Roland Glowinski's biography
Homepage of the conference CS21
ROLAND GLOWINSKI'S RESEARCH ACHIEVEMENT:
(Text written by Garret J. Etgen, University of Houston - William E. Fitzgibbon, University of Houston - Jacques-Louis Lions, Collège de France - Jacques Périaux, Dassault Aviation - Olivier Pironneau, Université Paris VI).
We've begun this analysis of Glowinski's research achievements with this example because it illustrates the approach he has always followed in his work, that is:
Other notable spin-offs of Glowinski's research investigations on variational inequalities include:
(i) A method to deal with the entropy condition in potential compressible inviscid fluid flows.
(ii) A method to account for the incompressibility condition in the Navier-Stokes equations modelling incompressible viscous fluid flows.
With regard to (i), the starting point is the fact that the full potential equations (or their variants) which model compressible perfect fluid flows may exhibit, in the transonic or supersonic regimes, non-physical solutions, that is, solutions containing shocks that violate the second law of thermodynamics. To eliminate such spurious solutions, the mathematical model has to be complemented by entropy inequalities. Glowinski was able to show that the numerical treatment of these complemented models calls upon the variational inequalities described in [B.1], [B.2] and [B.4] (cf. refs [B.4], [54], [56], [58], [62], [67], [74], [99], [104], [114]). These studies led to the computational methods used by Dassault Aviation, and to the mathematical and numerical studies conducted by J.Necas and his school in Prague (M. Feistauer, J.Mandel,...) on compactness by entropy for compressible flows (cf. the publication by J.Necas: Fluid Flow: Compactness by Entropy, Masson, Paris, 1988).
Concerning (ii), we believe that Glowinski, inspired by the duality methods for variational inequalities, was the first to take advantage, at the numerical level, of the fact (well-known by continuum mechanics specialists and physicists) that for incompressible flows the pressure may be interpreted as a Lagrange multiplier associated with the incompressibility condition . u = 0. This finding goes back to the late 1960's and it led to a family of algorithms called Uzawa algorithms (since they are related to algorithms for the search of economic equilibria investigated by H. Uzawa). These algorithms, as applied to the solution of the Stokes and Navier-Stokes equations, are described and analyzed in references [B.4], [59], [82], [85], [101], [106], [110], [116], [139], [159], [160], [171], [176]. Uzawa algorithms have motivated the investigations of many authors and, although they were introduced more than twenty-five years ago, they still provide efficient methods for dealing with incompressibility and they continue to be widely used by the scientific community.
Still in the field of variational methods, we believe that Glowinski was the first to realize that the augmented Lagrangian methods, introduced in the late 1960's by Hestenes and Powell, offer considerable potential for solving a large number of problems from mechanics and physics. These methods, which combine the advantages of the Lagrange multiplier and penalty techniques without having their respective drawbacks, allow one to take into account the more or less natural decomposition principles existing in a large number of problems. They are thus well-suited for parallel computation. Glowinksi's intuition, advanced in the mid-1970's proved right (refs. [57], [61], followed by [B.2], [B.3] and [B.6]). He also showed that these methods have close links with (and are sometimes equivalent to) the Alternating Direction (or Operator Splitting) methods introduced in the mid-1950's by D. Peaceman and H. Rachford, and the Fractional Step methods investigated some years later by Y. Marchuk, N. Yanenko, R. Temam, J.L. Lions, A. Bensoussan and others. Fractional step methods are closely related to the Trotter theorem in semi-group theory. Other extensions have been proposed by P.L. Lions and B. Mercier, and by D. Gabay. Glowinski, in co-operation with M. Fortin and P. Le Tallec, applied the augmented Lagrangian and operator splitting methods to the solution of problems from non-Newtonian fluid mechanics (cf. [B.2], [B.3], [B.6]), from non-linear elasticity (cf. [71], [73], [75], [77], [78], [80], [87], [90], [95], [105], [109], [B.3], [B.6]), from electrotechnics and telecommunications (cf. [43], [44], [B.3]), from petroleum engineering seismic explorations (cf. [179]), and from liquid crystals and Gunzburg-Landau models (cf. [122], [B.6], [168], [198]). New applications of these techniques are, in fact, discovered almost every day. For example, his former collaborator A. Marrocco successfully applied them to numerical simulation of semiconductor phenomena and, in collaboration with A. Bensoussan, they were applied to the solution of stochastic differential equations (ref [150], [161]).
To conclude these general comments on the methods where, in our opinion, Glowinski has made significant contributions, we would like to mention his work on:
Some of Glowinski's contributions to fluid mechanics have already been discussed in the previous section. In this section, we will restrict our attention to his work on:
(i) the numerical simulation of the potential flow of compressible inviscid fluids in the transonic regime, and
(ii) the solution of the Navier-Stokes equations modeling incompressible viscous fluid flow.
Concerning (i), the techniques he developed at the end of the 1970's, in collaboration with M.O. Bristeau, O. Pironneau and Dassault Aviation (Company Avions Marcel Dassault at that time), combined finite element approximations, entropy condition treatment by penalty or upwinding methods, least square formulations, and preconditioned conjugate gradient-type solution methods. This work allowed Avions Marcel Dassault to score a worldwide premiere in the early 1980's, namely the first simulation of a three-dimensional, high Mach number, transonic flow around a complete aircraft (with three engine air intakes included), the Falcon 50. The computation methods and the corresponding results are detailed in [56], [62], [67], [68], [72], [74], [90], [99], [104], [114], [B.4].
Concerning (ii), Glowinski developed a methodology for the numerical simulation of unsteady incompressible viscous fluid flow where finite-element approximations and techniques for the Stokes problem are combined with the operator splitting techniques addressed in the previous section. In the mid 1980's, he devised a notable time discretization method based on operator splitting (the object being to break down incompressibility and advection). He called this method the thêta-scheme (cf. [106], [110]). On model problems he showed that the thêta-scheme is second order accurate with respect to time discretization, and very stable. Theoretical and experimental investigations conducted by R. Rannacher and his team at the University of Heidelberg proved that this method is second order accurate for the Navier-Stokes equations and that it almost miraculously combines excellent properties of stability, flexibility and easy implementation. The thêta-scheme is systematically used at the University of Heidelberg in the FATFLOW code, in the FASTFLO code developed at CSIRO in Australia, at the University of Minnesota by D.D. Joseph and his team for Newtonian and Non-Newtonian viscous fluid flow simulations; and by A. Sameh and his team, now at Purdue University.
The thêta-scheme is also used by P. Saramito at the University of Grenoble for visco-elasticity phenomena simulations.
To conclude this discussion of Glowinski's contributions to fluid mechanics, we would like to mention his investigations with P. Ciarlet and O. Pironneau in which they elucidated (completely, in our opinion) the problem - considered tricky - of adjusting the vorticity boundary conditions in the stream function-vorticity formulation of the Navier-Stokes equations. This led to a bi-harmonic solver based on the finite-element method which is efficient and well-suited to complex-shape domains (cf. [6], [7], [21], [30], [36], [37], [45], [47], [53], [60], [102], [156], [167]).
(i) the numerical simulation of the static and dynamic behavior of the flexible pipelines used in the petroleum industry for offshore operations, and
(ii) incompressible and slightly compressible non-linear elasticity.
The investigations related to (i) go back to the late 1970's and are described in [71], [75], [B.3], [B.6]. The oil industry was looking for a methodology able to simulate the static and dynamic behavior of flexible pipelines used in offshore operations. Such pipelines usually exhibit very large displacements and the classical finite element methods used at that time were not adequate. Glowinski was consulted on these problems and he quickly realized that the augmented Lagrangian methods (developed for other problems; see Section 2) when combined with convenient finite-element approximations, was ideally suited to the solution of these nonlinear elastic problems. This led to a simulator and Glowinski was quite pleased to learn, recently, that this simulator is still used by some very large oil industry companies more than fifteen years after its creation. Regarding these flexible pipelines, we note that the pipe consists of a multi-layer material exhibiting internal dry friction phenomena. The methods developed by Glowinski for the simulation of dry friction phenomena have been used by Institut Français du Pétrole (IFP) for the simulation of pipeline oscillations, and the correlation with lab experiments (damping time constants, oscillation frequencies and amplitudes) proved excellent.
The contributions related to (ii) come from investigating materials such as rubber, which is obviously elastic, practically incompressible, and able to handle very large displacements and deformations when subjected to various types of loads. Here again, taking the tensor u (where u is the displacement) as the main unknown, the elasto-static problems for this type of material are ideally suited to augmented Lagrangian solution methods in both two and three-dimensions. This led to the methods and results discussed in [B.3], [B.6] and [73], [75], [77], [78], [80], [87], [95], [105], [109], which were obtained in cooperation with his former student P. Le Tallec, currently Professor of Mechanics at Ecole Polytechnique.
