Note. In Section 2.1 of the notes being given inclass, we are considering only a
special case of the problem (1), (2), and (3) which you will find in the notes that
follow. In class we have have taken p(z) = 1, ¢(z) = 0, and w(z) = 1 so that (1)
becomes

_(p// — A(p.
We have taken M11 = 61, M12 = 52, M21 = 0, M22 = 0, Nu = O7 N12 = O,
Ny = B3, and Nog = 3, so that (2) becomes

Bip(a) + Bag'(a) =0

and (3) becomes
B30(b) + B4 (b) = 0.

You can also find relevent information in Sections 5.3 and 5.5 of the text. Take
p(z) = o(z) =1 and ¢(z) = 0 in Equation (5.3.1) on page 155.

Regular Two-Point Boundary Value Problems
Philip W. Walker

Suppose that a and b are real numbers with a < b, each of p, ¢, and w is a continu-
ous real valued function with domain [a,b], the function p has a continuous first
derivative, each of p(z) and w(z) is positive for all  in [a,b], each of M;; and N;;
is a real number for ¢ = 1,2 and j = 1,2, and the quadruples (M, M2, N11, N12)
and (Ma1, Mag, Noj, Noo) are linearly independent. Suppose that the operator 7 is
given by
To=—(p¢') —qp
whenever ¢ is a twice differentiable real valued function with domain [a, b].

We shall be concerned with finding the real numbers A and real valued functions ¢
such that

(1) T = Awy on [a,b],

(2) Mncp(a) + M12§0I(CL) + Nllcp(b) + legﬁl(b) =0,
and

(3) Maip(a) + M2y’ (a) + Na1p(b) + Naoy'(b) = 0.

Remark 1. The equation (1) is equivalent to
pe" +1'¢" + (g + Aw)p = 0.
Thus (1) is a regular second order linear homogeneous differential equation.

Remark 2. The zero function on [a,b] (i.e. the function ¢ such that o(x) =0 for
all z in [a,b]) is always a solution to (1), (2), and (3).
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Definition. Saying that \pis an eigenvalue for the problem (1), (2), and (3)
means that Ao is a real number and (1), (2), and (3) hold for some function ¢ other
than the zero function when A = A\g. When )\ is an eigenvalue, saying that ¢,
is an eigenfunction corresponding to Ao means that ¢, is a function other than
the zero function and (1), (2), and (3) hold when A = Ay and ¢ = ¢,. When A
is an eigenvalue, the eigenspace corresponding to Ag consists of all functions ¢
satisfying (1), (2), and (3).

Remark 3. Suppose that Ao is an eigenvalue for (1), (2), and (3). Since the
eigenspace corresponding to \o is a subspace of the set of all solutions to (1), the
eigenspace is either one-dimensional or two-dimensional.

Example 1. Consider the problem ( L is a positive number )

(4) —¢" = Xp on [0, L],
(5) ¢(0) =0,

and

(6) p(L) = 0.

In order to find the eigenvalues and eigenfunctions we will consider three cases.

Case 1: Suppose that A < 0. Then ¢ satisfies (4) only in case
o(xz) = ¢1 cosh vV —Azx + cosinh vV — Az

for some pair of numbers ¢; and ¢z and all = in [0,L]. Since cosh(0) = 1 and
sinh(0) = 0,it follows that (5) will also hold only in case

Cc1 = 0.
Thus (4) and (5) hold only in case
(7) o(x) = cosinh vV —Az

for some number ¢;. Since sinh z = 0 only in case z = 0 and v/—AL > 0, it follows
that (4), (5), and (6) hold only in case (7) holds with co = 0 or

o(x) =0 for all = in [0, L].
Thus there are no negative eigenvalues.
Case 2: Suppose that A = 0. Then ¢ satisfies (4) only in case
(8) p(r) =c1 + cax

for some pair of numbers ¢; and ¢z and all « in [0, L]. Thus it follows that (4), (5),
and (6) hold only in case (8) holds with ¢y = ¢ =0 or

o(x) =0 for all = in [0, L].
Thus zero is not an eigenvalue.
Case 3: Suppose that A > 0. Then ¢ satisfies (4) only in case
@(z) = ¢1 cos VAT + ¢ sin vV Az

for some pair of numbers ¢; and ¢y and all  in [0,L]. Since cos(0) = 1 and
sin(0) = 0,it follows that (5) will also hold only in case

01:0.



