3)
T
u(z,0) = f(z)for 0 <z < L. (4)

6



Let {\:}52; and {p,}%2, be a proper listing of eigenvalues and eigenfunctions for the
related Sturm-Liouville problem.

Solution. Suppose that u is an elementary separated solution to (1). This means

u(z, 1) = (z)G(t)

for some pair of one-place functions ¢ and G. Inserting this into (1), we have

p(z)G(t) = k" (2)G(1). (5)

Assuming for now that
u(z.t) # 0,

and dividing each side of (5) by ¢(z)G(t), we have

p2)G'(t) _ ¢"(2)G(2)

p()G(t) p(x)G(E)
" ¢t _ &)

G(t)  p(z)

This holds for all ¢ > 0 and z with 0 < z < L, so there is a constant C' such that

Gl t "

) _ o 2@
G(t) o(z)

for all ¢ > 0 and z with 0 < 2 < L. As a matter of notational convenience and so

that we can more easily make use of our earlier work on two-point boundary value
problems, we let

(6)

PP
K
From (6) we then have
—¢"(z) = Mp(z) for all z in [0, L] (7)
and
G'(t) = —rAG(t) for all t > 0. (8)

It is worth noting that if
u(z,t) = ¢(z)G(t)
and (7) and (8) hold, then

%(x,t) = (x)G'(t) = —p(x)rAG(t)
= RO = 50 (a1

so the PDE (1)



will be satisfied, and we no longer need to assume that u(z,t) # 0. Continuing with
our assumption that

u(z,t) = p(z)G(t)
we have from conditions (2) and (3) that
ap(0) + by'(0) = 0 (9)
and
co(L) +d¢'(L) = 0. (10)
Let
{Aedizs and {@, 172,
be a proper listing of eigenvalues and eigenfunctions for (7), (9), and (10). When

A= Ak
the solutions to (8) are constant multiples of G where
Gk(t) = e_n)\kt.

The problem consisting of (1), (2), and (3) is linear and homogeneous, so if { By }7_;is
a finite sequence of numbers and

u(e,t) = 3 Bupy(@)Gald),

then u will be a solution to (1), (2), and (3). Thus we hope that the solution to the
problem consisting of (1) through (4) will be of the form

u(e,t) = 3 Bupy(a)Gult)

for some sequence of constants { By }7° ;. Noting that Gy (0) = 1, we see that condition

(4),
u(x,0) = f(z) for z in [0, L],

implies
f=)_ By
k=1
Since {¢; }72, is an orthogonal sequence of nonzero functions, this implies
< f,p >
B, = [ e
< Pp, P >

for £ = 1,2,...In summary, the solution to the original problem (1) through (4) is u
where

u(z,t) = Z B;€<,0,~,l3(:zc)e_"“(kfﬁ)275
k=1
in which .
N e
k= 7L
Jo (pi(x))?da

fork=1,2,...



6. Suppose that each of a, b, ¢, and d is a real number, at least one of a and b is not zero
and at least one of ¢ and d is not zero. Suppose that each of L and H is a positive
number. Derive the solution to

0%u 0%u

ou ) = <z < <y<
axz(x,y)Jrayz(xy) Ofor0<z<Land0<y<H, (1)
au(0,y) + b%(O, y) = Ofor0<y<H, (2)
cu(L,y) + d%([/, y) = O0for0<y<H, (3)
u(z,H) = 0for0<z <L, and (4)
u(z,0) = f(z)for 0 <ax < L. (5)

Let {\:}%2; and {p,}%2, be a proper listing of eigenvalues and eigenfunctions for the
related Sturm-Liouville problem. Suppose that all of the eigenvalues are positive.