We shall conclude this section by mentioning that:
(i) The development of approximation and iterative solution methods operating directly on the initial (primal) problem or, in the sense of HUM, on a dual problem. This allowed the solution of optimal control problems and exact or approximate controllability problems for the wave equation, the heat equation, the Euler-Bernoulli vibrating beam equation and the Navier-Stokes equations (cf. [138], [142], [143], [148], [153], [163], [166], [171], [189], [190], [194], [196], [202], [206]). In the case of the wave equation, implementation of the HUM method raises delicate approximation problems since discretization by the usual methods of a well-posed problem may lead to finite-dimensional problems that are very poorly conditioned and to solutions which contain spurious high frequencies and high amplitude oscillations. Glowinski and his collaborators developed two types of methods to overcome these difficulties; one based on a regularization method à la Tychonoff (refs. [138], [142]), and another based on a judicious choice of the approximation spaces where unwanted high-frequency components are eliminated by construction (cf. [148], [171], [202]). The latter draws its inspiration from approximation methods for the Stokes problem in fluid mechanics with which (cf. [171]) the problem of exact controllability shows a certain number of formal analogies. Glowinski was awarded the Seymour Cray Prize in 1988 for his contributions on Exact Controllability of the Wave Equation. In 1995, his Ph.D. student, M. Berggren, received the "SIAM Prize for Best Student Article" (SIAM: Society for Industrial and Applied Mathematics) for his work on the control of the Navier-Stokes equations.
(ii) The development of methods, based on control and exact controllability, which speed up the convergence of some dynamical systems to limit cycles (when such cycles exist). These methods, introduced in [115], have led to very efficient algorithms for solving scattering problems at moderately large wave numbers, i.e. in those situations where the wave length is small compared to the characteristic length of the obstacle but not small enough to allow the methods of geometrical optics. These algorithms can be seen as impulse control methods where one periodically perturbs the evolution of the system in order to reach, as fast as possible, a limit cycle. For these investigations (described in [175], [180], [181], [182], [189], [194], [202]) and other contributions, Glowinski's collaborators and former Ph.D. students, M.O. Bristeau and J. Periaux, received the "1993 Science and Defense Prize" awarded by the French Department of Defense.
The methods indicated above have good parallelization properties, as shown in [182].
BIBLIOGRAPHY:
B2. R. GLOWINSKI, J. L. LIONS, R. TREMOLIERES, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
B3. M. FORTIN, R. GLOWINSKI, Lagrangiens Augmentés, Dunod, Paris, 1982.
B4. R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984.
B5. M. BLANC, D. FONTAINE, R. GLOWINSKI, L. REINHART, Simulation of Electron Transport in the Earth Magnetosphere, Gordon and Breach, New York, 1987.
B6. R. GLOWINSKI, P. LE TALLEC, Augmented Lagrangians and Operator Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
2. R. GLOWINSKI, Etude et approximation de quelques problèmes intégraux et intégro-différentiels, Thèse d'Etat, Université de Paris VI, 1970.
3. R. GLOWINSKI, Méthodes numériques pour l'écoulement stationnaire d'un fluide rigide visco-plastique incompressible, in Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics, M. Holt ed., Lecture Notes in Physics, Vol. 8, Springer-Verlag, Berlin, 1971, pp. 385-394.
4. R. GLOWINSKI, La méthode de relaxation, application à la minimisation des fonctionnelles convexes, Rendi Conti di Matematica, Vol. 14, Rome, 1971.
5. J. CEA, R. GLOWINSKI, J.C. NEDELEC, Minimisation de fonctionnelles non différentiables, in Conference on Applications of Numerical Analysis, Morris ed., Lecture Notes in Mathematics, Vol. 228, Springer-Verlag, Berlin, 1971, pp. 19-38.
6. R. GLOWINSKI, Sur une méthode d'approximation externe, par éléments finis d'ordre deux, du problème de Dirichlet pour 2 et méthode itérative de résolution du problème approché (I), C. R. Acad. Sc., Paris, T. 275 A, (1972), pp. 201-204.
7. R. GLOWINSKI, Sur une méthode d'approximation externe, par éléments finis d'ordre deux, du problème de Dirichlet pour 2 et méthode iterative de résolution du problème approché (II), C. R. Acad. Sc., Paris, T. 275 A, (1972), pp.333-335.
8. J. CEA, R. GLOWINSKI, Méthodes numériques pour l'écoulement laminaire d'un fluide rigide, visco-plastique, incompressible, International Journal of Computer Mathematics, Sec. B, Vol. 3, (1972), pp. 225-255.
9. D. BEGIS, R. GLOWINSKI, Dual numerical techniques, application to an optimal control problem, in Techniques of Optimization, A.V. Balakrishnan ed., Academic Press, New York, 1972, pp. 159-174.
10. D. BEGIS, R. GLOWINSKI, Some numerical problems in optimal control of distributed systems related to variational inequalities and optimal domain problems, in Proceedings of the 1972 IEEE Conference on Decision and Control, IEEE publication, 1972, pp. 366-369.
11. R. GLOWINSKI, Approximation numérique des solutions périodiques d'une équation intégro-différentielle, Journal of Math. Analysis and Applications, Vol. 41, No. 1, (1973), pp. 67-96.
12. R. GLOWINSKI, Approximations externes par éléments finis d'ordre un et deux du problèm de Dirichlet pour l'opérateur biharmonique. Méthode itérative de résolution des problèmes approchés, in Topics in Numerical Analysis, J.H. Miller ed., Academic Press, London, 1973, pp. 123-171.
13. R. GLOWINSKI, Sur la minimisation, par surrelaxation avec projection, de fonctionnelles quadratiques dans les espaces de Hilbert, C. R. Acad. Sc., Paris, T. 276A, (1973), pp. 1421-1423.
14. R. GLOWINSKI, Méthodes itératives duales pour la minimisation de fonctionnelles convexes, in Constructive Aspects of Functional Analysis, Edizioni Cremonesa, Rome, 1973, pp. 263-292.
15. J. CEA, R. GLOWINSKI, Sur des méthodes de minimisation par relaxation, Revue Francaise d'Automatique, Informatique, Recherche Operationnelle, Serie Rouge, Dec. 1973, R-3, pp. 5-32.
16. R. GLOWINSKI, H. LANCHON, Torsion elasto-plastique d'une barre de section multi-connexe, Journal de Mécanique, Vol. 1, Mars 1973, pp. 151-171.
17. A. BENSOUSSAN, R. GLOWINSKI, J. L. LIONS, Méthodes de décomposition appliquées au contrôle optimal de systèmes distribués, in Proceedings of the Fifth IFIP Conference on Optimization Techniques, Part 2, Lecture Notes in Computer Sciences, Vol. 3, Springer, Berlin, 1973, pp. 141-153.
18. R. GLOWINSKI, Sur l'écoulement d'un fluide de Bingham dans une conduite cylindrique, Journal de Mécanique, Vol. 13, No. 4, (1974), pp. 601-621.
19. J. CEA, R. GLOWINSKI, J. C. NEDELEC, Application des méthodes d'optimisation, de différences et d'éléments finis à l'analyse numérique de la torsion elasto-plastique d'une barre cylindrique, in Approximation et Méthodes Iteratives de résolution d'Inéquations Variationnelles et de Problèmes non Linéaires, Cahier de l'IRIA No. 12, Mai 1974, pp. 7-138.
20. D. BEGIS, R. GLOWINSKI, Application de la méthode des éléments finis à la résolution d'un problème de domaine optimal, in Computing Methods in Applied Sciences and Engineering, R. Glowinski, J. L. Lions eds., Lecture Notes in Computer Sciences, Vol. 11, Springer Verlag, Berlin, 1974, pp. 403-434.
21. P. G. CIARLET, R. GLOWINSKI, Sur la résolution numérique du problème de Dirichlet pour l'opérateur biharmonique, C. R. Adad. Sc., Paris, T. 279 A, (1974), pp. 239-241.
22. M. O. BRISTEAU, R. GLOWINSKI, Finite Element Analysis of the unsteady flow of a visco-plastic fluid in a cylindrical pipe, in Finite Element Methods in Flow Problems, J. T. Oden, O.C. Zienkiewicz, R. H. Gallagher, C. Taylor eds., University of Alabama Press, Huntsville, 1974, pp. 471-488.
23. R. GLOWINSKI, A. MARROCCO, Etude numérique du champ magnétique dans un alternateur tetrapolaire par la méthode des éléments finis, in Computing Methods in Applied Sciences and Engineering, R. Glowinski et J. L. Lions eds., Lecture Notes in Computer Sciences, Vol. 10, Springer-Verlag, Berlin, 1974, pp. 292-316.
