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Abstract

Suppose (f,X , ν) is a dynamical system and φ : X → R is an observation with a unique
maximum at a (generic) point in X . We consider the time series of successive maxima
Mn(x) := max{φ(x), . . . , φ ◦ fn−1(x)}. Recent works have focused on the distributional
convergence of such maxima (under suitable normalization) to an extreme value distribu-
tion. In this article, for certain dynamical systems, we establish convergence rates to the
limiting distribution. In contrast to the case of i.i.d random variables, the convergence rates
depend on the rate of mixing and the recurrence time statistics. For a range of applications,
including uniformly expanding maps, quadratic maps, and intermittent maps, we establish
corresponding convergence rates. We also establish convergence rates for certain hyperbolic
systems such Anosov systems, and discuss convergence rates for non-uniformly hyperbolic
systems, such as Hénon maps.
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1 Introduction and background on extremes in dynamical sys-
tems

Consider a dynamical system (f,X , ν), where X ⊂ R, f : X → X a measurable transformation,
and ν is an f -invariant probability measure supported on X . Given an observable φ : X → R
we consider the stationary stochastic process X1, X2, . . . defined as

Xi = φ ◦ f i−1, i ≥ 1, (1)

and its associated maximum process Mn defined as

Mn = max(X1, . . . , Xn). (2)

Almost surely, Mn → maxφ. We consider instead the distributional behavior of Mn and in
particular the existence of sequences an, bn ∈ R such that

ν {x ∈ X : an(Mn − bn) ≤ u} → G(u), (3)

for some non-degenerate distribution function G(u), −∞ < u < ∞. As in the i.i.d case, the
sequences un := u/an + bn will be chosen so that

lim
n→∞

nν{x ∈ X : φ(x) > un} → τ(u), (4)

for some non-degenerate function τ(u). For the stochastic process defined in (1), much recent
work has focused on the computation of the function G(u), and showing that it agrees, at least
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for sufficiently hyperbolic systems and for regular enough observations φ maximized at generic
x̃, with that which would hold if {Xi} were independent identically distributed (i.i.d.) random
variables. If x̃ is periodic we expect different behavior (for details see [9, 4, 16, 20]). The case of
i.i.d. random variables has been widely studied, see [11, 21, 25], and if the limit function G(u)
is a non-degenerate distribution function then the limit can only be of three following types:

Type I (Gumbel):

G(u) = exp
(
− exp

[
−u − b

a

])
, −∞ < u < ∞;

Type II (Fréchet):

G(u) =






0, u ≤ b,

exp

(

−
[
u − b

a

]−α)

, u > b;

Type III (Weibull):

G(u) =





exp

(
−

[
−u − b

a

]α)
, u < b;

1, u ≥ b,

for some parameters a > 0, b and α > 0. The functional form of G(u) in fact depends on
τ(u), see [21]. For example, in the case of i.i.d. random variables defined by the unit exponential
probability distribution P , we have that τ(u) = e−u, and P (Mn ≤ u+logn) → exp(−e−u). Type
II/III distributions arise in the case where τ(u) has power law behaviour. Given a cumulative
probability distribution G, we say that G follows an Extreme Value Distribution (EVD) if G is
any of the three distributions above.

In this article we focus on the speed of convergence of ν{Mn ≤ un} to G(u). In the case of
i.i.d random variables X̂i, with probability distribution function F (u) := P (X̂i ≤ u) the rate of
convergence depends on the normalization sequences an, bn, and the functional form of F (u) :=
P (X̂i ≤ u) as u → uF := max X̂i. In the theory of domains of attraction [21], necessary and
sufficient conditions for convergence to, for example, Type I are that the distribution function
F satisfies:

lim
u→uF

1− F (u + %γ(u))
1− F (u)

= e−", some γ(u) > 0. (5)

We will focus on this case primarily, with analogous (regular variation) conditions specified
for convergence to Types II/III, see [21]. For uniform estimates on rates of convergence, we
consider two examples, namely the exponential distribution and the Gaussian distribution. For
the exponential distribution F (u) = 1 − e−λu, it is shown in [15] that:

sup
u

∣∣∣∣P
{

Mn ≤ u +
logn

λ

}
− e−e−u

∣∣∣∣ = sup
u

∣∣∣∣

(
1 − e−u

n

)n

− e−e−u

∣∣∣∣ ≤
1
n

(
1 +

2
n

)
e−2. (6)

However, in general the convergence rate can be quite slow, and this is evident for the Gaussian
distribution [14], where it is established that:

C1

logn
≤ sup

u

∣∣∣{Φ(u/an + bn)}n − e−e−u
∣∣∣ ≤

C2

logn
. (7)

Here Φ(u) is the standard Gaussian distribution function, C1, C2 are uniform constants, and
an, bn satisfy:

an = bn, 2πb2
neb2n = n2.
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In this case, the choice of constants is optimal for the error rate.
In the setting of dynamical systems, we consider the corresponding quantity ν{x : φ(x) < u}

(which corresponds to F (u)), and study the behaviour of this measure as u → maxφ. We
will focus primarily on the specific observable φ(x) = − log(dist(x, x̃)) for generic (in particular
non-periodic) x̃ ∈ X . The analysis can be extended to study other observable types, such as
φ(x) = ψ(dist(x, x̃)) where ψ : R+ → R is regularly varying at 0. The extreme value statistics of
observables maximized at periodic points is expected to be different to observables maximized
at generic points, this has been proven rigorously for certain one-dimensional maps [9, 20, 16, 4].

We take the scaling sequence un = u + log n (as we would in the i.i.d case), and study the
errors involved in approximating the Gumbel distribution by ν{Mn ≤ un}. For a given sequence
un, we define functions τn(u) and Gn(u) by

τn(u) = nν{φ(x) ≥ un}, Gn(u) =
(

1 − τn(u)
n

)n

.

