
Math 3363 Examination II Solutions

Spring 2020

Upload your solutions in a pdf file by 11:59 p.m. Thursday, April 2. You may
use your text, notes, and the material posted on Dr. Walker’s web site, but you
must do your own work.

You may use the following information without derivation.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ(0) = 0, and
(iii) ϕ(L) = 0

is {λk}∞k=1 and {ϕk}∞k=1 where λk = (
kπ

L
)2 and ϕk(x) = sin

kπx

L
.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ′(0) = 0, and
(iii) ϕ′(L) = 0

is {λk}∞k=0 and {ϕk}∞k=0 where λk = (
kπ

L
)2 and ϕk(x) = cos

kπx

L
. Note that λ0 = 0 and

ϕ0(x) = 1.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ(0) = 0, and
(iii) ϕ′(L) = 0

is {λk}∞k=1 and {ϕk}∞k=1 where λk =
(
(2k − 1)π
2L

)2
and ϕk(x) = sin

(2k − 1)πx
2L

.

• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for 0 ≤ x ≤ L,
(ii) ϕ′(0) = 0, and
(iii) ϕ(L) = 0

is {λk}∞k=1 and {ϕk}∞k=1 where λk =
(
(2k − 1)π
2L

)2
and ϕk(x) = cos

(2k − 1)πx
2L

.
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• A proper listing of eigenvalues and eigenfunctions for

(i) −ϕ′′(x) = λϕ(x) for −L ≤ x ≤ L,
(ii) ϕ(−L) = ϕ(L), and
(iii) ϕ′(−L) = ϕ′(L)

is {λk}∞k=0 and {ϕk}∞k=0 where

λ0 = 0, ϕ0 (x) = 1 for − L ≤ x ≤ L,

λ2k−1 = λ2k = (
kπ

L
)2 for k = 1, 2, 3, . . . ,

ϕ2k−1(x) = cos
kπ

L
x, and ϕ2k(x) = sin

kπ

L
x for k = 1, 2, 3, . . . and − L ≤ x ≤ L.

For this problem, the eigenvalues are zero and (kπ
L
)2 for k = 1, 2, 3, . . .. The eigenspace

corresponding to zero is one dimensional and a corresponding eigenfunction is the
constant function with value one. For k = 1, 2, 3, . . ., the eigenspace corresponding to
(kπ
L
)2 is two dimensional and a corresponding orthogonal pair of eigenfunctions is the

pair of functions whose values at x are cos kπ
L
x and sin kπ

L
x .

1. Find the function v of the form

v(x, y) = ax+ by + cxy + d

such that

v(0, 0) = 3,

v(4, 0) = −5,
v(4, 2) = 2, and

v(0, 2) = −1.

Solution.
v(0, 0) = a · 0 + b · 0 + c · 0 · 0 + d = 3 so d = 3

v(4, 0) = a · 4 + b · 0 + c · 4 · 0 + 3 = −5 so a = −2
v(0, 2) = a · 0 + b · 2 + c · 0 · 2 + 3 = −1 so b = −2

v(4, 2) = −2 · 4− 2 · 2 + c · (4)(2) + 3 = 2 so c = 11

8

v(x, y) = −2x− 2y + 11
8
xy + 3
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2. A hollow cylinder of height H and circumference 2L is open at both ends and is
in thermal equilibrium. It is insulated except around its top and bottom rim. The
temperature at each point on the top and bottom rims is known. Find the temperature
at each point of the cylinder.

Think of a plate lying in the rectangle [−L,L]× [0, H] being formed in to the cylinder
by joining the left and right edges. This is the problem to solve:

∂2u

∂x2
(x.y) +

∂2u

∂y2
(x.y) = 0 for − L ≤ x ≤ L and 0 ≤ y ≤ H (1)

u(−L, y) = u(L, y) for 0 ≤ y ≤ H (2)
∂u

∂x
(−L, y) =

∂u

∂x
(L, y) for 0 ≤ y ≤ H (3)

u(x, 0) = f(x) for − L ≤ x ≤ L (4)

u(x,H) = g(x) for − L ≤ x ≤ L (5)