24. R. GLOWINSKI, A. MARROCCO, Analyse Numérique du Champ Magnétique d'un Alternateur par Eléments Finis et Surrelaxation Ponctuelle non linéaire, Computer Methods in Applied Mech. and Engineering, Vol. 13, No. 1, (1974), pp. 55-85.
25. R. GLOWINSKI, A. MARROCCO , Sur l'approximation par éléments finis d'ordre 1 et la résolution par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires, C. R. Acad. Sc., Paris, T. 278A, (1974), pp. 1649-1652.
26. R. GLOWINSKI, A. MARROCCO, On the solution of a class of non-linear Dirichlet problems by a penalty-duality method and finite element of order one, in Optimization Techniques IFIP Technical Conference, G.I. Marchouk ed., Lecture Notes in Computer Sciences, Vol. 27, Springer-Verlag, Berlin, 1974, pp. 327-333.
27. R. GLOWINSKI, Analyse Numérique d'Inéquations Variationnelles d'Ordre 4, Rapport 75002, Laboratoire d'Analyse Numérique, L.A. 189, Universite Pierre et Marie Curie, 1975.
28. D. BEGIS, R. GLOWINSKI, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthode de résolution des problèmes approchés, Applied Math. and Optimization, Vol. 2, 2, (1975), pp. 130-169.
29. R. GLOWINSKI, O. PIRONNEAU, On the numerical computation of the minimum-drag profile in laminar flow, J. Fluid Mech., Vol. 72, Part 2, (1975), pp. 385-389.
30. P. G. CIARLET, R. GLOWINSKI, Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comp. Math. Applied Mech. Eng., 5, (1975), pp. 277-295.
31. R. GLOWINSKI, A. MARROCCO, Sur l'approximation par éléments finis et la résolution par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Française d'Automatique, Informatique, Recherche Operationnelle, Serie Rouge (Analyse Numérique), R-2, (1975), pp. 41-76.
32. R. GLOWINSKI, Sur l'approximation d'une inéquation variationnelle de type Bingham, Revue Française d'Automatique, Informatique, Recherche Operationnelle, Serie Rouge (Analyse Numérique),(1976), pp.13-30.
33. R. GLOWINSKI, Introduction to the Approximation of Elliptic Variational Inequalities, Rapport 76006, Laboratoire d'Analyse Numérique, L.A. 189, Universite Pierre et Marie Curie, 1976.
34. J. M. BOISSERIE, R. GLOWINSKI, Optimisation de la loi d'épaisseur pour une coque mince de révolution, in Computing Methods in Applied Sciences and Engineering, R. Glowinski, J. L. Lions eds., Lecture Notes in Economics and Math. Systems, Vol. 134, Springer, Berlin, 1976, pp. 258-275.
35. R. GLOWINSKI, O. PIRONNEAU, Toward the computation of minimum drag profiles in viscous laminar flow, Applied Mathematical Modelling, Vol. 1, (1976), pp. 58-66.
36. R. GLOWINSKI, O. PIRONNEAU, Sur la résolution numérique du problème de Dirichlet pour l'opérateur biharmonique par une méthode "quasi-directe", C. R. Adad. Sc. Paris, T. 282A, (1976), pp. 223-226.
37. R. GLOWINSKI, O. PIRONNEAU, Sur la résolution numérique du problème de Dirichlet pour l'opérateur biharmonique par une méthode de gradient conjugué, Applications, C. R. Adad. Sc. Paris, T. 282A, (1976), pp. 1315-1318.
38. R. GLOWINSKI, O. PIRONNEAU, Sur la résolution par une méthode quasi-directe et par diverses méthodes itératives d'une approximation par éléments finis mixtes du problème de Dirichlet pour 2, Rapport 76010, Laboratoire d'Analyse Numérique, L.A. 189, Universite Pierre et Marie Curie, 1976.
39. R. GLOWINSKI, O. PIRONNEAU, Calculs d'écoulements transsoniques par des méthodes d'elements finis et de contrôle optimal, in Computing Methods in Applied Sciences and Engineering, R. Glowinski, J.L. Lions eds., Lecture Notes in Economics and Math. Systems, Vol. 134, Springer-Verlag, Berlin, 1976, pp. 276-296.
40. R. GLOWINSKI, A. MARROCCO, Finite element approximation and iterative methods of solution for 2-D non-linear magnetostatic problems, Proceedings of the 1st COMPUMAG Conference, Oxford, April 1976, Rutherford Laboratory publication, pp. 112-125.
41. R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, Use of Optimal Control Theory for the numerical simulation of transonic flows by the method of finite elements, in Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, A.I. Van de Vooren, P. J. Zandbergen eds., Lecture Notes in Physics, Vol. 59, Springer-Verlag, Berlin, 1976, pp. 205-211.
42. R. GLOWINSKI, Sur la résolution du problème de Stokes dans un domaine multiplement connexe par une méthode de fonction de courant, C. R. Acad. Sc., Paris, T. 284A, (1977), pp. 675-678.
43. M. FELDMAN, R. GLOWINSKI, A. GUERARD, Synthèse par Optimalisation des filtres à ondes élastiques de surface, Annales des Télécommunications, T. 32, 1-2, Janvier-Fevrier, (1977), pp. 37-48.
44. R. GLOWINSKI, A. MARROCCO, Numerical solution of two dimensional magneto-static problems by augmented Lagrangian methods, Comp. Methods Appl. Mech. Eng., Vol. 12, (1977), 1, pp. 33-46.
45. R. GLOWINSKI, O. PIRONNEAU, Solving a mixed finite element approximation of the Dirichlet problem for the biharmonic operator by a "quasi-direct" method and various iterative methods, in Mathematical Aspects of Finite Elements, I. Galligani, E. Magenes, eds., Lecture Notes in Math., Vol. 606, Springer-Verlag, 1977, pp. 167-193.
46. R. GLOWINSKI, O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, Stanford Report, STAN-CS-77-615, Comp. Science Dept., May 1977.
47. R. GLOWINSKI, O. PIRONNEAU, Sur une méthode quasi-directe pour l'opérateur biharmonique et ses applications à la résolution des équations de Navier-Stokes, Annales des Sciences Math. du Quebec, Vol. 1, (1977), 2, pp. 231-245.
48. M. O. BRISTEAU, R. GLOWINSKI, O. PIRONNEAU, Numerical solution of the transonic equation by finite element methods via Optimal Control, in Control Theory of Systems Governed by Partial Differential Equations, A. K. Aziz, J. W. Wingate, M.J. Balas , eds., Academic Press, 1977, pp. 265-278.
49. R. GLOWINSKI, O. PIRONNEAU, Approximation par éléments finis mixtes du problème de Stokes en formulation vitesse-pression. Convergence des solutions approchés, C. R. Acad. Sc., Paris, T. 286A, (1978), pp. 181-183.
50. R. GLOWINSKI, O. PIRONNEAU, Approximation par éléments finis mixtes du problème de Stokes en formulation vitesse-pression. Résolution des problèmes approchés. C. R. Acad. Sc., Paris, T. 286A, (1978), pp. 225-228.
51. J. M. BOISSERIE, R. GLOWINSKI, Optimization of the thickness law for thin axisymetric shells, Computers and Structures, Vol. 8, (1978), pp. 331-343.
52. R. GLOWINSKI, O. PIRONNEAU, Sur la résolution via une approximation par éléments finis mixtes du problème de Dirichlet pour l'opérateur biharmonique par une méthode "quasi-directe" et diverses méthodes itératives, in Etude Numérique des Grands Systèmes, J. L. Lions, G. I. Marchouk eds., Dunod-Bordas, Paris, 1978, pp. 151-181.
53. R. GLOWINSKI, O. PIRONNEAU, Numerical solution for the two-dimensional Stokes problem through the stream-function vorticity formulation, in Functional Analysis and Numerical Analysis, Japan-France Seminar, Tokyo and Kyoto, 1976, H. Fujita, ed., Japan Society for the Promotion of Science, 1978, pp. 99-142.
54. R. GLOWINSKI, O. PIRONNEAU, On the computation of transonic flows, in Functional Analysis and Numerical Analysis, Japan-France Seminar, Tokyo and Kyoto, 1976, H. Fujita, ed., Japan Society for the Promotion of Science, 1978, pp. 143-173.
55. R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, Transonic flow simulation by the Finite Element Method via Optimal Control, Chapter 11 of Finite Elements in Fluids, Vol. 3, R. H. Gallagher, O.C. Zienkiewicz, J.T. Oden, M. Morandi Cecchi, C. Taylor, eds., J. Wiley & Sons, London, 1978.
56. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, O. PIRONNEAU, G. POIRIER, Application of Optimal Control and Finite Element Methods to the calculation of Transonic Flows and Incompressible Viscous Flows, in Numerical Methods in Applied Fluid Dynamics, B.Hunt, ed., Academic Press, London, 1980, pp. 203-320.