The function τn(u) → τ(u) uniformly for all u lying in a compact subset of R.
For weakly dependent stochastic processes satisfying equation (4), it was shown in [21] that

convergence to a EVD is still valid (with the same distribution type as in the i.i.d. case) provided
two probabilistic conditions D(un) and D′(un) are shown to hold. In the dynamical systems
setting, much (recent) work has been devoted to finding conditions analogous to D(un) and
D′(un) that ensure that (2) converges to a EVD. To establish convergence rates, namely to
estimate |ν{Mn ≤ un} − G(u)| (as n → ∞, for u lying in compact subsets of R), we cannot
immediately express ν{Mn ≤ un} in terms of Gn(u). However, if we appeal directly to the
blocking arguments used in [3, 17] (which form the basis of checking conditions D′(un),D(un)),
we show that for certain non-uniformly expanding systems ν{Mn ≤ un} can be approximated
by Gnβ (u) (for some β ∈ (0, 1]), up to an error of order O(n−1/2(logn)1+ε), for all ε > 0. Here

Gnβ (u) =
(

1 − τn(u)
nβ

)nβ

,

and the optimal choice of β turns out to be 1/2 for most applications. The rate of convergence
of Gnβ (u) to G(u) is a straightforward estimate. We recently learnt of the recent work [10] on
rates of convergence, with somewhat related techniques but different applications.

Throughout we fix the following notations. For general sequences xn, yn, we say that xn ∼ yn

if xn/yn → 1 as n → ∞. We say xn ≈ yn if there are real constants c1, c2 such that c1 ≤ xn/yn ≤
cc. For positive sequences we write xn = O(yn) if there is a constant C > 0 such that xn ≤ Cyn,
and we write xn = o(yn) if xn/yn → 0.

2 Statement of the main results

We take (f,X , ν) to be an ergodic dynamical system.
Let g̃ : N → R be a monotonically increasing function and let En be a sequence of sets

defined by:

En :=
{

x ∈ X : dist(x, f j(x)) ≤ 1
n

, for some j ∈ [1, g̃(n)]
}

. (8)

In [18], the sets En are referred to as recurrence sets. If the time scale g̃(n) = o(n), these sets
contain points which have what we call ‘fast’ returns. We will see that the distributional rate
of convergence to an EVD is partly determined by the rate at which ν(En) converges to zero.
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Assumptions on the invariant measure ν.

We will assume that the measure ν is absolutely continuous with respect to Lebesgue m. Some of
our results require also that ν admits a density ρ ∈ L1+δ(m) for some δ > 0. These assumptions
are mild and are satisfied by the non-uniformly expanding one-dimensional maps which form
the bulk of our applications. For non-uniformly hyperbolic systems in dimension at least two,
we require further assumptions on the regularity of ν. We will discuss this further in Section 4.

Dynamical assumptions on (f,X , ν).

We make the following assumptions. The function g̃(n) and the sets En are from equation (8).

(H1) (Decay of correlations). There exists a monotonically decreasing sequence Θ(j) → 0
such that for all ϕ1 Lipschitz continuous and all ϕ2 ∈ L∞:

∣∣∣∣
∫

ϕ1 · ϕ2 ◦ f jdν −
∫

ϕ1dν

∫
ϕ2dν

∣∣∣∣ ≤ Θ(j)‖φ1‖Lip‖φ2‖L∞ ,

where ‖ · ‖Lip denotes the Lipschitz norm.

(H2a) (Strong quantitative recurrence rates). There exist numbers γ,α > 0 such that

g̃(n) ∼ nγ =⇒ ν(En) ≤ C

nα
. (9)

Condition (H1) is an assumption on the rate of mixing in a suitable Banach space of functions.
For our purposes, it is sufficient to work with the Lipschitz class of functions. In the statement
of the results will make precise asymptotic statements about the rate of decay of Θ(j).

Condition (H2a) is a quantitative control on the recurrence statistics. For general non-
uniformly expanding systems, checking this condition requires careful analysis. See for example
[12, 17]. In Section 3 we show how to check this condition for uniformly expanding Markov
maps and certain Markov intermittency maps. For systems having sub-exponential decay of
correlations we specifically require (H2a) to hold in order to derive error rates. It is conjectured
in [18] that (H2a) holds for a broad class of non-uniformly hyperbolic systems, and this is
observed numerically (when analytic estimates are not available). For systems with exponential
decay of correlations we can work with a weaker version of (H2a), which we label as (H2b). This
is stated as follows:

(H2b) (Weak quantitative recurrence rates). For some γ ′ > 1, α > 0:

g̃(n) ∼ (logn)γ
′

=⇒ ν(En) ≤ C

nα
. (10)

This latter condition only requires control of the recurrence up to a slow time scale g̃(n) ∼
(logn)γ′ and is easier to check analytically relative to (H2a), see for example [3, 13, 18]. To
obtain convergence to an EVD (and to find corresponding error rates), it is sufficient to check this
condition provided the system has exponential decay of correlations. We will use this condition
to calculate error rates for the quadratic family (in Section 3). To establish convergence rates
for certain non-uniformly hyperbolic systems we will again assume condition (H2b), see Section
4.

We now determine the rate of convergence of ν{Mn < un} to G(u) for a system (f,X , ν)
satisfying the assumptions above.
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In the first of the results we state below, namely Theorem 2.1, we give a quantitative estimate
on the difference between ν{Mn < un} and G√

n(u), where we recall that

G√
n(u) =

(
1 − τn(u)√

n

)√
n

, τn(u) = nν

{
x : φ(x) >

u

an
+ bn

}
.

In the above, we could replace
√

n by some other power nβ for β ∈ (0, 1], but the choice β = 1/2
turns out to be optimal in most applications. Determining the rate of convergence of G√

n(u) to
G(u) then becomes equivalent to the i.i.d. case, and the convergence rate depends specifically
on the function form of φ and the regularity of ν in the vicinity of the point x̃ ∈ X where φ is
maximized. We will study the convergence rates for particular examples of ν and φ.

Theorem 2.1. Suppose that f : X → X is a map with ergodic measure in L1+δ(m) for some
δ > 0, and ν absolutely continuous with respect to m. We have the following cases.

