
Math 3363 Examination I Solutions

Spring 2020

Please use a pencil and do the problems in the order in which they are listed.
No books, notes, calculators, cell phones, smart watches, or other electronics.

1. A rod of length L (units of length), insulated except perhaps at its ends, lies along
the x-axis with its left end at coordinate 0 and its right end at coordinate L. Let
e, φ, and Q be as follows. The thermal energy density (energy/length) at t (units of
time after the time origin) at points with first coordinate x is e(x, t). The heat flux
(energy/time) to the right at time t through the cross section consisting of points with
first coordinate x is φ(x, t). (A negative value for φ(x, t) indicates heat flow to the
left.) The heat energy per unit length being generated per unit time inside the rod at
time t at points with first coordinate x is Q(x, t). (A negative value for Q indicates
a heat sink.) Suppose that Q is continuous and that e and φ have continuous partial
derivatives.

(a) Suppose that 0 ≤ a ≤ b ≤ L. What is the total thermal energy in the segment
from a to b at time t?

.Solution. ∫ b

a

e(x, t)dx

(b) One way to express the rate of change of this thermal energy is

φ(a, t)− φ(b, t) +

∫ b

a

Q(x, t)dx.

Express this quantity as a single integral.

Solution. ∫ b

a

(
−∂φ
∂x

(x, t) +Q(x, t)

)
dx
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(c) Starting with your expression in Part (a) for the total energy in the segment from
a to b, give a second way to express the rate of change of this thermal energy as
an integral.

Solution.
d

dt

∫ b

a

e(x, t)dx =

∫ c

a

∂e

∂t
(x, t)dx

(d) In addition to the information given in the statement of the problem, let c(x) be
the specific heat, K0(x) be the thermal conductivity, and ρ(x) be the mass density
at points with first coordinate x, and let u(x, t) be the temperature at time t at
points with first coordinate x. Starting with the equation

∂e

∂t
= −∂φ

∂x
+Q for 0 ≤ x ≤ L and t ≥ 0.

Derive the equation

cρ
∂u

∂t
=

∂

∂x
(K0

∂u

∂x
) +Q for 0 ≤ x ≤ L and t ≥ 0.

Solution. According to the definition of temperature,

e = cρ(u− Z)

where Z is a constant. So

cρ
∂u

∂t
= −∂φ

∂x
+Q.

According to Fourier’s law of heat conduction

φ = −K0
∂u

∂x,

so

cρ
∂u

∂t
=

∂

∂x
(K0

∂u

∂x
) +Q

2. Find the constant β so that the following problem has an equilibrium solution.

∂w

∂t
(x, t) =

∂2w

∂x2
(x, t) + 1 for t ≥ 0 and 0 ≤ x ≤ 5,

w(x, 0) = x for 0 ≤ x ≤ 5,

∂w

∂x
(0, t) = 1, and

∂w

∂x
(5, t) = β for t ≥ 0.
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Solution. The problem for an equilibrium solution is

0 = u′′(x) + 1

u′(0) = 1 and u′(5) = β.

From the DE we get ∫ 5

0

u′′(x)dx =

∫ 5

0

(−1)dx

so
u′(5)− u′(0) = −5 or β − 1 = −5.

Thus
β = −4.

3. Find the equilibrium solution with no undetermined constants in the previous problem..

Solution.. The problem for an equilibrium solution is

0 = u′′(x) + 1,

u′(0) = 1 and u′(5) = −4.

From the DE we get
u′(x) = −x+ c1

then
u(x) = −1

2
x2 + c1x+ c2.

From u′(0) = 1 it follows that
c1 = 1

so
u(x) = −1

2
x2 + x+ c2.

To find c2 we first show that
∫ 5
0
w(x, t)dx is constant in t.

d

dt

∫ 5

0

w(x, t)dx =

∫ 5

0

∂w

∂t
(x, t)dx

=

∫ 5

0

∂2w

∂x2
(x, t) + 1 dx

=
∂w

∂x
(5, t)− ∂w

∂x
(0, t) + 5

= −4− 1 + 5 = 0.
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So
∫ 5
0
w(x, t)dx is constant in t.Thus∫ 5

0

w(x, 0)dx =

∫ 5

0

w(x, t)dx(any t) = lim
t→∞

∫ 5

0

w(x, t)dx

=

∫ 5

0

lim
t→∞

w(x, t)dx =

∫ 5

0

u(x)dx.