57. T.F. CHAN, R. GLOWINSKI, Finite Element Approximation and Iterative Solution of a Class of Mildly Non-Linear Elliptic Equations, Stanford Report, STAN-CS-78-674, Comp. Science Dpt., Nov. 1978.
58. R. GLOWINSKI, Finite Elements and Variational Inequalities, Chapter 12 of The Mathematics of Finite Elements and Applications, III, J.R. Whiteman ed., Acad. Press, London, 1979, pp. 135-171.
59. R. GLOWINSKI, O. PIRONNEAU, On Numerical Methods for the Stokes Problem, Chapter 13 of Energy Methods in Finite Element Analysis, R. Glowinski, E.Y. Rodin, O.C. Zienkiewicz eds., J. Wiley & Sons, 1979, pp. 243-264.
60. R. GLOWINSKI, O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, Vol. 17, (1979), 2, pp. 167-212.
61. T. F. CHAN, R. GLOWINSKI, Numerical Methods for a class of mildly nonlinear elliptic equations, Atas do Decimo Primeiro Coloquio Brasileiro de Matematicas, Vol. I, C.N.D.C.T./IMPA, Rio de Janeiro, (1978), pp. 279-318.
62. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, O. PIRONNEAU, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. (I) Least square formulations and conjugate gradient solution of the continuous problems, Comp. Meth. Appl. Mech. Eng., 17/18, (1979), pp. 619-657.
63. R. GLOWINSKI, On grid optimization for boundary value problems, Stanford Report STAN-CS-79-720, Feb. 1979, Comp. Science Dept., Stanford University.
64. M.O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, P. PERRIER, O. PIRONNEAU, A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Iterative methods of solution, in Approximation Methods for Navier-Stokes Problems, R. Rautman ed., Lecture Notes in Mathematics, Vol. 771, Springer-Verlag, Berlin, 1979, pp. 78-128.
65. R. GLOWINSKI, O. PIRONNEAU, On a mixed finite element approximation of the Stokes problem (I), Convergence of the approximate solutions, Numerische Mathematik, 33, (1979), pp. 397-424.
66. R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, An efficient preconditioning scheme for iterative numerical solution of partial differential equations, Applied Math. Modelling, Vol. 4, (1980),pp. 187-192.
67. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, G. POIRIER, Transonic flow simulation by finite element and least square methods, in Finite Elements in Fluids, Vol. 4, R. H. Gallagher, D. H. Norris, J. T. Oden, O.C. Zienkiewicz eds., John Wiley & Sons, Chichester, 1982, pp. 453-482.
68. F. ANGRAND, R. GLOWINSKI, J. PERIAUX, P. PERRIER, G. POIRIER, O. PIRONNEAU, Optimum Design for Potential Flows, in Proceedings of the Third International Conference on Finite Elements in Flow Problems, Banff, Alberta, Canada, 10-13 June 1980, Vol. 1, D.H. Norrie ed., pp. 400-412.
69. R. GLOWINSKI, B. MANTEL, J. PERIAUX, P. PERRIER, O. PIRONNEAU, On an efficient new preconditioned conjugate gradient method. Application to the in core solution of the Navier-Stokes equations, in Finite Elements in Fluids, R.H. Gallagher, D. H. Norrie, J.T. Oden, O.C. Zienkiewicz eds., John Wiley & Sons, Chichester, 1982, pp. 365-401
70. R. GLOWINSKI, B. MANTEL, J. PERIAUX, O. PIRONNEAU, A finite element approximation of Navier-Stokes equations for incompressible viscous fluids. Functional least-square methods of solution, in Computer Methods in Fluids, K. Morgan, C. Taylor, C.A. Brebbia, eds., Pentech Press, London, 1980.
71. J. F. BOURGAT, J.M. DUMAY, R. GLOWINSKI, Large displacements calculations of flexible pipelines by finite element and nonlinear programming methods, SIAM J. Sc. Stat. Comp., 1, (1980), pp. 34-81.
72. R. GLOWINSKI, B. MANTEL, J. PERIAUX, O. PIRONNEAU, G. POIRIER, An efficient preconditioned conjugate gradient method applied to nonlinear problems in fluid dynamics via least squares formulation, in Computing Methods in Applied Sciences and Engineering, R. Glowinski, J.L. Lions eds., North-Holland, Amsterdam, 1980, pp. 445-487.
73. R. GLOWINSKI, P. LE TALLEC, Une méthode numérique en élasticité non linéaire incompressible, C.R.A.S. Paris, T.290B, (1980), pp. 23-26.
74. R. GLOWINSKI, A Variational Inequality Approach to Transonic Flow Simulation via Finite Elements and Nonlinear Least Squares, in Free Boundary Problems, Vol. II, Instituto Nazionale di Alta Mathematica, Francesco Severi, Roma, 1980, pp. 299-320.
75. J.F. BOURGAT, R. GLOWINSKI, P. LE TALLEC, Decomposition of Variational Problems. Applications in Finite Elasticity, in Partial Differential Equations in Engineering and Applied Sciences, R.L. Sternberg ed., Marcel Dekker, New York, 1980, pp. 445-480.
76. Q. V. DINH, R. GLOWINSKI, J. PERIAUX, Résolution numérique des équations de Navier-Stokes par des méthodes de décomposition de domaines, in Méthodes numériques dans les Sciences de l'Ingénieur, GAMNI 2, Vol. 1, E. Absi, R. Glowinski, P. Lascaux, H. Veysseyre eds., Dunod, Paris, 1980, pp. 383-404.
77. R. GLOWINSKI, P. LE TALLEC , V. RUAS, Approximate solution of nonlinear problems in incompressible finite elasticity, in Nonlinear Finite Element Analysis in Structural Mechanics, W. Wunderlich, E. Stein, K. J. Bathe eds., Springer-Verlag, Berlin, 1981, pp. 666-695.
78. R. GLOWINSKI, P. LE TALLEC, Numerical solution of problems in incompressible finite elasticity by augmented lagrangian methods. (I) Two-dimensional and axisymmetric problems, SIAM J. of Applied Math., 42, (1982), pp. 400-425.
79. Q.V. DINH, R. GLOWINSKI, B. MANTEL, J. PERIAUX, P. PERRIER, Subdomain solution of nonlinear problems in fluid dynamics on parallel processors, in Computing Methods in Applied Sciences and Engineering V, R. Glowinski, J. L. Lions eds., North-Holland, Amsterdam, 1982, pp. 123-164.
80. R. GLOWINSKI, P. LE TALLEC, Elasticité Non Linéaire: Formulation Mixte et Méthode Numérique Associée, in Computing Methods in Applied Sciences and Engineering, V, R. GLOWINSKI, J. L. Lions eds., North-Holland, Amsterdam, 1982, pp. 281-297.
81. Q.V. DINH, R. GLOWINSKI, B. MANTEL, J. PERIAUX, On the numerical simulation of incompressible viscous fluids modelled by the Navier-Stokes equations. Related domain decomposition methods, in Comptes-Rendus du Symposium sur la Modélisation Fine des Ecoulements, Vol. 1, J. P. Benque ed., Presses de l'Ecole Nationale des Ponts et Chaussees, 1982, pp. 275-317.
82. R. GLOWINSKI, B. MANTEL, J. PERIAUX, Numerical solution of the time dependent Navier-Stokes equations for incompressible viscous fluids by finite element and alternating direction methods, in Numerical Methods in Aeronautical Fluid Dynamics, P. L. Roe ed., Acad. Press, London, 1982, pp. 309-336.
83. Q.V. DINH, R. GLOWINSKI, J. PERIAUX, Domain Decomposition Methods for Nonlinear Problems in Fluid Dynamics, Comp. Meth. Appl. Mech. Eng., 40, (1983), pp. 27-109.
84. Q.V. DINH, R. GLOWINSKI, B. MANTEL, J. PERIAUX, Approximate Solution of the Navier-Stokes Equations for Incompressible Viscous Fluids. Related Domain Decomposition Methods, in Numerical Methods, Proceedings, Caracas, 1982, V. Pereyra, A. Reineza eds., Lecture Notes in Math; Vol. 1005, Springer-Verlag, Berlin, 1983, pp. 46-86.
85. R. GLOWINSKI, Numerical methods for the time dependent Navier-Stokes equations for incompressible viscous fluids, in Proceedings of the China-France Symposium on Finite Element Methods, Feng Kang et J. L. Lions eds., Gordon and Breach, New York, 1983, pp. 265-292.
86. R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, An efficient preconditioned conjugate gradient method. Application to the solution of nonlinear problems in Fluid Dynamics, in Preconditioning Methods. Theory and Applications, D. J. Evans ed., Gordon and Breach, 1983, pp. 463-508.
87. R. GLOWINSKI, P. LE TALLEC, Finite Elements in Nonlinear Incompressible Elasticity, Chapter 2 of Finite Elements, Special Problems in Solid Mechanics, Vol. V, J. T. Oden, G. F. Carey, eds., Prentice Hall, N.J., 1984, pp. 67-93.
