Honors Calculus, Math 1450: 17957- Assignment 2

Dr Anna Vershynina, PGH 634

Due in class on $9 / 15 / 2017$

1. Use implicit differentiation to find $d y / d x$
(a) $y \sin \left(\frac{1}{y}\right)=1-x y$
(b) $e^{2 x}=\sin (x+3 y)$
(c) $y^{2}=e^{x^{2}}+2 x$
(d) $2 \sqrt{y}=y-x$
2. Find $d y / d x$
(a) $y=\csc ^{-1}(3 x+1)$
(b) $y=e^{\cos x+\ln x}$
(c) $\ln y=e^{y} \sin x$
(d) $x^{y}=y^{x}$
3. Use logarithmic differentiation to find the derivative of y
(a) $y=x^{\sin x}$
(b) $y=(x+1)^{x}$
(c) $y=x(x+1)(x+2)$
(d) $y=\sqrt{\frac{x}{x+1}}$
4. Show that $f^{\prime}(x) \leq f(x)$ if

$$
f(x)=e^{\cos ^{2} x}
$$

5. A particle is constrained to move along the real line so that its position as a function of time is equation is $x(t)=2 \cos t+4 \sin t$.
(a) Find the velocity and acceleration as functions of time.
(b) What is the velocity at time $t=0$?
(c) What is the first time $t>0$ at which $x^{\prime}(t)=0$?
(d) Show that the equation of motion satisfies the equation $x^{2}(t)+\left(x^{\prime}(t)\right)^{2}=20$.
6. If $y=A \sin (\ln x)+B \cos (\ln x)$, where A and B are constants, show that

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=0 .
$$

7. When a circular plate of metal is heated in an oven, its radius increases at the rate of $0.01 \mathrm{~cm} / \mathrm{min}$. At what rate is the plates area increasing when the radius is 50 cm ?
8. Two commercial airplanes are flying at an altitude of $40,000 \mathrm{ft}$ along straight-line courses that intersect at right angles. Plane A is approaching the intersection point at a speed of 442 knots (nautical miles per hour; a nautical mile is 2000 yd). Plane B is approaching the intersection at 481 knots. At what rate is the distance between the planes changing when A is 5 nautical miles from the intersection point and B is 12 nautical miles from the intersection point?
9. Water is flowing at the rate of $50 \mathrm{~m}^{3} / \mathrm{min}$ from a shallow concrete conical reservoir (vertex down) of base radius 45 m and height 6 m .
(a) How fast (centimeters per minute) is the water level falling when the water is 5 m deep?
(b) How fast is the radius of the waters surface changing then? Answer in centimeters per minute.
10. Use l'Hôpital's rule to find the limits
(a) $\lim _{x \rightarrow 1} \frac{x-1}{\ln x-\sin \pi x}$
(b) $\lim _{x \rightarrow \infty} x^{2} e^{-x}$
(c) $\lim _{x \rightarrow 0^{+}}(\ln x-\ln \sin x)$
(d) $\lim _{x \rightarrow 0^{+}}(\csc x-\cot x+\cos x)$