From this it follows that ∫ 5

0

xdx =

∫ 5

0

(−1

2
x2 + x+ c2)dx

or
25

2
= −25

3
+ 5c2.

So
c2 =

25

6

and
u(x) = −1

2
x2 + x+

25

6
.

4. Consider the following two-point boundary value problem in which L is a positive
number.

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ(0) = 0, and
(iii) ϕ(L) + ϕ′(L) = 0.

Use the Rayleigh Quotient to show that all eigenvalues are non negative.

Solution. Suppose that λ is an eigenvalue and ϕ is a corresponding eigenfunction.
Then

λ =
ϕ(0)ϕ′(0)− ϕ(L)ϕ′(L) +

∫ L
0

(ϕ′(x))2dx∫ L
0

(ϕ(x))2dx

=
0 · ϕ′(0)− ϕ(L)(−ϕ(L)) +

∫ L
0

(ϕ′(x))2dx∫ L
0

(ϕ(x))2dx

=
(ϕ(L))2 +

∫ L
0

(ϕ′(x))2dx∫ L
0

(ϕ(x))2dx
≥ 0

5. Is the number zero an eigenvalue for the two-point boundary value problem in Problem
4? Explain why or why not.
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Solution Suppose that ϕ is a solution to (i), (ii), and (iii) when λ = 0. From (i),

ϕ′(x) = c1

and
ϕ(x) = c1x+ c2.

Then from (ii),
c2 = 0,

and from (iii),
c1L+ c1 = 0 implying (L+ 1)c1 = 0

so
c1 = 0.

Thus
ϕ(x) = 0 for 0 ≤ x ≤ L.

Since the only solution is the zero function, the number zero is not an eigenvalue.

6. For the two-point boundary value problem given in Problem 4, find the matrix D(λ)
and the determinant ∆(λ) in the case where λ > 0.

Solution. The boundary conditions are equivalent to

β1ϕ(0) + β2ϕ
′(0) = 0

and
β3ϕ(L) + β4ϕ

′(L) = 0

where β1 = 1, β2 = 0, β3 = 1, and β4 = 1 so

D(λ) =

(
1 0
0 0

)
Φλ(0) +

(
0 0
1 1

)
Φλ(L)

where

Φλ(x) =

(
cos
√
λx sin

√
λx

−
√
λ sin

√
λx
√
λ cos

√
λx

)
.

D(λ) =

(
1 0
0 0

)(
1 0

0
√
λ

)
+

(
0 0
1 1

)(
cos
√
λL sin

√
λL

−
√
λ sin

√
λL

√
λ cos

√
λL

)
,

so

D(λ) =

(
1 0

cosL
√
λ−
√
λ sinL

√
λ sinL

√
λ+
√
λ cosL

√
λ

)
and

∆(λ) = detD(λ) = sinL
√
λ+
√
λ cosL

√
λ.
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7. Suppose that D is a region in the plane with the property that if each of (x1, y1) and
(x2, y2) is in D then each of (x1, y2) and (x2, y1) is in D. Suppose that F (x) = G(y)
whenever (x, y) is in D. Show that there is a constant C such that if (x, y) is in D,
then

F (x) = C = G(y).

Solution. Let (x0, y0) be a point in D and let

C = F (x0) = G(y0).

Suppose that (x, y) is a point in D. Then each of (x, y) and (x0, y0) is in D. Since
(x, y0)is in D, it follows that

F (x) = G(y0) = C.

Since (x0, y) is in D, it follows that

F (x0) = G(y) = C.

Thus
F (x) = C = G(y).

8. Suppose that {φk}nk=1 is orthogonal on [0, L] and < φk, φk >6= 0 for k = 1, . . . , n.
Suppose that f =

∑n
k=1 ckφk. Derive a formula that gives ck in terms of f , φk, and

the inner product. Suggestion: Note that the summation index can be changed. For
example,

f =
n∑
j=1

cjφj

Solution. For k = 1, . . . , n,

< f, ϕk >=<
n∑
j=1

cjφj, ϕk >=
n∑
j=1

cj < φj, ϕk > .