Solution. Suppose that u is an elementary separated solution to (1). This means

u(z,y) = ¢(x)h(y) (6)
for some pair of one-place functions ¢ and h. Inserting this into (1), we have
" (@)h(y) + (z)h"(y) = 0. (7)
Assuming for now that
u(z.y) # 0,

and dividing each side of (7) by ¢(z)h(y), we have

©"(x)h(y)  plz)h"(y)

e(x)h(y)  e(z)h(y)
SO
M) )
h(y) p(x)
This holds for all y with 0 < y < H and z with 0 < z < L, so there is a constant A
such that ; ,
M) 5
h(y) o(z)
for all y with 0 <y < H and z with 0 < x < L. From (8) we then have
—¢"(x) = A\p(z) for all z in [0, L] (9)
and
R"(y) = Ah(y) for all y in [0, H]. (10)



It is worth noting that if
u(w,y) = p(x)h(y)
and (9) and (10) hold, then
0%u "
92 &Y = ¢ (@)h(y) = —Ap()h(y)
" 9%u
= —p(x)h"(y) = —a—gﬂ(r,y)

so the PDE (1)
0%u 0%u

will be satisfied, and we no longer need to assume that u(z,y) # 0. Continuing with
our assumption that

u(z,y) = (x)h(y)

we have from conditions (2) and (3) that either h(y) = 0 for all y in [0, H] which we
reject because of (4) or
ap(0) + b’ (0) =0 (11)

and
cp(L) +dy'(L) =0 (12)

which we must accept. In a similar way we have from (4) that
h(H) =0 (13)

Let
{Atez and {o}is,

be a proper listing of eigenvalues and eigenfunctions for(9), (11), and (12). The equa-
tion (10)
h'(y) = Ah(y)

is equivalent to
h'(y) — Ah(y) = 0. (14)

When A > 0 as it must be because all eigenvalues for the problem (9), (11), and (12)
are positive, a linearly independent pair of solutions to (14) is the pair whose values

at y are
sinh vV \y and sinh VA(H — y).

Since h is a solution to (14), we have
h(y) = ¢; sinh vV Ay + ¢ sinh VA(H — y).
We have from (13) that h(H) = 0, so

cysinh AH + cosinh VA -0 = 0,

10



Using the fact that sinh0 = 0 and sinh z # 0 when z # 0, we have that ¢; = 0 and
see that when A\ = \; then the solutions to (13) and (14) are constant multiples of Ay
where

hi(y) = sinh /A (H — ).

The problem consisting of (1), (2), (3), and (4) is linear and homogeneous, so if
{E)}7_,is a finite sequence of numbers and

u(z,y) = Erpy(a)h(y),
k=1

then u will be a solution to (1), (2), (3), and (4). Thus we hope that the solution to
the problem consisting of (1) through (5) will be of the form

u(w,y) =Y Expy()hi(y)

for some perhaps infinite sequence of constants { £ }%2;.Condition (5)
u(z,0) = f(z) for x in [0, L],
implies N N
f= Epphi(0) =Y (Eypsinh/AH)g,.
k=1 k

=1

Since {¢; }72, is an orthogonal sequence of non zero function this implies

: / < f7 Pk >
Ek sinh )\kH =
( ) < Prr P >

SO
o <f7§0k>

N Slnh V )\kH < gOk,QOk >
for k = 1,2,...In summary, the solution to the original problem (1) through (5) is u
where

u(z,y) = > Eppy(x) sinh /A (H — y)

in which .
Jo [(@)py(x)dw

k= L fork:1,2,...
sinh AH ) (¢p(2))2da

. Suppose that each of a, 3, v, and J is a real number, at least one of o and [ is not
zero and at least one of v and § is not zero. Suppose that each of ¢ and L is a positive

11



number. Derive the solution to

0*u , 0%u

- = —_— <z< i
BT (x,1) Co (z,t) for 0 <2z < L and all ¢ in R, (1)
au(0,t) + B%(O, t) = 0foralltinR, (2)
T
yu(L,t) + 5?(1), t) = 0foralltinR, (3)
T
u(z,0) = f(z)for 0 <z <L, and (4)
%(x, 0) = g(z)for0 <z <L. (5)

Let {\:}32; and {p,}52, be a proper listing of eigenvalues and eigenfunctions for the
related Sturm-Liouville problem. Suppose that all of the eigenvalues are positive.