88. H. BERESTYCKI, E. FERNANDEZ-CARA, R. GLOWINSKI, A Numerical study of some questions in vortex ring theory, RAIRO, Analyse Numérique, 18, (1984), 1, pp. 7-85.
89. Q.V. DINH, R. GLOWINSKI, J. PERIAUX, Domain decomposition for elliptic problems, in Finite Elements in Fluids, Vol. V, R. H. Gallagher, J. T. Oden, O. C. Zienkiewicz, T. Kawai, M. Kawahara eds., Wiley, Chichester, 1984, pp. 45-106.
90. R. GLOWINSKI, Numerical Simulation for Some Applied Problems Originating from Continuum Mechanics, in Trends and Applications of Pure Mathematics to Mechanics, P. G. Ciarlet and M. Roseau eds., Lecture Notes in Physics, Vol. 195, Springer-Verlag, Berlin, 1984, pp. 96-145.
91. R. GLOWINSKI, L. D. MARINI, M. VIDRASCU, Finite-element Approximations and Iterative Solutions of a Fourth-Order Elliptic Variational Inequality, IMA Journal of Numerical Analysis, 4, (1984), pp. 127-167.
92. Q.V. DINH, R. GLOWINSKI, J. PERIAUX, Solving Elliptic Problems by Domain Decomposition Methods with Applications, in Elliptic Problem Solvers II, G. Birkhoff, A. Schoenstadt, eds., Academic Press, Orlando, 1984, pp. 395-426.
93. R. GLOWINSKI, B. MANTEL, J. PERIAUX, O. TISSIER, Finite element analysis of laminar viscous flow over a step by nonlinear least squares and alternating direction methods, in Analysis of Laminar Flow over a Backward Facing Step, K. Morgan, J. Periaux, F. Thomasset, eds., Notes on Numerical Fluid Mechanics, Vol. 9, Vieweg, Braunschweig/Wiesbaden, 1984.
94. M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, P. PERRIER, Numerical methods for the time dependent compressible Navier-Stokes equations, in Computing Methods in Applied Sciences and Engineering, VI, R. Glowinski and J. L. Lions, eds., North-Holland, Amsterdam, 1984.
95. R. GLOWINSKI, P. LE TALLEC, Numerical solution of problems in incompressible finite elasticity by augmented lagrangian methods (II). Three-dimensional problems, SIAM J. Appl. Math., 44, (1984), 4, pp. 710-733.
96. E. SCHATZMAN, A. MAEDER, F. ANGRAND, R. GLOWINSKI, Stellar Evolution with Turbulent Diffusion Mixing. III: The Solar Model and the Neutrino Problem, Astron. Astrophys., 96, (1981), pp. 1-16.
97. R. GLOWINSKI, P. LE TALLEC, Numerical solution of nonlinear boundary value problems by quadratic minimization techniques, in Large scale scientific computation, S. Parter ed., Academic Press, New York, 1984, pp. 23-49.
98. M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, Finite Element Methods for solving the Navier-Stokes Equations for Compressible Unsteady Flows, in Ninth International Conference on Numerical Methods in Fluid Dynamics, Soubbaramayer, J. P. Boujot eds., Lecture Notes in Physics, Vol. 218, Springer-Verlag, Berlin, 1985, pp. 115-120.
99. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, O. PIRONNEAU, G. POIRIER, Finite Element Methods for Transonic Flow Calculations, in Advances in Computational Transonics, Vol. 4, W. G. Habashi, Editor, Pineridge Press, U. K., 1985, pp. 703-732.
100. R. GLOWINSKI, Numerical Solution of Nonlinear Boundary Value Problems by Variational Methods. Applications, in Proceedings of the Int. Congress of Mathematicians, August 16-24, 1983, Warsaw, North-Holland, Amsterdam, 1984, pp. 1455-1508.
101. R. GLOWINSKI, J. PERIAUX, Finite Element, Least Squares and Domain Decomposition Methods for the Numerical Solution of Nonlinear Problems in Fluid Dynamics, in Numerical Methods in Fluid Dynamics, Como 1983, F. Brezzi ed., Lecture Notes in Mathematics, Vol. 1127, Springer-Verlag, Berlin, 1985, pp. 1-114.
102. R. GLOWINSKI, H. B. KELLER, L. REINHART, Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems, SIAM J. Sci. Stat. Comput., 4, (1985), 6, pp. 793-832.
103. M. BLANC, D. FONTAINE, R. GLOWINSKI, L. REINHART, Numerical simulations of the magnetosospheric convection including the effects of electron precipitation, Journal of Geophysical Research, Vol. 90, No. A9, September 1, (1985), pp. 8343-8360.
104. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, O. PIRONNEAU, G. POIRIER, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (II). Application to transonic flow simulations, Computer Methods in Applied Mechanics and Engineering, 51, (1985), pp. 363-394.
105. R. GLOWINSKI, P. LE TALLEC, Numerical Solution of Partial Differential Equations Problems in Nonlinear Mechanics by Quadratic Minimization Methods, in Colloque En l'Honneur de Laurent Schwartz, Vol. 2, Asterisque, 132, (1985), pp. 129-165.
106. R. GLOWINSKI, Viscous flow simulations by finite element methods and related numerical techniques, in Progress in Supercomputing in Computational Fluid Dynamics, E. M. Murman, S. S. Abarbanel eds., Birkhauser, Boston, 1985, pp. 173-210.
107. M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, P. PERRIER, Numerical Methods for Incompressible and Compressible Navier-Stokes Problems, in Finite Elements in Fluids, Vol. 6, R. H. Gallagher, G. Carey, J. T. Oden, O. C. Zienkiewicz, eds., J. Wiley, Chichester, 1985, pp. 1-40.
108. R. GLOWINSKI, Decomposition Methods in Scientific Computing: Application to Fluid Calculations, in Innovative Numerical Methods in Engineering, R. P. Shaw, J. Periaux, A. Chaudouet, J. Wu, C. Marino, C. A. Brebbia, eds., Springer-Verlag, Berlin, 1986, pp. 1-15.
109. R. GLOWINSKI, P. LE TALLEC, M. VIDRASCU, Augmented Lagrangian Techniques for Solving Frictionless Contact Problems in Finite Elasticity, in Finite Element Methods for Nonlinear Problems, Europe-US Symposium, Bergan, Bathe, Wunderlich eds., Springer-Verlag, Berlin, 1986, pp. 745-758.
110. R. GLOWINSKI, Splitting methods for the numerical solution of the incompressible Navier-Stokes equations, in Vistas in Applied Mathematics, A. V. Balakrishnan, A. A. Dorodnitsyn, J. L. Lions, eds., Optimzation Software, New York, 1986, pp. 57-95.
111. M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, C. POULETTY, G. S. SINGH, Implicit and semi-implicit methods for the compressible Navier-Stokes equations, in Proceedings of the Sixth GAMM-Conference on Numerical Methods in Fluid Dynamics, D. Rues, W. Kordulla, eds., Vieweg and Sohn, Braunschweig/Wiesbaden, 1986, pp. 9-22.
112. Q. V. DINH, R. GLOWINSKI, J. PERIAUX, G. TERRASSON, On the coupling of incompressible viscous flows and incompressible potential flows via domain decomposition, in Tenth International Conference on Numerical Methods in Fluids Dynamics, Proceedings, Beijing, 1986, F. G. Zhaung, Y. L. Zhu, eds. Lecture Notes in Physics, Springer-Verlag, Berlin, 1986, pp. 229-234.
113. R. GLOWINSKI, Finite Elements Methods for Variational Inequalities, Chapter 7 of Part 1 of Finite Element Handbook, H. Kardestuncer, D. H. Norrie eds., McGraw-Hill, New York, 1987, pp. 3.229-3.243.
114. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, P. PERRIER, O. PIRONNEAU, G. POIRIER, Transonic Flow and Shock Waves: Least-squares and Conjugate Gradient Methods, Section 4.3 of Part 3 of Finite Element Handbook, H. Kardestuncer, D. H. Norrie eds., McGraw-Hill, New York, 1987, pp. 3.229 - 3.243.
115. G. AUCHMUTY, E. J. DEAN, R. GLOWINSKI, S. C. ZHANG, Control Methods for the Numerical Computation of Periodic Solutions of Autonomous Differential Equations, in Control Problems for Systems Described by Partial Differential Equations and Applications, I. Lasiecka, R. Triggiani eds., Lecture Notes in Control and Information Sciences, Vol. 97, Springer-Verlag, Berlin, 1987, pp. 64-89.
116. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Numerical Methods for the Navier-Stokes Equations. Applications to the simulation of compressible and incompressible viscous flow, Computer Physics Reports, 6, (1987), pp. 73-187.
117. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, H. VIVIAND, Presentation of Problems and Discussion from Results, in Numerical Simulation of Compressible Navier-Stokes Flows, M. O. Bristeau, R. Glowinski, J. Periaux, H. Viviand eds., Vieweg, Braunschweig/Wiesbaden, 1987, pp. 1-40.
118. M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, C. POULETTY, Solution of the Compressible Navier-Stokes Equations by least-squares and finite element methods, in Numerical Simulation of Compressible Navier-Stokes Flows, M. O. Bristeau, R. Glowinski, J. Periaux, H. Viviand eds., Vieweg, Braunschweig/Wiesbaden, 1987, pp. 85-104.
119. T. E. TEZDUYAR, R. GLOWINSKI, F. GLAISNER, Streamlines-upwind/Petrov-Galerkin procedures for the vorticity-stream function form of the Navier-Stokes equations, in Numerical Methods in Laminar and Turbulent Flow, Vol. 5, Part 1, C. Taylor, W. G. Habashi, M. M. Hafez, eds., Pineridge Press, Swansea, 1987, pp. 197-209.
120. C. BEGUE, Q. V. DINH, B. MANTEL, J. PERIAUX, G. TERRASSON, B. CARDOT, F. EL DABAGHI, F. HECHT, R. MUNOZ, C. PAREZ, O. PIRONNEAU, M. ABDALAS, R. GLOWINSKI, Current progress on the numerical simulation of detached flows around airplanes, in Numerical Methods in Laminar and Turbulent Flow, Vol. 5, Part 2, C. Taylor, W. G. Habashi, M. M. Hafez, eds.,1987, pp. 1887-1921.
121. R. GLOWINSKI, On a new preconditioner for the Stokes Problem, Math. Applic. Comp., 6, (1987), 2, pp. 123-140.
122. E. DEAN, R. GLOWINSKI, C. H. LI, Applications of Operator Splitting Methods to the Numerical Solution of Nonlinear Problems in Continuum Mechanics and Physics, in Mathematics Applied to Science, J. Goldstein, S. Rosencrans, G. Sod, eds., Academic Press, Boston, 1988, pp. 13-64.
123. R. GLOWINSKI, Multigrid Methods, in Systems and Control Encyclopedia, M. G. Singh ed., Pergammon, Oxford, 1988, pp. 3135-3140.
124. R. GLOWINSKI, M. F. WHEELER, Domain Decomposition and Mixed Finite Element Methods for Elliptic Problems, in Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. Meurant, J. Periaux eds., SIAM, Philadelphia, 1988, pp. 144-172.
125. Q. V. DINH, R. GLOWINSKI, J. PERIAUX, G. TERRASSON, On the Coupling of Viscous and Inviscid Models for Incompressible Fluid Flows via Domain Decomposition, in Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. H. Golub, G. Meurant, J. Periaux eds., SIAM, Philadelphia, 1988, pp. 350-369.
126. R. GLOWINSKI, J. PERIAUX, Numerical Methods for Nonlinear Problems in Fluid Dynamics, in Supercomputing, A. Lichnewsky, C. Saguez eds., North Holland, Amsterdam, 1987, pp. 381-479.
127. E. J. DEAN, R. GLOWINSKI, C.H. LI, Numerical solution of parabolic problems in high dimensions, in ARO Report 88-1, Transactions of the Fifth Army Conference on Applied Mathematics and Computing, 1988, pp. 207-285.
128. R. GLOWINSKI, Spectral Methods, in Systems and Control Encyclopedia, M. G. Singh ed., Pergamon, Oxford, 1988, pp. 4495-4498.
129. C. BEGUE , M.O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, Acceleration of the convergence for viscous flow calculations, in Numeta 87, Vol. 2, C. N. Pande, J. Middleton eds., Martinus Nighoff Publishers, Dordrecht, 1987, pp. T4/1 - T4/20.
130. C. BEGUE, R. GLOWINSKI, J. PERIAUX, Détermination d'un opérateur de préconditionnement pour la résolution itérative du problème de Stokes dans la formulation d'Helmholtz, C. R. Acad. Sc., Paris, T. 306. S I, (1988), pp. 247-252.
131. T. E. TEZDUYAR, J. LIOU, R. GLOWINSKI, T. NGUYEN, S. POOLE, Block iterative finite element computation for incompressible flow problems, in Proceedings of the 1988 International Conference on Supercomputing, ACM, New York, 1988, pp. 284-294.
132. M. O. BRISTEAU, R. GLOWINSKI, B. MANTEL, J. PERIAUX, G. S. SINGH, On the use of subcycling for solving the compressible Navier-Stokes equations by operator splitting and finite element methods, Comm. Appl. Num. Meth., 4, (1988), pp. 309-317.
133. J. F. BOURGAT, R. GLOWINSKI, P. LE TALLEC, Formulation variationnelle et algorithme de décomposition de domaines pour les problèmes elliptiques, C. R. Acad. Sc., Paris, T. 306, S. I,(1988), pp. 569-572.
134. R. GLOWINSKI, J. LIOU, T. E. TEZDUYAR, Petrov-Galerkin methods on multiply connected domains for the vorticity-stream function formulation of the incompressible Navier-Stokes equations, Int. J. Num. Meth Fluids, 8, (1988), pp. 1269-1290.
135. J. F. BOURGAT, R. GLOWINSKI, P. LE TALLEC, M. VIDRASCU, Variational formulation and algorithm for trace operator in domain decomposition calculations, Chapter 1 of Domain Decomposition Methods, T. F. Chan, R. GLOWINSKI, J. Periaux, O. Widlund, eds, SIAM, Philadelphia, 1989, pp. 3-16.
136. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Acceleration procedures for the numerical simulation of compressible and incompressible viscous flows, Chapter 6 of Advances in Computational Nonlinear Mechanics, I.S. Doltsinis ed., Springer, Wien, 1989, pp. 197-243.
137. R. J. ELLIOT, R. GLOWINSKI, Approximation to solutions of the Zakai filtering equations, Stochastic Analysis and Applications, 7, (1989), 2, pp. 145-168.
138. E. J. DEAN, R. GLOWINSKI, C. H. LI, Supercomputer solutions of partial differential equation problems in Computational Fluid Dynamics and in Control, Computer Physics Communications, 53, (1989), pp. 401-439.
139. R. GLOWINSKI, Supercomputing and the finite element approximation of the Navier-Strokes equations for incompressible viscous fluids, in Recent Advances in Computational Fluid Dynamics, C. C. Chao, S.A. Orszag, W. Shyy eds., Lecture Notes in Engineering, Vol. 43, Springer-Verlag, Berlin, 1989, pp. 277-315.
140. R. GLOWINSKI, A multiplier/element by element method for a class of nonlinear boundary value problems, Chapter 15 of Parallel Supercomputing: Methods, Algorithms and Applications, G. F. Carey ed., Wiley, Chichester, 1989, pp. 239-254.
141. G. BALLAL, C. H. LI, R. GLOWINSKI, N. R. AMUNDSON, Single particle char combustion and gasification, Computer Methods Appl. Mech. Eng., 75, (1989), pp. 467-479.
142. R. GLOWINSKI, C. H. LI, J. L. LIONS, A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7, (1990), pp. 1-76.
143. R. GLOWINSKI, W. KINTON, M. F. WHEELER, A mixed finite element formulation for the boundary controllability of the wave equation, Int. J. Num. Meth. Eng., 27, (1989), pp. 623-635.
144. R. GLOWINSKI, J. PERIAUX, G. TERRASSON, On the coupling of viscous and inviscid models for compressible fluid flows via domain decomposition, in Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, J. Periaux, O. Widlund eds., SIAM, Philadelphia, 1990, pp. 64-97.
145. R. GLOWINSKI, P. LE TALLEC, Augmented Lagrangian interpretation of the nonoverlapping Schwarz alternating method, in Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, J. Periaux, O. Widlund eds., SIAM, Philadelphia, 1990, pp. 224-231.
146. R. GLOWINSKI, W. KINTON, M. F. WHEELER, Acceleration of Domain Decomposition Algorithms for Mixed Finite Elements by Multi-level Methods, in Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, R. Glowinski, J. Periaux, O. Widlund eds., SIAM, Philadelphia, 1990, pp. 263-289.
147. M. O. BRISTEAU, R. GLOWINSKI, L. DUTTO, J. PERIAUX, G. ROGE, Compressible viscous flow calculations using compatible finite element approximations, Int. J. Num. Meth. in Fluids, 11, (1990), 6, pp. 719-749.
148. R. GLOWINSKI, C. H. LI, On the numerical implementation of the Hilbert Uniqueness Method for the exact boundary controllability of the wave equation, C. R. Adad. Sc., Paris, T. 311, Serie I, (1990), pp. 135-142.