Solution.The solution u to (1)-(5) is given by

u = ulower + uupper

where ulower is the solution to

∂2u

∂x2
(x.y) +

∂2u

∂y2
(x.y) = 0 for − L ≤ x ≤ L and 0 ≤ y ≤ H (6)

u(−L, y) = u(L, y) for 0 ≤ y ≤ H (7)
∂u

∂x
(−L, y) =

∂u

∂x
(L, y) for 0 ≤ y ≤ H (8)

u(x, 0) = f(x) for − L ≤ x ≤ L (9)

u(x,H) = 0 for − L ≤ x ≤ L (10)

and uupper is the solution to

∂2u

∂x2
(x.y) +

∂2u

∂y2
(x.y) = 0 for − L ≤ x ≤ L and 0 ≤ y ≤ H (11)

u(−L, y) = u(L, y) for 0 ≤ y ≤ H (12)
∂u

∂x
(−L, y) =

∂u

∂x
(L, y) for 0 ≤ y ≤ H (13)

u(x, 0) = 0 for − L ≤ x ≤ L (14)

u(x,H) = g(x) for − L ≤ x ≤ L (15)

Solution for ulower. Suppose that u is an elementary separated solution to (6). This
means

u(x, y) = ϕ(x)h(y)

for some pair of one-place functions ϕ and h. Inserting this into (6), we have

ϕ′′(x)h(y) + ϕ(x)h′′(y) = 0. (16)
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Assuming for now that
u(x.y) 6= 0,

and dividing each side of (16) by ϕ(x)h(y), we have

ϕ′′(x)h(y)

ϕ(x)h(y)
+
ϕ(x)h′′(y)

ϕ(x)h(y)
= 0,

so
h′′(y)

h(y)
= −ϕ

′′(x)

ϕ(x)
.

This holds for all y with 0 ≤ y ≤ H and x with −L ≤ x ≤ L, so there is a constant λ
such that

h′′(y)

h(y)
= λ = −ϕ

′′(x)

ϕ(x)
(17)

for all y with 0 ≤ y ≤ H and x with −L ≤ x ≤ L. From (17) we then have

−ϕ′′(x) = λϕ(x) for all x in [−L,L] (18)

and
h′′(y) = λh(y) for all y in [0, H]. (19)

It is worth noting that if
u(x, y) = ϕ(x)h(y)

and (18) and (19) hold, then

∂2u

∂x2
(x, y) = ϕ′′(x)h(y) = −λϕ(x)h(y)

= −ϕ(x)h′′(y) = −∂
2u

∂y2
(x, y)

so the PDE (6)
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0

will be satisfied, and we no longer need to assume that u(x, y) 6= 0. Continuing with
our assumption that

u(x, y) = ϕ(x)h(y)

we have from conditions (7) and (8) that either h(y) = 0 for all y in [0, H] which we
reject because of (9) or

ϕ(−L) = ϕ(L) (20)

and
ϕ′(−L) = ϕ′(L) (21)

which we must accept. In a similar way we have from (10) that

h(H) = 0 (22)

The problem consisting of (18), (20), and (21) is one which we have studied. The
eigenvalues are zero and (kπ

L
)2 for k = 1, 2, 3, . . .. The eigenspace corresponding to zero
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is one dimensional and a corresponding eigenfunction is the constant function with
value one. For k = 1, 2, 3, . . ., the eigenspace corresponding to (kπ

L
)2 is two dimensional

and a corresponding orthogonal pair of eigenfunctions is the pair of functions whose
values at x are cos kπ

L
x and sin kπ

L
x .

When λ = 0, the solutions to (19) are linear combinations of the functions whose values
at y are H − y and ,and the solutions to (19) and (22) are multiples of the function
whose value at y is H − y. Corresponding to λ = 0 we have the elementary separated
solution whose value at (x, y) is

1 · (H − y) = H − y.

