Math 3363 Examination I Solutions

Spring 2020

Please use a pencil and do the problems in the order in which they are listed. No books, notes, calculators, cell phones, smart watches, or other electronics.

- 1. A rod of length L (units of length), insulated except perhaps at its ends, lies along the x-axis with its left end at coordinate 0 and its right end at coordinate L. Let e, ϕ , and Q be as follows. The thermal energy density (energy/length) at t (units of time after the time origin) at points with first coordinate x is e(x,t). The heat flux (energy/time) to the right at time t through the cross section consisting of points with first coordinate x is $\phi(x,t)$. (A negative value for $\phi(x,t)$ indicates heat flow to the left.) The heat energy per unit length being generated per unit time inside the rod at time t at points with first coordinate x is Q(x,t). (A negative value for Q indicates a heat sink.) Suppose that Q is continuous and that e and ϕ have continuous partial derivatives.
 - (a) Suppose that $0 \le a \le b \le L$. What is the total thermal energy in the segment from a to b at time t?

.Solution.

$$\int_{a}^{b} e(x,t)dx$$

(b) One way to express the rate of change of this thermal energy is

$$\phi(a,t) - \phi(b,t) + \int_a^b Q(x,t) dx.$$

Express this quantity as a single integral.

Solution.

$$\int_{a}^{b} \left(-\frac{\partial \phi}{\partial x}(x,t) + Q(x,t) \right) dx$$

(c) Starting with your expression in Part (a) for the total energy in the segment from a to b, give a second way to express the rate of change of this thermal energy as an integral.

Solution.

$$\frac{d}{dt}\int_{a}^{b}e(x,t)dx = \int_{a}^{c}\frac{\partial e}{\partial t}(x,t)dx$$

(d) In addition to the information given in the statement of the problem, let c(x) be the specific heat, $K_0(x)$ be the thermal conductivity, and $\rho(x)$ be the mass density at points with first coordinate x, and let u(x,t) be the temperature at time t at points with first coordinate x. Starting with the equation

$$\frac{\partial e}{\partial t} = -\frac{\partial \phi}{\partial x} + Q \text{ for } 0 \le x \le L \text{ and } t \ge 0.$$

Derive the equation

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} (K_0 \frac{\partial u}{\partial x}) + Q \text{ for } 0 \le x \le L \text{ and } t \ge 0.$$

Solution. According to the definition of temperature,

$$e = c\rho(u - Z)$$

where Z is a constant. So

$$c\rho \frac{\partial u}{\partial t} = -\frac{\partial \phi}{\partial x} + Q.$$

According to Fourier's law of heat conduction

$$\phi = -K_0 \frac{\partial u}{\partial x_1},$$

 \mathbf{SO}

$$c\rho \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} (K_0 \frac{\partial u}{\partial x}) + Q$$

2. Find the constant β so that the following problem has an equilibrium solution.

$$\frac{\partial w}{\partial t}(x,t) = \frac{\partial^2 w}{\partial x^2}(x,t) + 1 \text{ for } t \ge 0 \text{ and } 0 \le x \le 5,$$
$$w(x,0) = x \text{ for } 0 \le x \le 5,$$
$$\frac{\partial w}{\partial x}(0,t) = 1, \text{ and } \frac{\partial w}{\partial x}(5,t) = \beta \text{ for } t \ge 0.$$

Solution. The problem for an equilibrium solution is

$$0 = u''(x) + 1$$

 $u'(0) = 1$ and $u'(5) = \beta$.

From the DE we get

$$\int_0^5 u''(x)dx = \int_0^5 (-1)dx$$

 \mathbf{SO}

$$u'(5) - u'(0) = -5$$
 or $\beta - 1 = -5$.