Solution. Suppose that u is an elementary separated solution to (1). This means

u(x, t) = p(x)h(t)

for some pair of one-place functions ¢ and h. Inserting this into (1), we have

p(@)h"(t) = c*¢" (2)h(t). (6)
Assuming for now that
u(z.t) # 0,
x)h(t), we have

(
(1) _ o (@)h(t)
Pt~ (D)

h"(t) _ 2 " ()
h(t) p(x)
This holds for all ¢ and all x with 0 < x < L, so there is a constant K such that
ORIt

_— = C

h(t) o()
for all t and all z with 0 < 2 < L. As a matter of notational convenience and so that we
can more easily make use of our earlier work on two-point boundary value problems,
we let

and dividing each side of (6) by ¢

SO

(7)

K

A=—-—s0o K= —*\.
c
From (7) we then have
—¢"(x) = A\p(z) for all z in [0, L] (8)
and
R"(t) = —Ac*h(t) for all t. (9)

12



It is worth noting that if
u(x, t) = p(x)h(t)
and (8) and (9) hold, then

a2u " 2
Talnt) = phH) = Ap(h()
" 0%u
= P (h(r) = T A1)
so the PDE (1)
9%u 82u

o2 o () = 8:102 prel

will be satisfied, and we no longer need to assume that u(z,t) # 0. Continuing with
our assumption that

We have from conditions (2) and (3)

ap(0) + B¢’ (0) =0 (10)

and
Yp(L) +d¢'(L) = 0. (11)

Let
{AetiZy and {o 2,
be a proper listing for (8), (10), and (11). The equation (9)

R'(t) = —c*Ah(t)

is equivalent to
R'(t) + Ah(t) = 0. (12)

When A > 0 as it must be because all eigenvalues for the problem (8), (10), and (11)
are positive, a linearly independent pair of solutions to (12) is the pair whose values

at t are
coS \/Xct and sin \/Xct.

Thus when A = A the solutions to (9) are linear combinations of the functions hy; and

hoj where
hix(t) = cos \/ Akct and hog(t) = sin v/ Agct.

We expect that the solution to the problem consisting of (1) through (5) will be of the
form

Z ©1(2)[Axhr(t) + Brhox(t)] (13)

for some sequences of constants {Ak} >, and {Br}2,.

Condition (4)
u(z,0) = f(z) for z in [0, L],

13



implies
f= Z ©p[Akh1x(0) + Bghor(0)] = Z [Ag cos0 + By sin 0], = Z Arpp-
k=1 k=1

Since {¢; }72, is an orthogonal sequence of non zero functions this implies

< J, >
A, = I e
< Py P >

so for k = 1,2, ... Returning to (13) we expect

ou -
5@t = > eul@)[Arhig (1) + Bihiy (t)].
k=1
Condition (5)
gt (x,0) = g(x) for all x in [0, L]
implies
g= Z(pk [Agh}(0)+ Bihy,(0)] = Z V Akc)[— Ay sin 04 By, cos 0] Z V \e€) Brpye
k=1 k=1 k=1
i < > < >
(\/)\_kC)Bk: 9, Pk OI'Bk;Z 9, Pk

< Qg Pr > VARC < @, 0 >

for k = 1,2,3,....In summary, the solution to the original problem (1) through (5) is
u where

u(w,t) = D [Apcos et + Bysin et (v)
k=1

in which
< >
Ak _ f7 Spk
< Splm Spk: >
and
< 9, Px >

By = for k=1,2,...

VARC < @, 0 >

. Consider the following problem for Laplace’s equation in a rectangle.
0?u (2.9) + 0?u
[ a:' [
92 Y Oy?

for all (z,y) in the rectangle [0,4] x [0,2] which is all (z,y) where 0 < z < 4 and
0<y<2and

(z,y) =0 (1)

u(z,y) = B(z,y) (2)
for all (z,y) on the boundary of [0, 4] x [0, 2] where

B(z,y) =2 +9* + xy + 1.