When λ = (
kπ

L
)2, the solutions fo (19) are linear combinations of sthe functions whose

values at y are sinh
kπy

L
and sinh

kπ

L
(H − y), and the solutions to (19) and (22)

are multiples of the function whose value at y is sinh
kπ

L
(H − y). Corresponding to

λ = (
kπ

L
)2, we have elementary sepsrated solutions whose values at (x, y) are

cos
kπx

L
sinh

kπ

L
(H − y) and sin kπx

L
sinh

kπ

L
(H − y)

The problem consisting of (6), (7), (8), and (10) is linear and homogeneous so anything
of the form

A0(H − y) +
n∑
k=1

[Ak cos
kπx

L
+Bk sin

kπx

L
] sinh

kπ

L
(H − y)

will be a solution. In order for (9) to be satisfied, an infinite sum will be needed, so
we conjecture that the solution u to (6)-(10) is of the form

u(x, y) = A0(H − y) +
∞∑
k=1

[Ak cos
kπx

L
+Bk sin

kπx

L
] sinh

kπ

L
(H − y).

Condition (9) will hold if and only if

f(x) = A0H +
∞∑
k=1

[Ak cos
kπx

L
+Bk sin

kπx

L
] sinh

kπ

L
H

= A0H +
∞∑
k=1

[(Ak sinh
kπ

L
H) cos

kπx

L
+ (Bk sinh

kπ

L
H) sin

kπx

L
].

The function f is being expressed as the limit of a Fourier series. Thus

A0H =
1

2L

∫ L

−L
f(x)dx so A0 =

1

2HL

∫ L

−L
f(x)dx,
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Ak sinh
kπ

L
H =

1

L

∫ L

−L
f(x) cos

kπx

L
dx so Ak =

1

L sinh
kπH

L

∫ L

−L
f(x) cos

kπx

L
dx,

and

Bk sinh
kπ

L
H =

1

L

∫ L

−L
f(x) sin

kπx

L
dx so Bk =

1

L sinh
kπH

L

∫ L

−L
f(x) sin

kπx

L
dx

for k = 1, 2, . . ..

Solution for uupper. The derivation is similar to that for ulower. H − y gets replaced
by y.The solution u is given by

u(x, y) = A0y +

∞∑
k=1

[Ak cos
kπx

L
+Bk sin

kπx

L
] sinh

kπ

L
y.

where

A0H =
1

2L

∫ L

−L
g(x)dx so A0 =

1

2HL

∫ L

−L
g(x)dx,

Ak sinh
kπ

L
H =

1

L

∫ L

−L
g(x) cos

kπx

L
dx so Ak =

1

L sinh
kπH

L

∫ L

−L
g(x) cos

kπx

L
dx,

and

Bk sinh
kπ

L
H =

1

L

∫ L

−L
g(x) sin

kπx

L
dx so Bk =

1

L sinh
kπH

L

∫ L

−L
g(x) sin

kπx

L
dx.

A0 =
1

2HL

∫ L

−L
g(x)dx,

Ak =
1

L sinh
kπH

L

∫ L

−L
g(x) cos

kπx

L
dx,

and

Bk =
1

L sinh
kπH

L

∫ L

−L
g(x) sin

kπx

L
dx.

Solution to the Original Problem. The solution to (1)-(5) is u where

u(x, y) = A0(H − y) +
∞∑
k=1

[Ak cos
kπx

L
+Bk sin

kπx

L
] sinh

kπ

L
(H − y)

+C0y +

∞∑
k=1

[Ck cos
kπx

L
+Dk sin

kπx

L
] sinh

kπ

L
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in which

A0 =
1

2HL

∫ L

−L
f(x)dx,

Ak =
1

L sinh
kπH

L

∫ L

−L
f(x) cos

kπx

L
dx,

Bk =
1

L sinh
kπH

L

∫ L

−L
f(x) sin

kπx

L
dx,

C0 =
1

2HL

∫ L

−L
g(x)dx,

Ck =
1

L sinh
kπH

L

∫ L

−L
g(x) cos

kπx

L
dx,

and

Dk =
1

L sinh
kπH

L

∫ L

−L
g(x) sin

kπx

L
dx.

3. Derive the solution to the following problem for Laplace’s equation in a rectangle.

∂2u

∂x2
(x.y) +

∂2u

∂y2
(x.y) = 0 for 0 ≤ x ≤ L and 0 ≤ y ≤ H (1)

∂u

∂x
(0, y) = 0 for 0 ≤ y ≤ H (2)

u(L, y) = 0 for 0 ≤ y ≤ H (3)

u(x,H) = 0 for 0 ≤ x ≤ L (4)

u(x, 0) = f(x) for 0 ≤ x ≤ L (5)

Solution. Suppose that u is an elementary separated solution to (1). This means

u(x, y) = ϕ(x)h(y)

for some pair of one-place functions ϕ and h. Inserting this into (1), we have

ϕ′′(x)h(y) + ϕ(x)h′′(y) = 0.