 $\beta = -4.$

Thus

3. Find the equilibrium solution with no undetermined constants in the previous problem..

Solution.. The problem for an equilibrium solution is

$$0 = u''(x) + 1,$$

 $u'(0) = 1$ and $u'(5) = -4.$

From the DE we get

$$u'(x) = -x + c_1$$

then

$$u(x) = -\frac{1}{2}x^2 + c_1x + c_2.$$

 $c_1 = 1$

From u'(0) = 1 it follows that

 \mathbf{SO}

$$u(x) = -\frac{1}{2}x^2 + x + c_2.$$

To find c_2 we first show that $\int_0^5 w(x,t) dx$ is constant in t.

$$\frac{d}{dt} \int_0^5 w(x,t) dx = \int_0^5 \frac{\partial w}{\partial t}(x,t) dx$$
$$= \int_0^5 \frac{\partial^2 w}{\partial x^2}(x,t) + 1 \, dx$$
$$= \frac{\partial w}{\partial x}(5,t) - \frac{\partial w}{\partial x}(0,t) + 5$$
$$= -4 - 1 + 5 = 0.$$

So $\int_0^5 w(x,t) dx$ is constant in t. Thus

$$\int_{0}^{5} w(x,0)dx = \int_{0}^{5} w(x,t)dx(\text{any } t) = \lim_{t \to \infty} \int_{0}^{5} w(x,t)dx$$
$$= \int_{0}^{5} \lim_{t \to \infty} w(x,t)dx = \int_{0}^{5} u(x)dx.$$

From this it follows that

$$\int_0^5 x dx = \int_0^5 (-\frac{1}{2}x^2 + x + c_2) dx$$

or

$$\frac{25}{2} = -\frac{25}{3} + 5c_2.$$

So

$$c_2 = \frac{25}{6}$$

and

$$u(x) = -\frac{1}{2}x^2 + x + \frac{25}{6}.$$

4. Consider the following two-point boundary value problem in which L is a positive number.

(i)
$$-\varphi''(x) = \lambda \varphi(x)$$
 for $0 \le x \le L$,
(ii) $\varphi(0) = 0$, and
(iii) $\varphi(L) + \varphi'(L) = 0$.

Use the Rayleigh Quotient to show that all eigenvalues are non negative.

Solution. Suppose that λ is an eigenvalue and φ is a corresponding eigenfunction. Then

$$\lambda = \frac{\varphi(0)\varphi'(0) - \varphi(L)\varphi'(L) + \int_0^L (\varphi'(x))^2 dx}{\int_0^L (\varphi(x))^2 dx}$$
$$= \frac{0 \cdot \varphi'(0) - \varphi(L)(-\varphi(L)) + \int_0^L (\varphi'(x))^2 dx}{\int_0^L (\varphi(x))^2 dx}$$
$$= \frac{(\varphi(L))^2 + \int_0^L (\varphi'(x))^2 dx}{\int_0^L (\varphi(x))^2 dx} \ge 0$$

5. Is the number zero an eigenvalue for the two-point boundary value problem in Problem 4? Explain why or why not.

Solution Suppose that φ is a solution to (i), (ii), and (iii) when $\lambda = 0$. From (i),

and

$$\varphi(x) = c_1 x + c_2.$$

 $\varphi'(x) = c_1$

Then from (ii),

and from (iii),

$$c_1L + c_1 = 0$$
 implying $(L+1)c_1 = 0$

 $c_1 = 0.$

 $c_2 = 0,$

 \mathbf{SO}

Thus

$$\varphi(x) = 0$$
 for $0 \le x \le L$

Since the only solution is the zero function, the number zero is not an eigenvalue.

6. For the two-point boundary value problem given in Problem 4, find the matrix $D(\lambda)$ and the determinant $\Delta(\lambda)$ in the case where $\lambda > 0$.

Solution. The boundary conditions are equivalent to

$$\beta_1\varphi(0) + \beta_2\varphi'(0) = 0$$

and

$$\beta_3\varphi(L) + \beta_4\varphi'(L) = 0$$

where $\beta_1=1,\,\beta_2=0,\,\beta_3=1,\,\text{and}\,\,\beta_4=1$ so

$$D(\lambda) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Phi_{\lambda}(0) + \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \Phi_{\lambda}(L)$$

where

$$\Phi_{\lambda}(x) = \begin{pmatrix} \cos\sqrt{\lambda}x & \sin\sqrt{\lambda}x \\ -\sqrt{\lambda}\sin\sqrt{\lambda}x & \sqrt{\lambda}\cos\sqrt{\lambda}x \end{pmatrix}.$$
$$D(\lambda) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \cos\sqrt{\lambda}L & \sin\sqrt{\lambda}L \\ -\sqrt{\lambda}\sin\sqrt{\lambda}L & \sqrt{\lambda}\cos\sqrt{\lambda}L \end{pmatrix},$$