1. Suppose that Θ(n) = O(θn
0 ) for some θ0 < 1 and (H1), (H2b) hold. Then for all ε > 0 and

ν-a.e. x̃ ∈ X we have that
∣∣∣ν{Mn ≤ un}− G√

n(u)
∣∣∣ ≤ C

(logn)1+ε

√
n

, (11)

where C(x̃) > 0 is a constant independent of n, but dependent on x̃.

2. Suppose that Θ(n) = O(n−ζ) for some ζ > 0 and (H1), (H2a) hold. Then for all ε > 0
and ν-a.e. x̃ ∈ X we have that

∣∣∣ν{Mn ≤ un}− G√
n(u)

∣∣∣ ≤ Cn− 1
2+κ, with κ = ε +

2(1 + 2δ)
ζδ

. (12)

where C(x̃) > 0 is a constant independent of n, but dependent on x̃.

Remark 2.2. For systems satisfying (H1) and (H2a) with superpolynomial decay of Θ(n) we
see from equation (12) that the error rate is then of order n− 1

2 +ε, (for any ε > 0). The error
estimate is of little utility if either ζ or δ are close to zero.

Remark 2.3. We have explicitly stated our results for dimension 1. Following [17], we expect
corresponding error rates to hold for non-uniformly expanding maps in dimension d > 1.

We remark further that the constant C in the statement of the error rates depends on the
regularity of the invariant density at x̃, and on the constants appearing in (H1), (H2a) and
(H2b). The implied constant also depends on the recurrence properties associated to x̃ and hold
only for generic x̃. In fact our results do not apply if x̃ is periodic. For observables maximized at
periodic points, the corresponding EVDs may be expressed in terms of an additional parameter
known as an extremal index, see [9] where this has been proven in a variety of settings. The
recent work of [10] considers convergence rates in the presence of an extremal index.

The proof of the Theorem 2.1 relies on two propositions 2.4, 2.5 given in Section 3. We prove
Theorem 2.1 in Section 3. The main examples that this theorem applies to are non-uniformly
expanding maps such as those described in [3], intermittent maps [23, 30], and quadratic maps
[6].

In Section 4 we make corresponding statements for certain non-uniformly hyperbolic dynam-
ical systems admitting SRB measures, such as Lozi maps, hyperbolic billiards [13] and Hénon
maps [2]. However, obtaining good control on the error rates also requires strong regularity
constraints on the measure ν.
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2.1 General estimates on the error rates

The following propositions give precise quantification of the error rates in terms of the assump-
tions on the correlation decay Θ(j), and the decay of ν(En). They will be used in the proof
of Theorem 2.1. To state the propositions, we fix integers p(n), q(n) > 0 and let n = pq + r
with 0 ≤ r < p (by Euclid’s division algorithm). The blocking argument consists of writing
n = p(n)q(n) and between each of the p gaps of length q we take a gap of length t = g(n). The
decay of correlations over the gap of length t = g(n) allows us to consider successive blocks as
approximately independent.

We suppose that p, q → ∞ as n → ∞. We let un be the sequence with the property that
nν{X1 > un} → τ(u), for some function τ(u), and un = u/an + bn.

Proposition 2.4. Suppose that f : X → X is ergodic with respect to a measure ν which has a
density ρ ∈ L1+δ(m) for some δ > 0. Suppose that (H1) holds. Then for ν-a.e. x ∈ X , all p, q
such that n = pq + r, and t < p, we have

|{Mn ≤ un}− (1− pν{X1 > un})q| ≤ En, (13)

where for any ε > 0 and δ1 = δ/(1 + 2δ):

En = max{qt, p}ν{X1 ≥ un}+ qp2(ν{X1 > un})2 + C1pq2Θ(t)δ1−ε + p
t∑

j=2

ν(X1 > un, Xj > un).

(14)

Proposition 2.5. Suppose that f : X → X is ergodic with respect to a measure ν with density
ρ ∈ L1+δ(m) for some δ > 0. Suppose that (H2a) or (H2b) hold, and suppose for given ε > 0
that g(n) = g̃(n)1−ε. Then for all ρ1 > 0 and ν-a.e. x ∈ X :

g(n)∑

j=2

ν(X1 > un, Xj > un) ≤ C(ρ1, x̃)
1

nρ1
, (15)

where the constant C depends on x̃ and ρ1.

These propositions are proved in Section 5. Their proof involves an optimization of the
dynamical blocking arguments and maximal function arguments developed in [3], and utilized
in [17]. In these articles, the blocking and maximal functions arguments were used to prove
convergence to EVD rather than to determine error rates for convergence.

2.2 On the convergence of ν{Mn ≤ un} to G(u)

In this subsection we describe the estimation procedure of the error involved in measuring
|Gnβ (u) − G(u)|, for given β ∈ (0, 1]. As before we let τn(u) = nν{φ(x) > un}. We have the
following elementary results, see [21].

Proposition 2.6. For all n ≥ 2:

∆nβ :=

∣∣∣∣∣

(
1 − τn(u)

nβ

)nβ

− e−τn(u)

∣∣∣∣∣ ≤
(τn(u))2e−τn(u)

2(nβ − 1)
≤ 0.3

(nβ − 1)
. (16)

Suppose that τn and τ satisfy |τn − τ | ≤ log 2. Then for some θ ∈ (0, 1):

∆′
n := |e−τn(u) − e−τ(u)| ≤ e−τ(u){|τ(u)− τn(u)|+ θ(τ(u) − τn(u))2}. (17)
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We remark that the bound for ∆nβ is uniform in u. This gives the corollary:

Corollary 2.7. Suppose (f,X , ν) is an ergodic dynamical system, then:

|ν{Mn ≤ un}− G(u)| ≤ |ν{Mn ≤ un}− G√
n(u)|+ ∆√

n + ∆′
n. (18)

Theorem 2.1 is used to estimate the first term on the right hand side of equation (18). The
estimation of ∆n and ∆′

n require knowledge of the explicit representation of φ(x). We will
consider three explicit forms of φ(x), and then comment on the general cases. For these explicit
forms, we will give explicit bounds on ∆n and ∆′

n under the additional assumption that the
density at x̃ is Lipschitz. For the class of non-uniformly expanding systems under consideration,
this is a reasonable assumption. Consider the following representations φ = φi : X → R (for
i=1,2 and 3) defined by:

φ1(x) = − log(dist(x, x̃)), φ2(x) = dist(x, x̃)−α, φ3(x) = C − dist(x, x̃)α, (19)

for α > 0 and C ∈ R. In the cases of equation (19) the scaling sequences un = u/an + bn can be
made explicit with nν{φ > un} ∼ τ(u), and we have:

ν{φ1(x) > u + logn} ∼ 2ρ(x̃)e−u/n,

ν{φ2(x) > u/(2n)1/α} ∼ 2ρ(x̃)u−1/α/n,

ν{φ3(x) ≥ C − u/(2n)1/α} ∼ 2ρ(x̃)u1/α/n.