149. E. J. DEAN, R. GLOWINSKI, Y. M. KUO, M. G. NASSER, On the discretization of some second order in time differential equations. Applications to nonlinear wave problems, in Computational Techniques in Identification and Control of Flexible Flight Structures, A. V. Balakrishnan ed., Optimization Software, Inc., Los Angeles, 1990, pp. 199-246.
150. A. BENSOUSSAN, R. GLOWINSKI, A. RASCANU, Approximation of the Zakai equation by the splitting up method, SIAM J. Control and Optimization, 28, (1990), 6, pp. 1420-1431.
151. R. GLOWINSKI, W. LAWTON, M. RAVACHOL, E. TENEBAUM, Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension, in Computing Methods in Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky eds., SIAM, Philadelphia, 1990, pp. 55-120.
152. F. BOURGAT, R. GLOWINSKI, P. LE TALLEC, J. F. PALMIER, The periodic Boltzmann Semiconductor equation, in Computing Methods in Applied Sciences and Engineering, R. Glowinski and A. Lichnewsky, eds., SIAM, Philadelphia, 1990, pp. 325-349.
153. R. GLOWINSKI, C. H. LI, On the Exact Neumann Boundary Control of Wave Equations, in Mathematical and Numerical Aspects of Wave Propagation Phenomena, G. Cohen, L. Halpern, P. Joly, eds., SIAM, Philadelphia, 1991, pp. 15-24.
154. C. ATAMIAN, Q. V. DINH, R. GLOWINSKI, J. HE, J. PERIAUX, Control Approach to Fictitious-Domain Methods. Application to Fluid Dynamics and Electromagnetics, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, Y. A. Kuznetsov, G. Meurant, J. Periaux, O. B. Widlund eds., SIAM, Philadelphia, 1991,pp. 275-309.
155. H. CARLSSON, R. GLOWINSKI, Vibrations of Euler-Bernouilli Beams with Pointwise Obstacles, in Advances in Kinetic Theory and Continuum Mechanics, R. Gatignol and Soubbaramayer eds., Springer-Verlag, Berlin, 1991, pp. 261-275.
156. E. J. DEAN, R. GLOWINSKI, O. PIRONNEAU, Iterative solution of the stream function-vorticity formulation of the Stokes problem. Application to the numerical simulation of incompressible viscous flow, Comp. Meth. Appl. Mech. Eng., 81, (1991), pp. 117-156.
157. R. GLOWINSKI, T. W. PAN, J. PERIAUX, M. RAVACHOL, A fictitious domain method for the incompressible Navier-Stokes equations, in The Finite Element Method in the 1990's, E. Onate, J. Periaux, A. Samuelson eds., Springer-Verlag, Berlin, 1991, pp. 440-457.
158. C. ATAMIAN, Q. V. DINH, R. GLOWINSKI, J. W. HE, J. PERIAUX, On some imbedding methods applied to fluid dynamics and electro-magnetics, Comp. Meth. Appl. Mech. Eng., 91, (1991), pp. 1271-1299.
159. R. GLOWINSKI, Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the control of the Navier-Stokes equations, in Vortex Dynamics and Vortex Methods, C. R. Anderson and C. Greengard eds., Lectures in Applied Mathematics, Vol. 28, AMS, Providence, R. I., 1991, pp. 219-301.
160. R. GLOWINSKI, O. PIRONNEAU, Finite Element Methods for Navier-Stokes Equations, Annu. Rev. Fluid Mech., 24, (1992), pp. 167-204.
161. A. BENSOUSSAN, R. GLOWINSKI, A. RASCANU, Approximation of Some Stochastic Differential Equations by the Splitting Up Method, Appl. Math. Opt., 25, (1992), pp. 81-106.
162. E. J. DEAN, R. GLOWINSKI, Y. M. KUO, G. NASSER, Multiplier techniques for some dynamical systems with dry friction, C. R. Acad. Sc., Paris, T. 314, Serie I, (1992), pp. 153-159.
163. T. DUPONT, R. GLOWINSKI, W. KINTON, M. F. WHEELER, Mixed finite-element methods for time-dependent problems: application to control, in Finite Element in Fluids, Vol. 8, T. J. Chung ed., Hemisphere Publishing Corporation, Washington, D.C., 1992, pp. 119-136.
164. R. GLOWINSKI, P. LE TALLEC, M. RAVACHOL, V. TSIKKINIS, Numerical Solution of the Navier-Stokes equations modelling the flow of incompressible nonmiscible viscous fluids, in Finite Element in Fluids, Vol. 8, T. J. Chung ed., Hemisphere Publishing Corporation, Washington, D.C., 1992, pp. 137-163.
165. T. E. TEZDUYAR, J. LIOU, D. K. GANJOO, M. BEHR, R. GLOWINSKI, Unsteady incompressible flow computations with the finite-element method, in Finite Element in Fluids, Vol. 8, T. J. Chung ed., Hemisphere Publishing Corporation, Washington, D.C., 1992, pp. 177-209.
166. R. GLOWINSKI, Boundary controllability problems for the wave and heat equations, in Boundary Control and Boundary Variation, J. P. Zolesio ed., Lecture Notes in Control and Information Sciences, Vol. 178, Springer-Verlag, Berlin, 1992, pp. 221-237.
167. Y. ACHDOU, R. GLOWINSKI, O. PIRONNEAU, Tuning the mesh of a mixed method for the stream function-vorticity formulation of the Navier-Stokes equations, Num. Math., 63, (1992), 2, pp. 145-163.
168. L. C. COWSAR, E. J. DEAN, R. GLOWINSKI, P. LE TALLEC, C. H. LI, J. PERIAUX, M. F. WHEELER, Decomposition principles and their applications in scientific computing, in Parallel Processing for Scientific Computing, J. Dongarra, K. Kennedy, P. Messina, D. C. Sorensen, R. G. Voigt eds., SIAM, Philadelphia, 1992, pp. 213-237.
169. Q. V. DINH, R. GLOWINSKI, J. HE, V. KWOCK, T. W. PAN, J. PERIAUX, Lagrange multiplier approach to fictitious domain methods: application to fluid dynamics and electro-magnetics, in Domain Decomposition Methods for Partial Differential Equations, D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, R. G. Voigt eds., SIAM, Philadelphia, 1992, pp. 151-194.
170. E. J. DEAN, Q. V. DINH, R. GLOWINSKI, J. HE, T. W. PAN, J. PERIAUX, Least squares/domain imbedding methods for Neumann problems: application to fluid dynamics, in Domain Decomposition Methods for Partial Differential Equations, D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, R. G. Voigt eds., SIAM, Philadelphia, 1992, pp. 451-475.
171. R. GLOWINSKI, Ensuring Well-Posedness by Analogy; Stokes Problem and Boundary Control for the Wave Equation, J. Comput. Phys., 103, (1992), 2, pp. 189-221.
172. R. GLOWINSKI, T. W. PAN, Error estimates for fictitious domain/penalty/finite element methods, Calcolo, 29, (1992), 12, pp. 125-141.
173. M. O. BRISTEAU, R. GLOWINSKI, L. DUTTO, G. ROGE, On recent numerical simulations of compressible Navier-Stokes flows, in Numerical Simulation of Unsteady Flows and Transition to Turbulence, O. Pironneau, W. Rodi, I. L. Ryhming, A. H. Savill, T. V. Truong eds., Cambridge University Press, 1992, pp. 444-472.
174. R. GLOWINSKI, J. PERIAUX, M. RAVACHOL, T. W. PAN, R. O. WELLS, X. ZHOU, Wavelet methods in Computational Fluid Dynamics, in Algorithmic Trends in Computational Fluid Dynamics, M. Y. Hussainy, A. Kumar, M. D. Salas eds., Springer-Verlag, New York, N. Y., 1993, pp. 259-276.
175. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Using exact controllability to solve the Helmholtz equation at high wave numbers, Chapter 12 of Mathematical and Numerical Aspects of Wave Propagation, R. Kleinman, Th. Angell, D. Colton, F. Santosa, I. Strakgold eds., SIAM, Philadelphia, Pennsylvania, 1993, pp. 113-127.
176. E. J. DEAN, R. GLOWINSKI, On some finite element methods for the numerical simulation of incompressible viscous flow, in Incompressible Computational Fluid Dynamics, M.D. Gunzburger, R.A. Nicolaides eds., Cambridge University Press, New York, N. Y., 1993, pp. 109-150.
177. R. GLOWINSKI, T. W. PAN, J. PERIAUX, Fictitious domain methods for the Dirichlet problem and its generalization to some flow problems, in Finite Elements in Fluids, New Trends and Applications, Part I, K. Morgan, E. Onate, J. Periaux, J. Peraire, O. C. Zienkiewicz eds., Pineridge Press, Barcelona, 1993, pp. 347-368.