Assuming for now that
u(x.y) 6= 0,

and dividing each side by ϕ(x)h(y), we have

ϕ′′(x)h(y)

ϕ(x)h(y)
+
ϕ(x)h′′(y)

ϕ(x)h(y)
= 0,
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so
h′′(y)

h(y)
= −ϕ

′′(x)

ϕ(x)
.

This holds for all y with 0 ≤ y ≤ H and x with 0 ≤ x ≤ L, so there is a constant λ
such that

h′′(y)

h(y)
= λ = −ϕ

′′(x)

ϕ(x)

for all y with 0 ≤ y ≤ H and x with 0 ≤ x ≤ L. We then have

−ϕ′′(x) = λϕ(x) for all x in [0, L] (6)

and
h′′(y) = λh(y) for all y in [0, H]. (7)

It is worth noting that if
u(x, y) = ϕ(x)h(y)

and (6) and (7) hold, then

∂2u

∂x2
(x, y) = ϕ′′(x)h(y) = −λϕ(x)h(y)

= −ϕ(x)h′′(y) = −∂
2u

∂y2
(x, y)

so the PDE (1)
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x.y) = 0

will be satisfied, and we no longer need to assume that u(x, y) 6= 0. Continuing with
our assumption that

u(x, y) = ϕ(x)h(y)

we have from conditions (2) and (3) that either h(y) = 0 for all y in [0, H] which we
reject because of (5) or

ϕ′(0) = 0 (8)

and
ϕ(L) = 0 (9)

which we must accept. In a similar way we have from (4) (which stated that u(x,H) =
0) that

h(H) = 0 (10)

The Sturm-Louville problem consisting of (6), (8), and (9)is one which we have studied.
A proper listing of eigenvalues and eigenfunctions for this problem is

{λk}∞k=1 and {ϕk}∞k=1

where

λk = (
(2k − 1)π
2L

)2 for k = 1, 2, . . .
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and

ϕk(x) = sin ρkx for all x in [0, L] and k = 1, 2, . . . . where ρk =
(2k − 1)π
2L

The equation (7)
h′′(y) = λh(y)

is equivalent to
h′′(y)− λh(y) = 0. (11)

When λ > 0 as it must be because all eigenvalues for the problem (6), (8), and (8) are
positive, a linearly independent pair of solutions to (14) is the pair whose values at y
are

sinh
√
λy and sinh

√
λ(H − y).

We have
h(y) = c1 sinh

√
λy + c2 sinh

√
λ(H − y).

We have from (10) that h(H) = 0, so

c1 sinhλH + c2 sinh
√
λ(H −H) = 0,

Using the fact that sinh 0 = 0 and sinh z 6= 0 when z 6= 0, we have that c1 = 0 and
see that when λ = λk then the solutions to (10) and (11) are constant multiples of hk
where

hk(y) = sinh ρk(H − y).
The problem consisting of (1), (2), (3), and (4) is linear and homogeneous, so if
{Ek}nk=1is a finite sequence of numbers and

u(x, y) =
n∑
k=1

Ekϕk(x)hk(y),

then u will be a solution to (1), (2), (3), and (4). Thus we hope that the solution to
the problem consisting of (1) through (5) will be of the form

u(x, y) =

∞∑
k=1

Ekϕk(x)hk(y)

for some perhaps infinite sequence of constants {Ek}∞k=1.Condition (5)

u(x, 0) = f(x) for x in [0, L],

implies

f =

∞∑
k=1

Ekϕkhk(0) =

∞∑
k=1

(Ek sinh ρkH)ϕk.

Since {ϕk}∞k=1 is an orthogonal sequence of non zero function this implies

(Ek sinh ρkH) =
< f, ϕk >

< ϕk, ϕk >
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so

Ek =
< f, ϕk >

sinh ρkH < ϕk, ϕk >

for k = 1, 2, . . .where the inner product is defined by

< α, β >=

∫ L

0

α(x)β(x)dx.