Since the density is Lipschitz, the higher order terms in the above set of asymptotics are all
O(1/n2), where the implied constant depends on the Lipschitz norm. Hence by Proposition 2.6,
∆√

n is bounded by O(1/
√

n) and ∆′
n is bounded by O(1/n). If instead the invariant density

has Hölder exponent β ∈ (0, 1), the error ∆′
n is bounded by O(1/nβ). For observations that are

general (regularly varying) functions of dist(x, x̃), the scaling sequences an and bn cannot always
be made explicit and this leads to weaker estimates on the error bounds ∆n and ∆′

n. Indeed for
the Gaussian distribution, only bounds of order 1/(logn) can be achieved, see [21].

3 Application of the main results

3.1 Proof of Theorem 2.1

Before considering specific dynamical systems, we show how Theorem 2.1 follows from Proposi-
tions 2.4 and 2.5. The proof requires optimizing the choice of constants q, p and the gap length
t < p which appear in the division algorithm n ∼ q(n)p(n) of the blocking argument, as well
taking into account the decay of correlations and regularity of ν.

Given β ∈ (0, 1) we will suppose first that p ∼ n1−β and so q ∼ nβ . The constant r in
n = pq + r satisfies r < p and hence r = O(n1−β). Assuming (H1) and either (H2a) or (H2b),
we immediately have from Propositions 2.4 and 2.5 that:

En ≤ C1n
β−1g(n) + c2n

−β + C3n
2−β{Θ(g(n))}δ1−ε + C4 · o

(
1
n

)
, (20)

where δ1 = δ/(1+2δ), and ε > 0 arbitrary. In this estimate we taken t = g(n) and used the fact
that

ν{X1 > un} =
τ(u)
n

+ o

(
1
n

)
, (21)
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Thus the constants C1 and C2 depend on the functional form of τ(u). In turn this behaves on
the local behaviour of the invariant density at x̃ and on the functional form of the observable
φ. The constant C3 depends on δ (and hence the regularity of ν). The constant C4 is from
Proposition 2.5 and depends on the recurrence properties associated to x̃.

Let us now prove Theorem 2.1. In this case Θ(n) ≤ O(θn
0 ), and under assumption (H2),

we can take t = (logn)κ for some κ > 1. For this choice it follows that Θ(t) → 0 at a super-
polynomial rate. By assumption the measure ν has density in L1+δ for some δ > 0, and hence
for any choice of p, q = o(n) we have

C3n
2−β{Θ(t)}

δ
1+2δ −ε = o(1/n).

Inspecting the first two terms on the right hand side of equation (14), gives an optimal choice
p ≈ q ≈

√
n. For this choice of p and q, and noting that n = pq + r, we conclude the proof of

part of Theorem 2.1 via the following sequence of estimates:

(1 − pν{X1 > un})q =
(

1 − (n − r)√
n

ν{X1 > un}
)√

n

,

=
(
1 −

√
nν{X1 > un}

)√n + O
(

1√
n

)
,

(22)

where in the last line we have used Proposition 2.6 in conjunction with the fact that rν{X1 >
un} ≤ O(1/

√
n). The convergence is pointwise in u.

To prove part 2 of Theorem 2.1, we see from (H2a) and Proposition 2.5 that in the estimation
of En we can take t = nκ for any κ < γ. We inspect each term of the error En in equation (14).
Again we take β = 1/2. The contribution of the first error term on the right hand side of (14)
gives a contribution of order n1/2+κ. The next significant error term is now the third right hand
term of (14). Putting in t = nκ gives an error contribution:

C3n
2−β{Θ(nκ)}δ1 = C3n

3/2n−ζκδ1 , with δ1 =
δ

1 + 2δ
− ε,

for any ε > 0. In fact we require this error to be order n−1/2, and hence this gives a bound on
κ. We obtain for any ε1 > 0:

κ ≥ 2(1 + 2δ)
δζ

+ ε1,

and thus we just take the minimal value of κ. This gives the required conclusion to part 2 of
Theorem 2.1.

3.2 Uniformly expanding maps.

We derive explicit convergence rates for the tent map f(x) = 1−|1−2x| on [0, 1]. Let E(j)
n := {x :

dist(x, f j(x)) < 1/n}, and suppose I is a monotonicity sub-interval of f j and let J = I ∩ E(j)
n .

Since f j(I) = [0, 1] and f j has slope 2j , it follows easily that |J | = O(2−j/n). Hence, summing
over all such J , we have ν(E(j)

n ) = O(1/n) and hence ν(En) = O(g̃(n)/n). To optimize En, we
can take a functional form g̃(n) = (logn)γ′ for any γ ′ > 1. By exponential decay of correlations,
Θ(g(n)) tends to zero at a superpolynomial rate. Here g(n) = (logn)κ for some 1 < κ < γ ′.
Thus conditions (H1) and (H2b) are valid. We summarize as follows:

Proposition 3.1. Suppose (f, [0, 1],Leb) is the tent map. For the observation φ(x) = − log |x−
x̃|, we have for Leb-a.e x̃ ∈ [0, 1] and all ε > 0:

|ν{Mn ≤ u + logn}− e−2e−u | ≤ C
(logn)1+ε

√
n

, (23)
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where C(x̃) > 0 is a uniform constant depending on x̃.