Thus (4) and (5) hold only in case
(9) o(z) = ey sinVz

for some number c;. Since sin z = 0 only in case z is an integral multiple of 7 and
A > 0, it follows that (4), (5), and (6) hold with ¢ different from the zero function
only in case (9) holds with ¢y # 0 and VAL = kr or VX = kn /L or

o\ 2
(10) A= <L7T) for some positive integer k.

As we will see below, all eigenvalues of (4), (5), and (6) must be real numbers. Thus
A is an eigenvalue only in case (10) holds, and when (10) holds, ¢ is a corresponding
eigenfunction only in case

k
p(x) = c¢sin %x for some number ¢ # 0 and all x in [0, L].
From this, it follows that each eigenspace is one dimensional.

Remark 4. Here is a procedure for finding the eigenvalues and eigenfunctions of
the problem consisting of (1), (2), and (3). For each complex number A, let (ux,vy)
be a linearly independent pair of solution to (1). Then ¢ satisfies (1) only in case

o(z) = crup(z) + cour(x) for all z in [a,b]
for some pair of complex numbers (c1,c2). Moreover, ¢ is different from the zero
function only in case at least one of ¢1 and cy s different from zero. When ¢ =
ciuy + covy then

o' (z) = crul\ (x) + cav)\(z) for all z in [a, b]
s0

e(z) | _ 01 ’

[ & (2) ] = P, (x) [ e ] for all x in [a,b]

where

oy\(z) = [ ur(z) oa(z) } _

uj(z) vy(x)
Conditions (2) and (3) together are equivalent to

vl g e )= [6]
where
a v= e e |
and
m =[]

Thus ¢ will satisfy (1), (2), (3) only in case
© = Cc1u) + CaU)

and

M, (a) { . } + N (b) [ . } _ [ X ]
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” s 4]=[3]
D(\) = M®y(a) + N, (b).

Moreover, there will be a solution where at least one of ¢y and co is not zero only
m case

where

A(N) =0

where

A(X) = det D(A).
We have established the following.
Theorem 1. The eigenvalues of the problem (1), (2), and (3) are the zeros of
the function A, and if A(Ng) = 0 then ¢ is an eigenfunction corresponding to the
etgenvalue Ao only in case

® = Crux, + C2Ux,
where and at least one of the numbers c; and co is different from zero and

w5 =[5 ]

From this it follows that if )y is an eigenvalue, the corresponding eigenspace is
two-dimensional when ]

D()\o);«é{g 8]

o o

D(h) = [ X

and is one-dimensional when

Definition. The statement that the problem (1), (2), and (3) is self-adjoint

means that , ,
/a (Tf)g = /a frg

whenever each of f and g is a twice continuously differentiable function with domain
[a,b] and each of f and g satisfies the conditions (2) and (3).

Example 2. Consider the problem (4), (5), and (6) given in the last example. Here

i

T =—p .

So if each of f and ¢ has a continuous second derivative and each satisfies (5) and

(6),
/OL<rf>g / g = —[f'glt / i =0+ /OLf’g’
/ f(—g") = / f(=g") = /0 " frg

Thus the problem (4), (5), and (6) is self-adjoint.



The following theorem gives a straightforward test for self-adjointness.

Theorem 2. The problem (1), (2), and (3) is self-adjoint only in case
0 —171,7 0 ~17 orp
p(b)M[ 1 0 }M p(a)N{ 1 0 }N .
where M and N are given by (11) and (12).