14



Find the function v of the form
v(z,y) =ar+ by +cry+d

such that
v(z,y) = B(z,y)

at each of the four corners of the rectangle. Then let w be given by

UJ(ZL‘,y) = u(x,y) - U(l'7y)

for all (z,y) in the rectangle [0, 4] x [0,2]. Complete but do not solve the following

problem statement for w.
0w O*w
@(%y) + a—yg(%y) =?

for all (z,y) in the rectangle [0, 4] x [0,2] ,

w(z,0) =7
for 0 <z <4,

w(z,2) =7
for 0 <z <4,

w(0,y) =7
for 0 <y <2, and

w(4,y) =7
for 0 <y < 2.
Solution.

d = v(0,0) = B(0,0) = 1
da+d=v(4,0) = B(4,0) = 17

4a = 16
a=414
2b+d=v(0,2) =B(0,2) =9
2b=28
b=4
4-444-248c+1=wv(4,2) = B(4,2) =33
c=1

v(z,y) =4r+4y + 2y +1

15



9*w 0*w 0%u 0%u 0%v 0%v

= 0-0=0

w(z,0) = wu(z,0)—v(z,0) = B(z,0) —v(z,0)

)

w(z,2) = u(zr,2) —v(z,2) = B(x,2) —v(z,2)

r° —4x

N~

U)(O,y) = U(O,y) - U(07y> = B(07y) - U(07y)
=y -4y

w4, y) = u(4,y) —v(4,y) = B(4,y) —v(4,y)
= y —4y

9. Let f be given by
B 1 if -1<xz<0
f(x>{2+x2 if 0<z<1

Let h be the limit of the Fourier Series ( L = 1) for f. Sketch the graph of h over
[—3, 3]. Be sure to show the value of h at each number in [—3, 3].

Solution.
flz) if —-l<az<l1
flx—=2) if l<z<3
1.5

{f(x+2) if —-3<z<-—1

16



e v ® .
ﬁ_
3 -2 1 0 1 2 3
X
h

10. Let f be given by
flz)=2—afor0 <z <1.

(a) Let g be the limit of the sine series ( L = 1) for f. Sketch the graph of g over
[—3, 3]. Be sure to show the value of g at each number in [—3, 3].

Solution.
2 —
y
1 -
@ - ® ® o, ®
3 2 1 1 2 3
X
1+
-2
g

17



(b) Let h be the limit of the cosine series ( L = 1) for f. Sketch the graph of h over
[—3, 3]. Be sure to show the value of h at each number in [—3, 3].

Solution.

X L

11. Suppose that f is a differentiable function with domain R.

(a) Show that if f is an even function, then f’ is an odd function.

Solution. If f is even

so by the chain rule,

Thus f’ is odd.

(b) Show that if f is an odd function , then f’ is an even function.

Solution. If f is odd



so by the chain rule,

Thus f is even.

12. Find the solution to

0 02

a—f(m,t} = af(ac15)%—xtf01"0<:1c<1andt>0
©(0,t) = 0fort >0,
o(1,t) = 0fort>0,and
o(x,0) = sinmz for 0 <x < 1.

Solution. The related Sturm-Liouville problem is
—"(z) = Mp(z) for 0 <z < 1,

¥(0) =0, and
(1) = 0.
A proper listing of eigenvalues and eigenfunctions is {\;}32; and {¢}7°, where

M = (km)? and ¢, (z) = sin kra.

Look for a solution to (1)-(4) in the form

o0

u(e ) = 3 bt (x)

k=1

where the functions b, are to be determined.

Putting (5) into (1) produces

> b () [Z be(t) + at.
k=1
Using
_¢Z = >‘k¢k
this becomes
PIRAGINE: [ Z be () My () | + at.
k=1

19
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or
00

Z (03, (1) + Ak (1)) ¥y () = at (6)

k=1

Expanding «t in terms of {¢,} for each ¢t we have

rt = Z’Yk(t)wk(x)
k=1
where

fol vty (x)dw tfol Ty (
fo [V () [2dz fg [V (z |2di'j
tfo z sin krxdz B 2t(—l)’~C+l

fol(sin kmx)2dx km

V(t) =

From (6) we have

S04 + Mbi() i) = S 1O (). (7)
k=1

k=1

Equating coeflicients on 1, we have

b, (1) + Akbi(t) = 74 (1) (8)

fort >0and k =1,2,.... To complete the determination of each b, we need an initial
condition to go with (8). From (4) and (5) we have

= Z b (0)1 ()

where, in this problem,
f(z) =sinmzx

Thus

< fiy> 1 if k=1
bk(o)_<¢k,¢:>_{ if k=23,... "