Proof. Since part 1 of Theorem 2.1 applies, we have that
∣∣∣{Mn ≤ un}− (1−

√
nν{X1 > un})

√
n
∣∣∣ ≤ O

(
(logn)1+ε

√
n

)
. (24)

To analyse ∆n,∆′
n from the function form φ(x) = − log |x − x̃|, we have in this case equality

ν{X1 > u+logn} = 2e−u/n (since ν is Lebesgue measure). Hence τ(u) = 2e−u, and Proposition
2.6 implies that:

∆√
n + ∆′

n ≤ Cn−1/2,

and so the result follows.

3.3 Non-uniformly expanding intermittency maps.

Consider the following interval map defined for b > 0:

f(x) =

{
x(1 + (2x)b) for 0 ≤ x < 1

2 ,

2x − 1 for 1
2 ≤ x ≤ 1.

(25)

This map is non-uniformly expanding, and it has a neutral fixed point at x = 0. It was introduced
in [23] as a simple model of intermittency and is sometimes called the Liverani-Saussol-Vaienti
map. For b ∈ (0, 1), the map admits an absolutely continuous invariant measure, where the
density lies in L1+δ for any δ < 1/b − 1. The system has polynomial decay of correlations:
Θ(n) = O

(
n1−1/b

)
, see [30]. We have the following result:

Proposition 3.2. Suppose (f, [0, 1], ν) is the intermittent system (25) with b < 1/20 and con-
sider the observable φ(x) = − log |x − x̃|. Then for all ε > 0 and ν-a.e. x̃ ∈ X we have that

∣∣∣ν{Mn ≤ un}− e−2ρ(x̃)e−u
∣∣∣ ≤ Cn− 1

2+κ, with κ = ε + 5b. (26)

where C(x̃) > 0 is a constant independent of n.

Proof. The following lemma, a version proved in [17] will be of use to us: Define En(ε) := {x :
dist(x, fn(x)) < ε}.

Lemma 3.3. Suppose f is the interval map given by equation (25). There exists a uniform
constant C > 0, such that ∀n ≥ 0, and ∀ε > 0 we have m(En(ε)) ≤ C

√
ε.

It follows that m(En) ≤ Cg̃(n)n−1/2, and hence by Hölder’s inequality

ν(En) ≤ C(g̃(n)n−1/2)1−b.

Therefore if we take g̃(n) = nγ for any γ ∈ (0, 1/2), ν(En) tends to zero, and so (H2a)
applies. In order to control the error term En in Proposition 2.4 we require that Θ(g(n)) → 0
sufficiently fast, for some g(n) = nκ = o(g̃(n)). The latter choice being made so that Proposition
2.5 applies. We can follow again the proof of part 2 of Theorem 2.1, and work out the minimal
choice of κ. Taking p ≈ q ≈

√
n we will obtain an error of order nκ+1/2 via the first right hand

term in equation (14). To control all remaining right hand error terms of equation (14) (so that
they are all of order n−1/2) we need to take b sufficiently small. To work out the range of values
of b, we need to show that

n3/2Θ(nκ)δ1 = O
(

1√
n

)
, with δ1 =

δ

1 + 2δ
− ε.

9



The constant ε > 0 can be taken arbitrarily small. We recall that δ < 1/b − 1, and Θ(n) =
O

(
n1−1/b

)
. Hence this gives the bound on κ (valid for all ε1 > 0):

κ ≥ 2b(2− b)
(1− b)2

+ ε1.

Notice for b close to one, this bound is of little utility since we require κ < 1/2. However for
b < 1/20, then we can take κ ≥ 5b + ε1, and the minimal choice leads to the required error
estimate given in Proposition 3.2.

To analyse, ∆√
n and ∆′

n (recalling q ∼
√

n), we consider the functional form φ(x) =
− log |x − x̃| with scaling sequence is un = u + logn. For x̃ 0= 0, we can apply Lebesgue
differentiation to deduce that

ν{φ(x) > u + logn} ∼ 2ρ(x̃)e−u/n.

However we need higher order regularity information on ν to deduce bounds on ∆n,∆′
n. In [23],

the density of ρ is in fact locally Lipschitz ν-a.e. The fact that ρ ∈ L1+δ is proved from an
analysis of the singularity in ρ(x) at x = 0. The density scales as O(x−b) as x → 0. Hence for
x̃ 0= 0, we have

ν{φ(x) > u + logn} = 2ρ(x̃)e−u/n + O(n−2).

Using Proposition 2.6 gives a combined error of order n−1/2 for ∆n,∆′
n, and hence for all b < 1

20
we have that:

|ν{Mn ≤ un}− e−2ρ(x̃)e−u | ≤ O(1)n− 1
2 +ε, (27)

3.4 Non-uniformly expanding quadratic maps.

Consider the quadratic family f(x) = a− x2 for x ∈ [−2, 2] and parameter a 1 2. For a positive
measure set of parameter values, it is known that f admits an absolutely continuous invariant
measure ν with density ρ ∈ L1+δ for some δ > 0. Moreover the system admits exponential decay
of correlations, see [29]. Here En had explicit representation:

En = {x ∈ [0, 1] : dist(f jx, x) <
1
n

, some j ≤ (logn)5}. (28)

It was shown in [3] that ν(En) ≤ n−α for some α > 0. Hence conditions (H1) and (H2b) are
satisfied for this family, and we can take g(n) = (logn)1+κ for some κ > 0. To get quantitative
error estimates we require the critical orbit to satisfy a Misiurewicz condition, see [24]. Such a
condition is required to ensure the invariant density is sufficiently regular. We have the following
result:

Proposition 3.4. Suppose (f, [−2, 2], ν) is the quadratic family with a is a Misiurewicz param-
eter. For the observation φ(x) = − log |x− x̃|, we have for ν-a.e x̃ ∈ [0, 1] and all ε > 0:

|ν{Mn ≤ u + logn}− e−2ρ(x̃)e−u | ≤ C
(logn)1+ε

√
n

, (29)

where C(x̃) > 0 is a uniform constant independent of n, but dependent on x̃.
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Proof. Since part 1 of Theorem 2.1 applies, we have that