Remember that w is a continuous positive valued function defined on [a, b].

Whenever each of f and g is a piecewise continuous real-valued function defined on
[a,b], the inner product of f and g is denoted by < f,¢g > and is defined by

b
<fig>= / f(@)g(ayw(x)d.

Suppose that each of f and g is a piecewise continuous function defined on [a, b].
The statement that f and g are orthogonal means that

< f,g>=0.

Suppose that ¢y, k115 Pryrar--- 1S a sequence of piecewise continuous functions
defined on [a.b]. The statement that ¢y, . ¥, 11, Pryta: - - - 18 orthogonal means that

<@p; >=0
whenever i # j.

Theorem 3. If the problem (1), (2), and (3) is self-adjoint, then all eigenvalues
are real and eigenfunctions corresponding to different eigenvalues are orthogonal.

The proof is given in case complex numbers and complex valued functions are
allowed. The bar means complex conjugate and the inner product is given by

b
<u,v >:/ uw(z)v(z)w(x)ds

Proof. Suppose that A is an eigenvalue and ¢ is a corresponding eigenfunction.

Then
b b b
< Ap, @ >=/ AwW:/ (w)¢=/ TP

b b
= /(pAwgozX/ oW =\ < @, > .

Since ¢ is continuous and not the zero function it follows that < ¢, ¢ ># 0. Thus
A = X showing that A is real. Suppose now that A and p are eigenvalues, A\ # p, ¢
is an eigenfunction corresponding to A, and 1 is an eigenfunction corresponding to

L.

A<, >

b b
A<, > = <A<mb>:/ chp@z/(w)@

= /absow:/absowb=/CLbsouww=u<<p,w>

Thus
()\7#) < QO,'I,ZJ >:0,



and since A # p, it follows that < p, 9 >= 0. O

Theorem 4. Suppose that the problem (1), (2), and (3) is self-adjoint. There will
be infinitely many eigenvalues and they can be arranged in a nondecreasing sequence
)\ko, )\k0+1, )\k;0+2, ... with

lim )\k = Q.

k—oo

When necessary, the Gram-Schmidt process can be used to convert a linearly inde-
pendent sequence into an orthogonal one. The following theorem gives the process
for a linearly independent pair.

Theorem 5. Suppose that \y is an eigenvalue and the corresponding eigenspace is
two-dimensional. An orthogonal basis for this eigenspace is (a, B) where

Q= Uy,

and

< Vxg, ¢ >

=Uy, — —————

f=ux <o, >
Suppose that the problem (1), (2), and (3) is self-adjoint. A proper listing of
eigenvalues and eigenfunctions for the problem consists of a nondecreasing
sequence of eigenvalues A, Akg+1, Ako+2, - - - in Which each eigenvalue is listed ex-
actly the number of times that is the dimension of the corresponding eigenspace
and an orthogonal sequence of eigenfunctions ¢y, , @y 11, Pk, 12, --- in which ¢, is
an eigenfunction corresponding toA;for j = ko, ko +1,ko +2,... .

Theorem 6. If the problem (1), (2), and (3) is self-adjoint, then there is a proper
listing of eigenvalues and eigenfunctions for the problem.

The statement that the problem (1), (2), and (3) is a Sturm-Liouville problem
means that the conditions (2) and (3) are equivalent to ones of the form

Miip(a) + Mia¢'(a) = 0 and
Nzlﬁp(b)+N22§0/(b) = 0

where each of My, M2, Noi, and Nos is real, at least one of M7, and Mjs is not
zero, and at least one on No; and Nao is not zero.

Theorem 7. All Sturm-Liouville problems are self-adjoint and have eigenspaces
that are all one-dimensional.

