Honors Calculus, Math 1450: 17957- Assignment 1

Dr Anna Vershynina, PGH 634

Due in class on $9 / 1 / 20179 / 8 / 2017$

1. Find the first and the second derivatives of the following functions
(a) $w=r e^{-r}$
(b) $s=3 z^{2} e^{2 z}$
(c) $y=-2 x^{-1}+\frac{4}{x^{2}}$
(d) $u=d^{9 / 4}+e^{-2 d}$
2. Does any tangent to the curve $y=\sqrt{x}$ cross the x-axis at $x=-1$? If so, find an equation for the line and the point of tangency. If not, why not?
3. Find the equation of the tangent line to Newton's serpentine (graphed below) at the origin and the point (1,2).

4. Find all points of the curve $y=\cot x$, for $0<x<\pi$, where the tangent line is parallel to the line $y=-x$. Sketch the curve and the tangent(s) together, labeling each with its equation.
5. Is there a value of b that will make

$$
f(x)= \begin{cases}x+b, & \text { if } x<0 \\ \cos x, & \text { if } x \geq 0\end{cases}
$$

continuous at $x=0$? Differentiable at $x=0$? Give reasons for your answers.
6. Find

$$
\frac{d^{2017}}{d x^{2017}}(\cos x)
$$

7. Assume that a particle's position on the x-axis is given by

$$
x=3 \cos t+4 \sin t
$$

where x is measured in feet and t is measured in seconds.
(a) Find the particle's position when $t=0, t=\pi / 2, t=\pi$.
(b) Find the particle's velocity when $t=0, t=\pi / 2, t=\pi$.
8. Find the derivatives of the following functions
(a) $r=(\csc \theta+\cot \theta)^{-1}$
(b) $y=\frac{1}{x} \sin ^{-5}(3 x)-\frac{x}{2} \cos ^{3} x$
(c) $h=y \tan (2 \sqrt{y})+7$
(d) $u=\sin \left(x^{2} e^{x}\right)$
(e) $w=\sqrt{3 r+\sqrt{2+\sqrt{1-r}}}$
9. In some heavy machinery a piston is moving straight up and down, and its position at time t sec is

$$
s=A \cos (2 \pi n t)
$$

with A and n positive numbers. The value of A is the amplitude of the motion, and n is the frequency (number of times the piston moves up and down each second). What effect does doubling the frequency have on the pistons velocity and acceleration?
10. Suppose that $f(x)=x^{2}$ and $g(x)=|x|$.
(a) Write down what the composite functions $f \circ g$ and $g \circ f$ are.
(b) Are these functions differentiable?
(c) Does your answer contradict the Chain Rule? Explain.