∣∣∣{Mn ≤ un}− (1−
√

nν{X1 > un})
√

n
∣∣∣ ≤ O

(
(logn)1+ε

√
n

)
, (30)

To analyse ∆n,∆′
n from the function form φ(x) = − log |x− x̃|, we have in this case the asymp-

totic ν{X1 > u + logn} ∼ 2ρ(x̃)e−u/n via the Lebesgue density theorem. Hence τ(u) =
2ρ(x̃)e−u. However this asymptotic alone is not sufficient to get bounds on ∆√

n,∆′
n and we

therefore require higher order regularity information on the density of ρ(x). It is shown in [28]
that ρ(x) = ρ1(x) + ρ2(x), where ρ1(x) is of bounded variation, while

ρ2(x) ≤
∞∑

j=1

C(1.9)−j

|x− f j(0)| .

Hence if the parameter a is a Misiurewicz parameter, the critical orbit is pre-periodic, and thus
by the bounded variation property the density ρ(x) is locally Lipschitz ν-a.e. Proposition 2.6
therefore implies that:

∆n + ∆′
n ≤ Cn−1/2,

and the result follows.

4 Speed of convergence to EVD for non-uniformly hyperbolic
systems

In this section we discuss corresponding convergence rate results for certain hyperbolic and non-
uniformly hyperbolic dynamical systems. Examples under consideration include the Anosov Cat
Map, The Lozi map, the Billiard map, and systems with rank one attractors such as the Hénon
family. Extreme statistics for these systems have been studied for example in [2, 13, 19, 18]
(amongst others). For these systems, we can again achieve a result analogous to part 1 of
Theorem 2.1. However to establish rates of convergence (or even just convergence) to a limit
G(u) along the sequence ν{Mn ≤ u/an + bn} specific information on the regularity of ν is
required, (such as continuity of the density). In general this is an open problem for non-uniformly
hyperbolic systems.

More precisely, we consider a non-uniformly hyperbolic dynamical system (f,X , µ), where ν
is a SRB measure supported on an f -invariant set X ⊂ R2. We assume that the system is mod-
elled by a Young tower, with recurrence time statistics that are at least polynomial, see [29] for
details. In the case of applications, our examples will all have exponential decay of correlations,
but in the statement of our results we allow for sub-exponential decay of correlations. We will
assume that conditions (H1), (H2a) and/or (H2b), as defined in Section 2 continue to hold. For
non-uniformly hyperbolic systems, we also need further control on the regularity of ν. Recall
that the pointwise local dimension of ν is given by:

d := lim
r→0

log ν(B(x, r))
log r

, (31)

whenever this limit exists. Here B(x, r) is the ball of radius r centered at x ∈ X . From [22] it is
known that the local dimension of ν exists and is constant ν-a.e. for a non-uniformly hyperbolic
system. However, we also need control on the regularity of ν on certain shrinking annuli. We
state the following assumption (H3):
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(H3) (Regularity of ν on shrinking annuli). For all δ > 1 and ν-a.e.x ∈ X , there exists
κ > 0 such that

|ν(B(x, r + rδ))− ν(B(x, r))| ≤ Crκδ. (32)

The constant C and κ depending on x (but not δ).

Condition (H3) (and versions thereof) have been stated and verified in [2, 13, 18]. We state the
following result.

Theorem 4.1. Suppose that f : X → X is a non-uniformly hyperbolic system with ergodic SRB
measure ν. Suppose (H3) holds.

1. Suppose we have exponential decay of correlations, i.e. Θ(n) = O(θn
0 ) with θ0 < 1 and that

(H1) and (H2b) hold. Then for all ε > 0 and ν-a.e. x̃ ∈ X , we have that

∣∣∣ν{Mn ≤ un}− G√
n(u)

∣∣∣ ≤ C
(logn)1+ε

√
n

, (33)

where C(x̃) > 0 is a constant independent of n.

2. Suppose we have polynomial decay of correlations i.e. Θ(n) = O(n−ζ) for some ζ > 1 and
(H1) and (H2a) hold. Then for all ε > 0 and ν-a.e. x̃ ∈ X we have that

∣∣∣ν{Mn ≤ un}− G√
n(u)

∣∣∣ ≤ C1n
− 1

2+κ, with κ = ε +
Cκ

ζ
. (34)

where C1 is independent of n. The constant Cκ > 0 is independent of ζ, but depends on κ
in (H3).

The proof of this theorem in large part follows from the proof Propositions 2.4 and 2.5, but
it also utilizes the results [2, 13, 18]. These latter references use a direct blocking argument
approach to verify D′(un), D(un) for hyperbolic systems. We point out in Section 5, how the
proofs of these propositions are modified in the hyperbolic setting. The range of examples
that satisfy (H1), (H2a) and (H3) (with exponential decay of Θ(n)) include Lozi maps and
hyperbolic billiards [13] and the Hénon family [2]. For higher dimensional hyperbolic systems
with polynomial decay of correlations, less is known about convergence to EVD (i.e. examples
that satisfy (H1), (H2b) and (H3)), but some progress in this direction is made in [27].

For non-uniformly hyperbolic systems equations (33) and (34) are the best that we can
achieve on the convergence rates, at least for regular observables φ : X → R. The main
difficulty is in the control of the fluctuations of ν{φ(x) > un} as n → ∞. From the definition of
local dimension the function r 2→ ν{B(x, r)} need not be regularly varying as r → 0, and hence
even for smooth observables such as φ(x) = − log(dist(x, x̃)), the sequence τn(u) = nν{φ(x) >
u + logn} may fluctuate wildly as n → ∞. However, along other (non-linear) scalings un(u) of
u control on the the rate of convergence of τn(u) to τ(u) might be achievable. Alternatively, for
observables φ : X → R tailored to the measure ν, so that ν{φ(x) > un} is regularly varying in
u, convergence rates can again be achieved. Such observables are considered in [8].