 \mathbf{SO}

$$D(\lambda) = \begin{pmatrix} 1 & 0\\ \cos L\sqrt{\lambda} - \sqrt{\lambda}\sin L\sqrt{\lambda} & \sin L\sqrt{\lambda} + \sqrt{\lambda}\cos L\sqrt{\lambda} \end{pmatrix}$$

and

$$\Delta(\lambda) = \det D(\lambda) = \sin L\sqrt{\lambda} + \sqrt{\lambda}\cos L\sqrt{\lambda}$$

7. Suppose that \mathcal{D} is a region in the plane with the property that if each of (x_1, y_1) and (x_2, y_2) is in \mathcal{D} then each of (x_1, y_2) and (x_2, y_1) is in \mathcal{D} . Suppose that F(x) = G(y) whenever (x, y) is in \mathcal{D} . Show that there is a constant C such that if (x, y) is in \mathcal{D} , then

$$F(x) = C = G(y)$$

Solution. Let (x_0, y_0) be a point in \mathcal{D} and let

$$C = F(x_0) = G(y_0).$$

Suppose that (x, y) is a point in \mathcal{D} . Then each of (x, y) and (x_0, y_0) is in \mathcal{D} . Since (x, y_0) is in \mathcal{D} , it follows that

$$F(x) = G(y_0) = C.$$

Since (x_0, y) is in \mathcal{D} , it follows that

$$F(x_0) = G(y) = C.$$

Thus

$$F(x) = C = G(y).$$

8. Suppose that $\{\phi_k\}_{k=1}^n$ is orthogonal on [0, L] and $\langle \phi_k, \phi_k \rangle \neq 0$ for $k = 1, \ldots, n$. Suppose that $f = \sum_{k=1}^n c_k \phi_k$. Derive a formula that gives c_k in terms of f, ϕ_k , and the inner product. Suggestion: Note that the summation index can be changed. For example,

$$f = \sum_{j=1}^{n} c_j \phi_j$$

Solution. For $k = 1, \ldots, n$,

$$< f, \varphi_k > = < \sum_{j=1}^n c_j \phi_j, \varphi_k > = \sum_{j=1}^n c_j < \phi_j, \varphi_k > .$$

Since $\langle \phi_j, \varphi_k \rangle = 0$ when $j \neq k$,

$$\langle f, \varphi_k \rangle = c_k \langle \phi_k, \varphi_k \rangle$$

 \mathbf{SO}

$$c_k = \frac{\langle f, \varphi_k \rangle}{\langle \phi_k, \varphi_k \rangle}.$$

9. Suppose that each of L and κ is a positive number.

(a) Suppose that

$$\frac{\partial u}{\partial t}(x,t) = \kappa \frac{\partial^2 u}{\partial x^2}(x,t) \text{ for } t \ge 0 \text{ and } 0 \le x \le L,$$

that

$$u(x,t) = \varphi(x)G(t),$$

and that

$$u(x,t) \neq 0$$

for $0 \le x \le L$ and $t \ge 0$. Derive ordinary differential equations for φ and G.

Solution. From the PDE, it follows that

$$\varphi(x)G'(t) = \kappa \varphi''(x)G(t).$$

Dividing each side of this equation by $\kappa \varphi(x) G(t)$ produces

$$\frac{G'(t)}{\kappa G(t)} = \frac{\varphi''(x)}{\varphi(x)}.$$

Since this is true for $t \ge 0$ and $0 \le x \le L$, it follows that there is a constant C such that

$$\frac{G'(t)}{\kappa G(t)} = C = \frac{\varphi''(x)}{\varphi(x)}.$$

Renaming C to be $-\lambda$ it follows that

$$-\varphi''(x) = \lambda\varphi(x)$$
 for $0 \le x \le L$

and

$$G'(t) + \kappa \lambda G(t) = 0$$
 for $t \ge 0$.