Suppose that the problem (1), (2), and (3) is self-adjoint and { A }32,, and {¢) }72
is a proper listing of eigenvalues and eigenfunctions. When f is a function that is
piecewise continuous on [a,b], the series for f determined by {¢,}32, is the
sequence of functions {5, }52,, given by

Sn(x) = k_zk m$k(x) for all  in [a,b] and n = ko, ko + 1, ko + 2,....
—RO
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Theorem 8. Suppose that the problem (1), (2), and (3) is self-adjoint and { A\, }72;,
and {gok}zo:ko 1s a proper listing of eigenfunctions and eigenvalues, and suppose that
[ is a function that is piecewise continuous on [a.b]. (i) It follows that {cy}72, s
a sequence of numbers and
o0
f= Z CkP

k=ko
with convergence in the mean (i.e.

lim < f— Zcmpk,f— chsﬁk >=0)

n—oo

k=ko k=ko
only in case
< oo >
L = & fork=ko,ko+1,ko+2,....
< Pk Pk >
(ii) If f is piecewise smooth and
< >
e > ko ko Lo+ 2,

<oy >
then

n

Jim > =L ) = Sira) + s

i L e 2

for each © with a < x < b. (iti) If f has a continuous second derivative, satisfies
the boundary conditions (2) and (3), and

. < fasok > .
Sn(x) = ——=""— . (z) for all z in [a,b] and n = ko, ko + 1, kg +2,...,
0= 3 e . ko -+ 1, ko
then {S,,}converges uniformly to f on [a,b).

Theorem 9. (The Rayleigh Quotient) Suppose that the problem (1), (2), and (3)
is self-adjoint, that \ is an eigenvalue, and that v is a corresponding eigenfunction.
It follows that

[p(a)¢' (a)p(a) = p()¢' (B)p(d)] + fo (p(#')? = apl?)
J2 (@%w)
Thus if g(xz) < 0 for all z in [a,b] and the boundary conditions (2) and (3) imply

[p(a)¢'(a)p(a) — p(b)¢' (b)p(b)] > 0, it follows that A > 0. If it is also true that the
non-zero constant functions fail to satisfy either (2) or (3) then

/ () > 0

A=

and it follows that A > 0.
Remark 5. In the special case where T is given by
To=—¢",

w(z) = 1, the problem (1), (2), and (3) is self-adjoint, X\ is an eigenvalue, and @
is a corresponding real valued eigenfunction, the Rayleigh Quotient becomes

(¢ (a)p(a) — @ (B)o(0)] + [, (¢)

A=
INGE




Remark 6. In the special case where T is given by
1

TP ==
and w(z) = 1, equation (1) is equivalent to
¢+ Ao =0,
and we will let the linearly independent pair of solutions (uyx,vy) be given by
coshv/—=Xz when X <0

ux(z) = 1 when A =0
cos vV when A >0
and
sinhv/—Ax when A <0
ua(z) = when A =0

z
sinvAx  when A >0
With this definition of (ux,vy), note that

_ cosh v —Az sinh v/ —Az
®a(z) = { vV—=Asinhv—-Ax +/—Acoshv—A\x ] when A <0,

Pr(x) = { : glc

By (2) = [ cos vV Az sin v/ Az
MY —VasinvAaz VAcos Vg

Example 3. Consider the problem

] when A = 0, and

} when A > 0.

—¢" = Apon|0,L],
»(0) = 0, and
e(L) = 0.
The boundary conditionsare equivalent to
1-90)+0-¢(0)+0-9o(L)+0-¢ (L) = 0and
0-¢(0)+0-¢(0)+1-9(L)+0-¢'(L) = 0

so they are equivalent to

'(0) ¢'(L)
where
=3 O wax=]0 0]

This is a Sturm-Liouville problem, so it is self-adjoint. If A is an eigenvalue and ¢
is a corresponding real valued eigenfunction then (Rayleigh Quotient)
L
) [£'(0) - 0—¢'(L) - 0)] + [y (¢')*
= T , SO
2
Jo (@)

L
Jo (¥)?
T .
Jo ()2
Thus all eigenvalues are nonnegative. The nonzero constant functions do not satisfy
the boundary conditions, so all eigenvalues are positive.