An example of a (uniformly) hyperbolic system for which error rates can be achieved is in the
case of the Arnold Cat Map (f, T2, ν), where T2 = R2/Z2 is the two-torus, ν is two-dimensional
Lebesgue measure, and

f(x, y) = (2x + y, x + y). (35)

we then have the following result:
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Proposition 4.2. Suppose (f, T2, ν) is the Arnold Cat Map defined by equation (35). For the
observation φ(x) = − log(dist(x, x̃)), we have for ν-a.e x̃ ∈ [0, 1] and all ε > 0:

|ν{Mn ≤ (u + logn)/2}− e−πe−u | ≤ C

(
(logn)1+ε

√
n

)
, (36)

where C is independent of n, but dependent on x̃.

Proof. This map is uniformly hyperbolic, admitting a finite Markov partition, and having uni-
form expansion estimates on unstable manifolds. The methods of [13] immediately apply, and
thus conditions (H1) and (H2b) hold, with Θ(j) ≤ O(θj

0) for some θ0 < 1. Condition (H3)
clearly holds since ν is Lebesgue measure. Hence (as with the tent map case)

∣∣∣{Mn ≤ un}− (1−
√

nν{X1 > un})
√

n
∣∣∣ ≤ O

(
(logn)1+ε

√
n

)
, (37)

To analyse ∆√
n,∆′

n from the functional form φ(x) = − log dist(x, x̃), we have in this case
equality

ν{X1 > u + log n} = ν

{

x : dist(x, x̃) ≤ e−u/2

√
n

}

=
πe−u

n
,

since ν is just Lebesgue measure. Hence τ(u) = πe−u, and Proposition 2.6 implies that:

∆n + ∆′
n ≤ Cn−1/2,

and so the result follows.

5 Proofs of the main results

To prove Theorem 2.1 we work directly with the blocking methods developed in [3, 17]. If we
just require convergence to EVD, then it suffices to check the conditions D(un) and D′(un)
stated in [21] and/or the dynamical versions formulated in [5].

5.1 The blocking argument

We divide n successive observations {X1, . . . , Xn} into q blocks of length p + t, with p, q, j
dependent on n, and n ∼ p(n)q(n) as n → ∞. The gap t will be large enough that successive p
blocks are approximately independent but small enough so that ν(Mn ≤ un) is approximately
equal to ν(Mq(p+t) ≤ un). Using approximate independence of p blocks it is shown in [3] that

|ν(Mn ≤ un)− ν(Mq(p+t) ≤ un)| ≤ max{qt, p}ν(φ > un), (38)

|ν(Ml(p+t) ≤ un) − (1 − pν(φ > un))ν(M(l−1)(p+t) ≤ un)| ≤ Γ̃n, (l ∈ [1, q]), (39)

where

Γ̃n = pγ(n, t) + 2p
p∑

i=1

ν(X1 > un, Xi > un),

and for t = o(p(n)), the quantity γ(t, n) is given by:

γ(t, n) = ν{X1 > un}−(1+η)Θ(j) + ν{x1 > un}(1+η)θ, (40)

where θ = δ/(1 + δ). From this we deduce that

|ν(Mn ≤ un)− (1− pν(X1 > un))q| ≤ qΓn

where
Γn = Γ̃n + tν(X1 > un).
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5.2 Proof of Proposition 2.5.

For a function ϕ ∈ L1(m) we define the Hardy–Littlewood maximal function

M(x) := sup
a>0

1
2a

∫ x+a

x−a
ϕ(y)dm(y).

A theorem of Hardy and Littlewood [26], implies that

m(|M(x)| > λ) ≤ ‖ϕ‖1

λ
(41)

where ‖ · ‖1 is the L1 norm with respect to m. Recalling

En =
{

x : dist(x, f j(x)) ≤ 1
n

for some j ≤ g̃(n)
}

,

let ρ(x) denote the density of ν with respect to m and let Mn(x) denote the maximal function
of ϕ(x) := 1En(x)ρ(x). For constants a, b > 0 to be fixed later consider sequences λn = n−a and
αn = 3nb4. Inequality (41) gives

m(|Mαn(x)| > λn) ≤ ν(Eαn)
λn

≤ 1
nαb−a

.

If αb−a > 1 (first constraint required on a and b), then the First Borel–Cantelli Lemma implies
for ν a.e. x there exists an N := N(x) such that for all n ≥ N we have |Mαn(x̃)| < λn. Recall
in the case of Theorem 2.1 that ν is absolutely continuous with respect to m. Hence, for all n
sufficiently large

ν(
{
x : dist(x, x̃) < α−1

n

}
∩ Eαn) ≤

∫ x+α−1
n

x−α−1
n

ϕαn(y)dm(y)

≤ α−1
n Mαn(x̃)

≤ α−1
n λn = O(n−a−b).

(42)

Denote A := {X1 > uk, Xj > uk} with 2 ≤ j ≤ g(k), and g(n) = g̃(n)(1−ε) for some ε > 0. We
assume that g̃(n) has the representations given in either (H2a) or (H2b). Since ψ−1(uk) ≈ 1/k,
there exists a v > 0 such that

A ⊂
{
x : dist(x̃, x) ≤ v

k
dist(x̃, f j(x)) ≤ v

k
for some j ≤ g(k)

}
.

Given the sequence αn, let k/(2v) ∈ [αn,αn+1). Then (by monotonicity of g(n)),

A ⊂
{

x : dist(x̃, x) ≤ 1
2αn

, dist(x̃, f j(x)) ≤ 1
2αn

for some j ≤ g((2v)αn+1)
}

.

Applying the triangle inequality dist(x, f j(x)) ≤ dist(x̃, x) + dist(x̃, f j(x)) gives

A ⊂
{

x : dist(x̃, x) ≤ 1
αn

, dist(x, f j(x)) ≤ 1
αn

for some j ≤ g((2v)αn+1)
}

.