Since < φj, ϕk >= 0 when j 6= k,

< f, ϕk >= ck < φk, ϕk >

so

ck =
< f, ϕk >

< φk, ϕk >
.

9. Suppose that each of L and κ is a positive number.
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(a) Suppose that

∂u

∂t
(x, t) = κ

∂2u

∂x2
(x, t) for t ≥ 0 and 0 ≤ x ≤ L,

that
u(x, t) = ϕ(x)G(t),

and that
u(x, t) 6= 0

for 0 ≤ x ≤ L and t ≥ 0. Derive ordinary differential equations for ϕ and G.

Solution. From the PDE, it follows that

ϕ(x)G′(t) = κϕ′′(x)G(t).

Dividing each side of this equation by κϕ(x)G(t) produces

G′(t)

κG(t)
=
ϕ′′(x)

ϕ(x)
.

Since this is true for t ≥ 0 and 0 ≤ x ≤ L, it follows that there is a constant C
such that

G′(t)

κG(t)
= C =

ϕ′′(x)

ϕ(x)
.

Renaming C to be −λ it follows that

−ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L

and
G′(t) + κλG(t) = 0 for t ≥ 0.

(b) Suppose that
u(x, t) = ϕ(x)G(t) for t ≥ 0 and 0 ≤ x ≤ L,

β1u(0, t) + β2
∂u

∂x
(0, t) = 0,

and

β3u(L, t) + β4
∂u

∂x
(L, t) = 0

for t ≥ 0. Also suppose that
u(x0, t0) 6= 0

for some (x0, t0). Show that

β1ϕ(0) + β2ϕ
′(0) = 0
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and
β3ϕ(L) + β4ϕ

′(L) = 0.

Solution. We have
β1ϕ(0)G(t) + β2ϕ

′(0)G(t) = 0,

and
β3ϕ(L)G(t) + β4ϕ

′(L)G(t) = 0

for t ≥ 0 so
β1ϕ(0)G(t0) + β2ϕ

′(0)G(t0) = 0, (1)

and
β3ϕ(L)G(t0) + β4ϕ

′(L)G(t0) = 0. (2)

Since u(x0, t0) 6= 0, it follows that G(t0) 6= 0, and dividing each side of (1) and
(2) by G(t0) produces

β1ϕ(0) + β2ϕ
′(0) = 0

and
β3ϕ(L) + β4ϕ

′(L) = 0.

10. Establish the following convergence results.

(a) Evaluate
∞∑
k=1

e−kt.

when t is a positive number. Then show that

∞∑
k=1

e−k
2t

exists and is finite when t is a positive number.

Solution.
∞∑
k=0

rk =
1

1− r when − 1 < r < 1

so
∞∑
k=1

rk =
1

1− r − 1 =
r

1− r when − 1 < r < 1.

0 < e−t < 1 when t > 0

so
∞∑
k=1

e−kt =

∞∑
k=1

(e−t)k =
e−t

1− e−t
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Since
0 ≤ e−k

2t ≤ e−kt

when t > 0, it follows from the comparison test that

∞∑
k=1

e−k
2t

exists and is finite.

(b) Suppose that {ck} is a bounded sequence of numbers and

Sn(x, t) =

n∑
k=1

ck(sin kx)e−k
2t

for 0 ≤ x ≤ π, t > 0 and n = 1, 2, . . .. Suppose that t0 is a positive number and
D is the set consisting of all (x, t) where 0 ≤ x ≤ L and t ≥ t0. Show that {Sn}
converges uniformly on D.

Solution. Let B be a bound for the sequence {ck}. Then

|ck(sin kx)e−k
2t| ≤ |ck| · | sin kx| · |e−k

2t| ≤ B · 1 · e−k2t ≤ Be−k
2t0

for all (x, t) in D.
∞∑
k=1

e−k
2t0

hence
∞∑
k=1

Be−k
2t0

exists and is finite by Part a, so the uniform convergence of {Sn} follows from the
Weierstrass M-Test with

Mk = Be−k
2t0 .
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