The boundary conditions are equivalent to

M{w(O)}JFN[w(L)}:[g]

©'(0) ¢'(L)
where M:[ég}andN:[(l)gl
When X > 0,
D(/\)H 8} [(1) \05] +[? 8} {_\%Ss;ﬁLfAL \/Sle:lo\f;AL '
So
D(\) = [ iosﬁL (s)inﬁL }
and

A(X) = det D()\) = sin VAL.
From this we see that A\ is an eigenvalue only in case
k) P
VAL = kmor A = T for some positive integer k.
Note that

SO

only in case
c1 = 0.
From this it follows that ¢ is an eigenfunction corresponding to the eigenvalue
(’%’)2 only in case
. krmz
o(z) = casin <
for all z in [0, L] and some number ¢z # 0.

Based on these observations, it follows that a proper listing of eigenvalues and
eigenfunctions for this problem is {\x}72, and {¢;}7>, where

2
k
A = (T) for k=1,2,3,... and gpk(x):sin%x fork=1,2,3,... and 0 <2 < L.

Computation shows that

L L
<90k790k>:\/0 (@k)2:§f0rk:1,2,3,....

Example 4. Consider the problem

—¢" = Xpon|0,L],
0, and
¢'(L) = 0.

‘6\
~—
o
=
I
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This is a Sturm-Liouville problem, so it is self-adjoint. If A is an eigenvalue and ¢
is a corresponding real valued eigenfunction then (Rayleigh Quotient)
L
N oo 0@ =0 @)+ fy ()
= - ,
Jo (#)?

L
Jo (¥')?
9 .
Jo ()2
Thus all eigenvalues are nonnegative. The nonzero constant functions do satisfy the

boundary conditions, so all that we can conclude at this point is that all eigenvalues
are nonnegative.

The boundary conditions are equivalent to

M[sﬁ((%))}”[f'((ﬁ”:[g]
=0 T aan =[],
When A > 0,

-3 3105 5108 S22 ]

where

0 VX VAsin VAL VAcos VAL

So
0 VA
D) = [ —VAsinvVAL  vAcos VAL ]

and
A(N) = det D()\) = Asin VAL.
From this we see that )\ is a positive eigenvalue only in case

o\ 2
VAL = kmor A = (;) for some positive integer k.

Note that when k is a positive integer,

2 km
D(<kL7T) ) = z %(1)’“ :
o) 5]=[5]

only in case
Cy = 0.
From this it follows that ¢ is an eigenfunction corresponding to the eigenvalue

2 . e .
(kf’r) when k is a positive integer only in case

(z) = ccos ki
o= L

for some number ¢ # 0 and all z in [0, L].
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When A =0,

and

Thus zero is an eigenvalue. Note that

vol5]=15]

only in case ca = 0,0 @ is an eigenfunction corresponding to the eigenvalue zero
only in case

p(x) =c
for some number ¢ # 0 and all z in [0, L].

Based on these observations, it follows that a proper listing of eigenvalues and
eigenfunctions for this problem is {\x}32, and {¢;}72, where

M =0, py(z)=1for0 <z <L,

kr\? k
Ak = (;) for k=1,2,3,..., andcpk(x):cos%m fork=1,2,3,... and 0 <z < L.

Computation shows that

L
<@g, P9 >= / (‘PO)Q =L, and
0

L L
<90k790k>:/0 (@k)2:§f0rk:1,2,3,....

Example 5. Consider the problem

—¢" = Xpon[-L,L],
o(=L) = ¢(L), and
¢'(-L) = (D).

This is a not a Sturm-Liouville problem; however it is self-adjoint. If X is an eigen-
value and ¢ is a corresponding real valued eigenfunction then (Rayleigh Quotient)

N WD) ) - <p( D+ [
= T , SO
JZu(
N G O R O A ORI + /5
= T , SO
JoL(9)?