The function b; is determined by

2t
Vi(t) + 72 (t) = —=

™

Solving the first order linear initial value problem, we have

bi(t) = (6"~ 2)e ™ 4201 — =)

0
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For k =2,3,..., by is determined by

(-1
km

bi(t) + (km)%bp(t) = 2t
be(0) = 0
Solving the first order linear initial value problem, we have

=1 5
bi(t) = % <e Kt (1 7r2k:2t))

The solution ¢ to (1)-(4) is given by

1
p(r,t) = — ((715 — e ™t 421 — WQt)) sin
m
2 o (DM o
+— g ( k‘)5 (e_’T R (1 - 772/€2t)> sin krz
m
k=2

13. Suppose that each of L, H, and T is a positive number. Find the eigenvalues and
eigenfunctions for

- (Gt Ghwna + Shena) = Mew) @)
V0,92 = 0 2)
VLy2) = 0 ®)
V0.2 = 0 (1)
Vi H2) = 0 5)
Y(z,y,0) = 0and (6)
Y(a,y,T) = 0 (7)

for0<x<L,0<y<H,and 0 <z <T. Start by looking for elementary separated
solutions of the form

Y(x,y,2) = (@, y)h(2). (8)

Solution. Suppose that
U(x,y,2) = ez, y)h(2). (8)
From (1) it follows that

~ (G5 + 55 ) el () = Aol i)

Dividing each side by ¢(z,y)h(z) (assuming for now that it is not zero) produces

(r,y) h(z)
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14.

Letting i be the common constant value, we have

At PP
- (—(%2 (z,y) + e (z, y)) = pp(z,y) (9)
for0<z<Land 0<y < H and

W'(z) = (1 — Mh(2)

or
—h"(z) =6h(z) for 0 <2< T (10)
where
0= \—p.
Note that
A=p+9. (11)

From (8) and conditions (2)-(7) we have

(x,y) =0 for (z,y) on the boundary of [0, L] x [0, H], (12)
h(0) = 0, (13)

and
h(T) = 0. (14)

A proper listing of eigenvalues and eigenfunctions for (9) and (12) is {s,;}7%-, and
{son; tij=1 Where

km o Jm, . kmx . gmy
Py = <f) + (ﬁ) and ¢;;(z,y) = S —— S =

A proper listing of eigenvalues and eigenfunctions for (10), (13), and (14) is {0;}2,
and {h;}°, where

lm Iz

o = (?)2 and hy(z) = sin -

In view of (8) and (11), a proper listing of eigenvalues and eigenfunctions for (1)-(7) is
{/\kjl}z?j,lzl and {¢kjl}z?j,l:1 where

km gm Im
Akjt = fgj 01 = (T)Q + (ﬁ)2 + (?)2

and . . l
V(2,9 2) = @ (2, y)y(2) = sin % sin j% sin %

Solve the following differential equation which we encountered when deriving d’Alembert’s

solution to the wave equation.

9*w

m(m,t} =0 for all x and .
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Solution. From
0w

we get
ow
5o (0 t) = ()

for some one-place function h. From this we get

w(z,t) = f(z) +g(t)

where f is an anti-derivative of h and ¢ is a one-place function.

. Let u be the solution to

2 2
%(z,t) = %(z,t) for all x and ¢ in R,
u(z,0) = @(z) for all x in R, and
%(w, 0) = () for all z in R.
where
o(x) =0 for all z and
0 for < -1
(@) = 20+2 for -1 <x2<0
V=Y 2-22 for 0<z<1
0 for x>1
Let

h(z) = u(zx,3) for all  in R.
Sketch the graph of i on the interval [—6, 6].

Suggestion: Show that
u(z,t) =Flx+t)— F(x—1t)

where

F(z) = %/szb(s)ds.