Since αn = 3nb4 we have that limn→∞ αn+1/αn = 1. By the growth properties of g and g̃ (as
given in Proposition 2.5), there exists κv > 0 and a sequence cn → 0 such that for all sufficiently
large αn:

g((2v)αn+1) ≤ g(2(2v)αn) ≤ cng̃((2(2v)αn) ≤ cnκv g̃(αn).
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Moreover, there exists N such that ∀n ≥ N we have cnκv < 1, and hence

A ⊂
{

x : dist(x̃, x) ≤ 1
αn

, dist(x, f j(x)) ≤ 1
αn

for some j ≤ g̃(αn)
}

.

Applying inequality (42) gives

ν(X1 > uk , Xj > uk) = O(k−a−b) for all k > N,

so that

k

g(k)∑

j=1

ν(X1 > uk , Xj > uk) = O(k1−a−bg(k)) for all k > N.

By definition of α and g̃(k) in condition (H2a) (or (H2b)), there exists β0 < 1 such that for all
β > β0 we have g(k) = o(kβ). Hence the second constraint on a, b required is that 2− a− b < 0
so that k1−a−bg(k) = o(1). Simultaneous to αb− a > 1, these constraints can be satisfied given
any α ∈ (0, 1). Moreover the quantity ρ1 = a + b− 2 > 0 can made arbitrarily large. Hence the
first part of (15) is satisfied.

5.3 Proof of Proposition 2.4

We state and prove the following lemma. Combining this result with the blocking argument
described earlier in Section 5.1 completes the proof of Proposition 2.4.

Lemma 5.1. For any g(n) < p we have that:

p∑

j=g(n)

ν(X0 > un, Xj > un) ≤ pO(1)(Θ(g(n)))δ1 + p(ν{x1 > un})2, with δ1 =
δ

(1 + 2δ)
− ε,

(43)
where ε > 0 can be taken arbitrarily small, and the implied constant depends on δ.

Under assumptions (H2a) or (H2b), and Propostion 2.5 a condition on the choice of g(n) is
that g(n) = o(g̃(n)). We now use decay of correlations to prove the second part of (43). We will
write φ(x) = ψ(dist(x, x̃), and recall that we work with the explicit observable ψ(y) = − log y,
for y > 0. As before we approximate the indicator function Φ := 1{X1>un} by a Lipschitz
continuous function ΦB, which is set equal to 1 inside a ball centered at x̃ of radius %′n :=
φ−1(un) − [ψ−1(un)]1+η, for some η > 0, and decaying to 0 at a linear rate so that ΦB vanishes
on the boundary of {X1 > un}. The Lipschitz norm of ΦB is bounded by [ψ−1(un)]−(1+η).

We now take j ∈ [g(n), n]. We have the following triangle inequality:
∣∣∣∣∣

∫
Φ(Φ ◦ f j)dν −

(∫
Φdν

)2
∣∣∣∣∣ ≤

∣∣∣∣

∫
ΦB(Φ ◦ f j)dν −

∫
ΦBdν

∫
Φdν

∣∣∣∣

+
∣∣∣∣

∫
(ΦB − Φ)Φ ◦ f jdν −

∫
(Φ− ΦB)dν

∫
Φdν

∣∣∣∣ ,

and we estimate each term on the right hand side. By decay of correlations and for sufficiently
large n:

∣∣∣∣

∫
ΦB(Φ ◦ f j)dν −

∫
ΦBdν

∫
Φdν

∣∣∣∣ ≤ ‖ΦB‖Lip‖Φ‖∞Θ(g(n)) = O
(
n1+ηΘ(g(n))

)
,
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and
∣∣∣∣

∫
(ΦB − Φ)Φ ◦ f jdν −

∫
(Φ− ΦB)dν

∫
Φdν

∣∣∣∣ ≤ 2‖Φ‖∞ν(x : ΦB(x) 0= Φ(x)) = O(n−θ(1+η)),

where we can take any θ < δ/(1 + δ). Hence for each j > g(n) we obtain:

ν(X1 > uk, Xj > uk) ≤ C1|{X1 ≥ un}|−1−ηΘ(j) + C2|{X1 ≥ un}|θ(1+η) + (ν{X1 > un})2, (44)

where C1, C2 depend on the regularity of ρ(x) at x̃ and on the Lipschitz norm. The constant η is
arbitrary, and hence we can optimize the right hand side by varying η. An elementary calculus
argument shows that

ν(X1 > uk, Xj > uk) ≤ O(1)(Θ(j))δ1 + (ν{X1 > un})2, with δ1 =
δ

(1 + 2δ)
− ε. (45)

Here ε > 0 can be made arbitrarily small. The implied constant depends only δ. This gives the
required result.

5.4 Proof of Theorem 4.1

The blocking argument described in Section 5.1 is purely probabilistic. For hyperbolic systems,
the extra hypothesis required is (H3) on the regularity of the measure ν. For non-uniformly
expanding systems, we used the fact that the density of ν belonged to L1+δ for some δ > 0.
Condition (H3) is the corresponding regularity constraint required to prove the result. We
point out the main modifications required over and above the details presented in the proofs of
Propositions 2.4 and 2.5 in order to prove Theorem 4.1.

For hyperbolic systems, and assuming condition (H2), the proof of Proposition 2.5 follows
step by step but instead we use a modified maximal function

M(x) := sup
a>0

1
mγ(B(x, r))

∫

B(x,r)
ϕ(y)dm(y),

where mγ is the Riemannian measure on the local unstable manifold γ centered at x, and
ϕ(x) := 1En(x)ργ(x) where ργ is the conditional density of ν on γ (which is absolutely continuous
with respect to mγ . With this modification all steps are as before. See [13, 18].

Under the assumption of (H1) and (H3), the modification of proof of Proposition 2.4 in the
hyperbolic case again follows [13, 18]. In particular condition (H3) comes into the Lipschitz
approximation of 1{X1>un}, to estimate ‖Φ(x) − ΦB(x)‖1. The result is that equation (45) is
modified to

ν(X1 > uk , Xj > uk) ≤ O(1)(Θ(j))δ
′
+ (ν{X1 > un})2, (46)

where the implied constant and δ′ both depend on κ (from (H3)). Theorem 4.1 now follows.
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