L
JoL(@)?
_—
JoL(e)?
Thus all eigenvalues are nonnegative. The nonzero constant functions do satisfy the

boundary conditions, so all that we can conclude at this point is that all eigenvalues
are nonnegative.
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The boundary conditions are equivalent to

[ och o[ 25 ]-[0]

¢'(=L) (L)
where M:[é?}and]\,:[al (11}
When A > 0,
R U | B oA o AR EY |
So
Lol 5]
and

A(N) = det D(A) = 4V Asin? VAL.

From this we see that )\ is a positive eigenvalue only in case

o\ 2
VAL = kmor A = (;) for some positive integer k.

When £k is a positive integer,

kr\* 0 0
2(7)0=0 ¢
so the eigenspace corresponding to (’%’T)2 is two dimensional and a corresponding

linearly independent pair of eigenfunctions is (u,v) where

u(z) = cos kana: and v(z) = sin IWTx

Computation shows that < u,v >= 0; this pair is already orthogonal.

When A =0,

Thus zero is an eigenvalue. Note that

C1 o 0
oo ¢ ]= o)
only in case co = 0, so ¢ is an eigenfunction corresponding to the eigenvalue zero
only in case
p(x) =c
for some number ¢ # 0 and all z in [—L, L].
Thus a proper listing of eigenvalues and eigenfunctions for this problem is {A;}72

and {¢;}72, where

M =0, po(z)=1for —L<z<L,
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k)
Aok—1 = /\2k=<L> for k=1,2,3,...,

k k
Vor_1(x) = cos %, and @y (z) = sin% for k=1,2,3,... and 0 <z < L.

Computation shows that

L
< ¥0, %o >:/ (‘/’0)2 = 2L, and
L

L
< Op, Ok >=/ (o) =L for k=1,2,3,....
-L

Example 6. Consider the problem

—¢" = Xpon|0,1],
¢(0) —¢'(0) = 0, and
e(1) = 0.

This is a Sturm-Liouville problem, so it is self-adjoint and all eigenspaces are one-
dimensional. If X is an eigenvalue and ¢ is a corresponding real valued eigenfunction
then (Rayleigh Quotient)

1
\ o L) (M) -0+ [ ()
= T , SO
Jo ()
1
((0))* + [, ()
1
Jo ()2
Thus all eigenvalues are nonnegative. The nonzero constant functions do not satisfy
the boundary conditions, so all eigenvalues are positive.

The boundary conditions are equivalent to

wl o Lo 2 =[5

o w=[d o max=[0 0]
When A > 0,
=[5 305 ][0 0] i ]
So
D“):Hosﬁ _Q/\XA]
and

A(X) = det D(X) = sin VA 4+ VA cos VA
From this we see that A is an eigenvalue only in case

A\ = p?
where p is a positive number such that

sinp+ pcosp=0
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or such that
tanp = —p
(For each positive integer k there is exactly one solution to this equation between
km — g and km + g See page 201 of the text. Newton’s method (Look it up.) can
be used to approximate the zeros of f where f(p) =sinp+ pcosp.)
Note that when A is an eigenvalue, then
DO = 1 2 1 2y
T cosvVA sinvVX || cosvVA —vVAcosVA

w5 ]=[5]

- \/XCQ =0.

From this it follows that ¢ is a corresponding eigenfunction only in case

go(a:)fccosf:chfsm\fx

SO

only in case

for all z in [0, 1] and some number ¢ # 0.

Based on these observations, it follows that a proper listing of eigenvalues and
eigenfunctions for this problem is {\;}$2, and {¢;}2, where A\ = p2, p, is the
kth positive number such that

sinp+ pcosp =0,

—cos\/>x+ smfa:

for all z in [0,1]. Numerical approximations for the first three eigenvalues are as
follows

and

k Pk Ak
2.0288 4.1159
4.9132 24.139 °
7.9787 63.659

W N =