(b) Suppose that

$$\begin{split} u(x,t) &= \varphi(x) G(t) \text{ for } t \geq 0 \text{ and } 0 \leq x \leq L, \\ \beta_1 u(0,t) &+ \beta_2 \frac{\partial u}{\partial x}(0,t) = 0, \end{split}$$

and

$$\beta_3 u(L,t) + \beta_4 \frac{\partial u}{\partial x}(L,t) = 0$$

for $t \geq 0$. Also suppose that

$$u(x_0, t_0) \neq 0$$

for some (x_0, t_0) . Show that

$$\beta_1\varphi(0) + \beta_2\varphi'(0) = 0$$

and

$$\beta_3\varphi(L) + \beta_4\varphi'(L) = 0.$$

Solution. We have

$$\beta_1\varphi(0)G(t) + \beta_2\varphi'(0)G(t) = 0,$$

and

$$\beta_3\varphi(L)G(t) + \beta_4\varphi'(L)G(t) = 0$$

for $t \ge 0$ so

$$\beta_1 \varphi(0) G(t_0) + \beta_2 \varphi'(0) G(t_0) = 0, \tag{1}$$

and

$$\beta_3 \varphi(L) G(t_0) + \beta_4 \varphi'(L) G(t_0) = 0.$$
⁽²⁾

Since $u(x_0, t_0) \neq 0$, it follows that $G(t_0) \neq 0$, and dividing each side of (1) and (2) by $G(t_0)$ produces

$$\beta_1\varphi(0) + \beta_2\varphi'(0) = 0$$

and

$$\beta_3\varphi(L) + \beta_4\varphi'(L) = 0.$$

- 10. Establish the following convergence results.
 - (a) Evaluate

$$\sum_{k=1}^{\infty} e^{-kt}.$$

when t is a positive number. Then show that

$$\sum_{k=1}^{\infty} e^{-k^2 t}$$

exists and is finite when t is a positive number.

Solution.

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r} \text{ when } -1 < r < 1$$

 \mathbf{SO}

$$\sum_{k=1}^{\infty} r^k = \frac{1}{1-r} - 1 = \frac{r}{1-r} \text{ when } -1 < r < 1.$$
$$0 < e^{-t} < 1 \text{ when } t > 0$$

 \mathbf{SO}

$$\sum_{k=1}^{\infty} e^{-kt} = \sum_{k=1}^{\infty} (e^{-t})^k = \frac{e^{-t}}{1 - e^{-t}}$$

Since

$$0 < e^{-k^2 t} < e^{-kt}$$

when t > 0, it follows from the comparison test that

$$\sum_{k=1}^{\infty} e^{-k^2 t}$$

exists and is finite.

(b) Suppose that $\{c_k\}$ is a bounded sequence of numbers and

$$S_n(x,t) = \sum_{k=1}^n c_k(\sin kx)e^{-k^2t}$$

for $0 \le x \le \pi$, t > 0 and n = 1, 2, ... Suppose that t_0 is a positive number and \mathcal{D} is the set consisting of all (x, t) where $0 \le x \le L$ and $t \ge t_0$. Show that $\{S_n\}$ converges uniformly on \mathcal{D} .

Solution. Let B be a bound for the sequence $\{c_k\}$. Then

$$|c_k(\sin kx)e^{-k^2t}| \le |c_k| \cdot |\sin kx| \cdot |e^{-k^2t}| \le B \cdot 1 \cdot e^{-k^2t} \le Be^{-k^2t_0}$$

for all (x, t) in \mathcal{D} .

$$\sum_{k=1}^{\infty} e^{-k^2 t_0}$$

hence

$$\sum_{k=1}^{\infty} B e^{-k^2 t_0}$$

exists and is finite by Part a, so the uniform convergence of $\{S_n\}$ follows from the Weierstrass M-Test with

$$M_k = Be^{-k^2 t_0}.$$