For this sequence {ϕk},

< ϕk, ϕk >=

∫ L

0

(cos ρk)
2dx =

L

2
for k = 1, 2, . . . .

In summary, the solution to the original problem (1) through (5) is u where

u(x, y) =

∞∑
k=1

Ek cos ρkx sinh ρk(H − y)

in which

Ek =
2

L sinh ρkH

∫ L

0

f(x) cos ρkdx for k = 1, 2, . . .

4. Let f be given by

f(x) =

{
1 if −1 ≤ x < 0

3− x2 if 0 ≤ x ≤ 1 .

Let h be the limit of the Fourier Series ( L = 1 ) for f. Sketch the graph of h over
[−3, 3]. Be sure to show the value of h at each number in [−3, 3].

Solution.

­3 ­2 ­1 0 1 2 3

1

2

3

x

y

h
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5. Let f be given by
f(x) = 2− x2 for 0 ≤ x ≤ 1.

(a) Let g be the limit of the sine series ( L = 1 ) for f . Sketch the graph of g over
[−3, 3]. Be sure to show the value of g at each number in [−3, 3].

Solution.

­3 ­2 ­1 1 2 3

­2

­1

1

2

x

y

g

(b) Let h be the limit of the cosine series ( L = 1 ) for f . Sketch the graph of h over
[−3, 3]. Be sure to show the value of h at each number in [−3, 3].

Solution.
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­3 ­2 ­1 0 1 2 3

0.5

1.0

1.5

2.0

x

y

h

6. Let

f(x) =

{
−1 if −1 ≤ x < 0
1 if 0 ≤ x ≤ 1

and let {Sn}∞n=1 be the Fourier Series for f. Does {Sn} converge uniformly? Explain
why or why not.

Solution. Each Sn is continuous, but the limit function is not, so the convergence
cannot be uniform.

7. Derive the solution to the following wave equation problem.

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) for 0 ≤ x ≤ L and all t in R, (1)

∂u

∂x
(0, t) = 0 for all t in R, (2)

u(L, t) = 0 for all t in R, (3)

u(x, 0) = f(x) for 0 ≤ x ≤ L, and (4)
∂u

∂t
(x, 0) = g(x) for 0 ≤ x ≤ L. (5)

Solution. Suppose that u is an elementary separated solution to (1). This means

u(x, t) = ϕ(x)h(t)

for some pair of one-place functions ϕ and h. Inserting this into (1), we have

ϕ(x)h′′(t) = c2ϕ′′(x)h(t). (6)

Assuming for now that
u(x.t) 6= 0,
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and dividing each side of (6) by ϕ(x)h(t), we have

ϕ(x)h′′(t)

ϕ(x)h(t)
= c2

ϕ′′(x)h(t)

ϕ(x)h(t)
,

so
h′′(t)

h(t)
= c2

ϕ′′(x)

ϕ(x)
.

This holds for all t and all x with 0 ≤ x ≤ L, so there is a constant K such that

h′′(t)

h(t)
= K = c2

ϕ′′(x)

ϕ(x)
(7)

for all t and all x with 0 ≤ x ≤ L. As a matter of notational convenience and so that we
can more easily make use of our earlier work on two-point boundary value problems,
we let

λ = −K
c2
so K = −c2λ.

From (7) we then have

−ϕ′′(x) = λϕ(x) for all x in [0, L] (8)

and
h′′(t) = −λc2h(t) for all t. (9)

It is worth noting that if
u(x, t) = ϕ(x)h(t)

and (8) and (9) hold, then

∂2u

∂t2
(x, t) = ϕ(x)h′′(t) = −λc2ϕ(x)h(t)

= c2ϕ′′(x)h(t) = c2
∂2u

∂x2
(x, t)

so the PDE (1)
∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t)

will be satisfied, and we no longer need to assume that u(x, t) 6= 0. Continuing with
our assumption that

u(x, t) = ϕ(x)h(t)

We have from conditions (2) and (3)

ϕ′(0) = 0 (10)

and
ϕ(L) = 0. (11)

A proper listing of eigenvalues and eigenfunctions for (8), (10), and (11) is

{λk}∞k=1 and {ϕk}∞k=1
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where

λk = (
(2k − 1)π
2L

)2 for k = 1, 2, . . .

and

ϕk(x) = cos
(2k − 1)π
2L

x for all x in [0, L] and k = 1, 2, . . . .

