For further information, or to suggest a speaker for this seminar, please contact
David Wagner.
To subscribe to the PDE Seminar mailing-list, please contact
David Wagner .
Professor Douglas Wright
Drexel University
Traveling waves in diatomic FPUT lattices
February 22, 2019
2-3 PM, PGH 646
Abstract
We study the existence of solitary waves in a diatomic
Fermi-Pasta-Ulam- Tsingou (FPUT) lattice. For monatomic FPUT the
traveling wave equations are a regular perturbation of the Korteweg-de
Vries (KdV) equation’s but, surprisingly, we find that for the
diatomic lattice the traveling wave equations are a singular
perturbation of KdV’s. Using a method first developed by Beale to
study traveling solutions for capillary-gravity waves we demonstrate
that for wave speeds in slight excess of the lattice’s speed of sound
there exists nontrivial traveling wave solutions which are the
superposition an exponentially localized solitary wave and a periodic
wave whose amplitude is extremely small. That is to say, we construct
nanopteron solutions. The presence of the periodic wave is an
essential part of the analysis and is connected to the fact that
linear diatomic lattices have optical band waves with any possible
phase speed.
David H. Wagner University of Houston
---
Last modified: September 26 2017 - 05:42:22