The graph of h is the graph of F' shifted 3 units to the left plus the graph of —F shifted
3 units to the right.
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Solution.

where

u(z,t) = %/m w(s)ds:1

1 x
F(z)== [ (s)ds
2 Jo
1.2 _% Z; 1 ZE<_(1)
B sx°+wx af —1<x<
F(z) = r—32® if 0<z<l1
% if x>1
06T
y
04+
0.2
0 8 6 4 2 4 6 8 10
X
06+
F
F(x+3)— F(x—3)
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y
08T
06
04+
02+
6 5 4 a3 2 1 | 1 2 3 4 5 &
X
h
16. Find the solution to Laplace’s equation in polar coordinates
0%u 10u 1 0%u
—(r)+=-=r0+—=——=(r.0) =0 1
arQ(T7 )+Ta7’(r7 )+T2802(r7 ) ()

in the half-annulus where 2 < r <4 and 0 < 6 < 7 subject to

u(r,0) = O0for2<r<4 (2)
u(r,m) = 0for2<r <4 (3)
w(2,0) = f(0) for 0 < <m and (4)
u(4,0) = g(0) for 0 <0 <. (5)
Solution. Suppose that u is an elementary separated solution to (1). This means
u(r,6) = o(O)G(r)
for some pair of one-place functions ¢ and G. Inserting this into (1), we have
1 1
PO)G"(r) + —p(O)G'(r) + 5" (0)G(r) = 0 (6)
Assuming for now that
u(T’ 9) % 07
and dividing each side of (6) by
p(0)G(r)
r2
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we have

2,G"(r)  G'(r) ¢

r =
G(r) G(r) ©(0)
This holds for all » with 2 < r < 4 and 0 with 0 < 0 < 7; so there is a constant A such
et G0 G ')
r +7 =— =\ (7)
G(r)  G(r) ©(0)
for all r with 2 <r <4 and 0 with 0 < 6 < 7. From (7) we then have

—"(0) = Ap(0) for all 6 in [0, ] (8)
and
r2G"(r) + rG'(r) — MG (r) = 0 for all r in [2, 4]. (9)
If
u(r, ) = ¢(0)G(r)
and (8) and (9) hold, then

R0+ I ) O 0) = O+ O ) + e OG)
= w0 (¢ + 160 + (zO60)
= G(ON5G) ~ SAOG()
=0

so the PDE (1) will be satisfied, and we no longer need to assume that u(r, §) # 0.

Continuing with our assumption that

u(r, ) = ¢(0)G(r)
we have from conditions (2) and (3) that either G(r) = 0 for all r in [2,4] which we reject
because of (5) and (4) or
p(0) =0 (10)
and
o(m) = 0 (11)
which we then must accept.

The two-point boundary value problem consisting of (8), (10), and (11) is one which we have
studied. A proper listing of eigenvalues and eigenfunctions for this problem is {\;}72, and

{1 )iz, where
Ne = k?fork=1,2,3,..., and
wp(0) = sinkf for k=1,2,3,... and 0 <6 <.

Equation (9) is a Cauchy-Euler equation. When k is a positive integer and A = k? then

G(r) = cr® 4 cor™".
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Considering the possible combinations, we expect the solution to (1)-(5) to be of the form

u(r,0) = Z (Apr® + Byr™") sin k6. (12)
k=1

for2<r<4and0<6<m.

In order that (4) and (5) hold it is necessary and sufficient that

F0) =" [(A2* + Bp27") sin ko) (13)
k=1
and -
g(0) = (Apd" + Bya™) sin ko (14)
k=1
for 0 < @ < 7. Thus i
A2k + B27F = 2 / f(0) sin kOdo, (15)
T Jo
and o fm
Adb + Ba Tt = 2 / g(0) sin kOdo. (16)
T Jo

The solution is given by (12) where for each k, the coefficients A and By are determined by
(15) and (16).

1. Heat is flowing in a region in the plane with flux ¢ given by
p(a,y) = (1L + 2y, 1 +2%) = (1 +ay)i+ (1+2%y)j.

The rectangle R which consists of all (z,y) where 0 < 2 <4 and 0 < y < 2 is contained
in this region. There are no sinks or sources in R. Find the rate at which the total
heat energy in R is changing.

Solution. The rate of change of heat energy in R is

—j{go-nds
c

where (' is the boundary of the rectangle traversed once in the positive direction and
n is the outward unit normal vector. The divergence theorem in the plane tell us that

this is the same as
— / / V- pdA
R

r=4 y=2 152
—//V-cpdA:—/ / (y%—x2)dydx:—i
R =0 y=0 3

27