The equation (9)
h′′(t) = −c2λh(t)

is equivalent to
h′′(t) + c2λh(t) = 0. (12)

When λ > 0 as it must be because all eigenvalues for the problem (8), (10), and (11)
are positive, a linearly independent pair of solutions to (12) is the pair whose values
at t are

cos
√
λct and sin

√
λct.

Thus when λ = λk the solutions to (9) are linear combinations of the functions h1k and
h2k where

h1k(t) = cos
√
λkct and h2k(t) = sin

√
λkct.

We expect that the solution to the problem consisting of (1) through (5) will be of the
form

u(x, t) =
∞∑
k=1

ϕk(x)[Akh1k(t) +Bkh2k(t)] (13)

for some sequences of constants {Ak}∞k=1 and {Bk}∞k=1.
Condition (4)

u(x, 0) = f(x) for x in [0, L],

implies

f =
∞∑
k=1

ϕk[Akh1k(0) +Bkh2k(0)] =
∞∑
k=1

[Ak cos 0 +Bk sin 0]ϕk =
∞∑
k=1

Akϕk.

Since {ϕk}∞k=1 is an orthogonal sequence of non zero functions this implies

Ak =
< f, ϕk >

< ϕk, ϕk >

so for k = 1, 2, . . .where the inner product is defined by

< α, β >=

∫ L

0

α(x)β(x)dx.

For this sequence {ϕk},

< ϕk, ϕk >=

∫ L

0

(cos
(2k − 1)π
2L

x)2dx =
L

2
for k = 1, 2, . . . .
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Returning to (13) we expect

∂u

∂t
(x, t) =

∞∑
k=1

ϕk(x)[Akh
′
1k(t) +Bkh

′
2k(t)].

Condition (5)
∂u

∂t
(x, 0) = g(x) for all x in [0, L]

implies

g =

∞∑
k=1

ϕk[Akh
′
1k(0)+Bkh

′
2k(0)] =

∞∑
k=1

(
(2k − 1)π
2L

c)[−Ak sin 0+Bk cos 0]ϕk =

∞∑
k=1

(
(2k − 1)π
2L

c)Bkϕk

so

(
(2k − 1)π
2L

c)Bk =
< g, ϕk >

< ϕk, ϕk >
or Bk = (

2

L
)(

2L

(2k − 1)πc) < g, ϕk >

for k = 1, 2, 3, . . ..In summary, the solution to the original problem (1) through (5) is
u where

u(x, t) =
∞∑
k=1

[Ak cos
(2k − 1)π
2L

ct+Bk sin
(2k − 1)π
2L

ct] cos
(2k − 1)πx

2L

in which

Ak =
2

L

∫ L

0

f(x) cos
(2k − 1)πx

2L
dx for k = 1, 2, . . .

and

Bk =
4

(2k − 1)πc

∫ L

0

g(x) cos
(2k − 1)πx

2L
dx for k = 1, 2, . . .

8. Suppose that
f(t) = 3 sin 2t− 3 cos 2t.

Find numbers A, ω, and θ with A ≥ 0 and 0 ≤ θ < 2π such that

f(t) = A sin(ωt+ θ)

Solution. (5 points for A, 5 points for θ, and 0 points for ω) The way to solve this
problem was shown in the note ’Standing Wave Solutions.’

A sin(ωt+ θ) = A sinωt cos θ +A cosωt sin θ
= A sin θ cosωt+A cos θ sinωt

This is
3 sin 2t− 3 cos 2t = −3 cos 2t+ 3 sin 2t

if and only if ω = 2,
A sin θ = −3 and A cos θ = 3 (#)
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If these last two equations hold,

A2 sin2 θ = 9 and A2 cos2 θ = 9

so
A2(sin2 θ + cos2 θ) = 18

so
A2 = 18

and since A ≥ 0,
A =
√
18 = 3

√
2.

From (#) we have

−1 = −3
3
=
A sin θ
A cos θ = tan θ.

Since A sin θ < 0, A cos θ > 0, and 0 ≤ θ < 2π, it follows that

θ =
7π

4
.
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