178. R. GLOWINSKI, T. W. PAN, A least squares/fictitious domain method for mixed problems and Neumann problems, in Boundary Value Problems for Partial Differential Equations and Applications, J. L. Lions and C. Baiocchi eds., Masson, Paris, 1993.
179. R. GLOWINSKI, Q. H. TRAN, Constrained optimization in reflection tomography: the augmented Lagrangian method, East-West J. Num. Math., 1, (1993), 3, pp. 213-234.
180. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Scattering wave simulation using exact controllability methods, 31st Aerospace Sciences Meeting, Reno, Nevada, AIAA Paper 930460, 1993.
181. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Numerical simulation of high-frequency scattering waves using exact controllability methods, in Nonlinear Hyperbolic Problems: Theoretical Applied, and Computation Aspects, A. Donato, F. Oliveri eds., Notes in Numerical Fluid Mechanics, Vol. 43, Vieweg, Branschweig, 1993, pp. 86-108.
182. M. O BRISTEAU, J. ERHEL, R. GLOWINSKI, J. PERIAUX, A time dependent approach to the solution of the Helmholtz equation at high wave numbers, in Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, R. F. Sincorce, D. Keyes, M. R. Lenzo, L. Petzold, D. A. Reed eds., SIAM, Philadelphia, Penn., 1993.
183. E. DEAN, R. GLOWINSKI, A domain decomposition method for the wave equation, Les Grands Systèmes des Sciences et de la Technologie, J. Horowitz, J. L. Lions eds., Masson, Paris, 1993, pp. 241-264.
184. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A one shot domain decomposition/fictitious domain methods for the Stokes problem, in Advances in Finite Element Analysis in Fluid Dynamics-1993, M. N. Dhaubhadel, M. S. Engelman, W. G. Habashi eds., ASME, Fairfield, N. J., 1993, pp. 115-124.
185. M. SUN, R. GLOWINSKI, Pathwise approximation and simulation for the Zakai filtering equation through operator splitting, Calcolo, 30, (1993), 3, pp.219-239.
186. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A fictitious domain method for unsteady incompressible viscous flow modeled by Navier-Stokes equations, in Domain Decomposition Methods in Science and Engineering, A. Quarteroni, J. Periaux, Y. A. Kuznetsov, O. B. Widlund eds., AMS, Providence, R.I., 1994, pp. 421-431.
187. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A fictitious domain method for Dirichlet problem and applications, Comp. Meth. Appl. Mech. Eng., 111, (1994), pp. 283-303.
188. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations, Comp. Meth. Appl. Mech. Eng., 112, (1994), pp. 133-148.
189. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, On the numerical solution of the Helmholtz equation at large wave numbers using exact controllability methods. Application to scattering, in Domain Decomposition Methods in Science and Engineering, A. Quarteroni, J. Periaux, Y. A. Kuznetsov, O. B. Widlund eds., AMS, Providence, R.I., 1994, pp. 399-419.
190. R. GLOWINSKI, J. L. LIONS, Exact and approximate controllability for distributed parameter systems (I), Acta Numerica, (1994), pp. 269-378.
191. C. CARTHEL, R. GLOWINSKI, J. L. LIONS, On Exact and Approximate Boundary Controllabilities for the Heat Equation: A Numerical Approach, J. Optim. Th. and Appl., 82, (1994), 3, pp. 429-484.
192. F. S. ZHANG, F. SPIEGELMANN, E. SURAUD, V. FRAYSSE, R. POTEAU, R. GLOWINSKI, F. CHATELIN, On the formation of transient (Na19)2 and (Na20)2 cluster dimers from molecular dynamics simulation, Physics Letters A, 193, (1994), pp.75-81.
193. H. Q. CHEN, R. GLOWINSKI, J. W. HE, A. J. KEARSLEY, J. PERIAUX, O. PIRONNEAU, Remarks on optimal shape design problems, in Frontiers of Computational Fluid Dynamics, 1994, D. A. Caughey and M. M. Hafez, eds., Wiley, Chichester, 1994, pp. 67-80.
194. M. O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, On the numerical solution of the Helmholtz equation at large wave numbers using exact controllability methods. Application to scattering, in Contemporary Mathematics, Vol. 157, AMS, Providence, R.I., 1994, pp. 399-419.
195. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A One Shot Domain Decomposition / Fictitious Domain Method for the Navier-Stokes Equations, in Contemporary Mathematics, Vol. 180, AMS, Providence, R.I., 1994, pp. 211-222.
196. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Exact Controllability to solve the Helmholtz Equation with Absorbing Boundary Conditions, in Finite Element Methods: Fifty Years of the Courant Elements, K. Krizek, P. Neittaanmaki, R. Stenberg, eds., Marcel Dekker, New York, N.Y., 1994, p. 75-93.
197. J. FENG, D. D. JOSEPH, R. GLOWINSKI, T. W. PAN, A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid, J. Fluid Mech., Vol. 283, (1995), Cambridge, pp.1-16.
198. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A Lagrange Multiplier / Fictitious Domain Method for the Dirichlet Problem - Generalization to Some Flow Problems, Japan J. of Ind. and Appl. Math., Vol. 12, (1995), 1, pp. 87-108.
199. R. GLOWINSKI, T. W. PAN, J. PERIAUX, A One Shot Domain Decomposition / Fictitious Domain Method for the Solution of Elliptic Equations, in Parallel Computational Fluid Dynamics: New Trends and Advances, A. Ecer, J. Hausen, P. Leca, J. Periaux, eds., North-Holland, Amsterdam, 1995, pp. 317-324.
200. R. GLOWINSKI, T. W. PAN, J. PERIAUX, Fictitious Domain / Domain Decomposition Methods for Partial Differential Equations, Chapter 11 of Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, D. E. Keyes, Y. Saad, D. G. Truhlar, eds., SIAM, Philadelphia, 1995, pp. 177-192.
201. R. GLOWINSKI, T. W. PAN, A. J. KEARSLEY, J. PERIAUX, Numerical Simulation and Optimal Shape for Viscous Flow by a Fictitious Domain Method, Int. J. Num. Meth. Fluids, Vol. 20, (1995), pp. 695-711.
202. R. GLOWINSKI, J. L. LIONS, Exact and approximate controllability for distributed parameter systems (II), Acta Numerica, (1995), pp. 159-333.
203. M. BERGGREN, R. GLOWINSKI, A spectral preconditioner for control problems associated with linear evolution equations, East-West Journal of Numerical Mathematics, Vol. 3, (1995), 2, pp. 81-110.
204. R. GLOWINSKI, A. J. KEARSLEY, On the simulation and control of some friction constrained motions, SIAM J. of Optimization, Vol. 5,(1995), 3, pp. 681-694.
205. R. GLOWINSKI, M. HOLMSTROM, Constrained motion problems with applications by nonlinear programming methods, Surveys on Math. for Industry, 5, (1995), pp. 75-108.
206. M. O. BRISTEAU, E. J. DEAN, R. GLOWINSKI, V. KWOK, J. PERIAUX, Application of exact controllability to the computation of scattering waves, Control Problems in Industry, I. Lasiecka and B. Morton, eds., Birkhauser, Boston, (1995), pp.17-41.
207. V. GIRAULT, R. GLOWINSKI, Error analysis of a fictitious domain method applied to a Dirichlet problem, Japan Journal of Industrial and Applied Mathematics, Vol. 12, (1995), pp. 487-514.
208. R. GLOWINSKI, A. J. KEARSLEY, T. W. PAN, J. PERIAUX, Fictitious domain method for viscous flow simulation, Computational Fluid Dynamics Review 1995, M. Hafez, K. Oshima, eds., J. Wiley, Chichester, (1995), pp.357-381.
209. M. O. BRISTEAU, J. ERHEL, P. FEAT, R. GLOWINSKI, J. PERIAUX, Solving the Helmholtz equation at high-wave numbers on a parallel computer with a shared virtual memory, International J. of Supercomputing Applications, 9, (1995), 1, pp.18-28.
210. R. GLOWINSKI, T. W. PAN, J. PERIAUX, One shot fictitious domain/domain decomposition methods for three-dimensional elliptic problems. Parallel implementation on a KSR1 machine, in Parallel Computational Fluid Dynamics: New Algorithms and Applications, N. Satofuka, J. Periaux, A. Ecer, eds., Elsevier Science, Amsterdam, 1995, pp. 313-320.
211. C.H. LI, R. GLOWINSKI, Modelling and Numerical Simulation of Low-Mach-number Compressible Flows, Int. J. Num. Meth. Fluids, 23, (1996), 2, pp. 77-103.
212. R. GLOWINSKI, T.W. PAN, R.O. WELLS, X. ZHOU, Wavelet and Finite Element Solutions for the Neumann Problem Using Fictitious Domains, J. Comp. Physics, 126, (1996), 1, pp. 40-51.
213. R. GLOWINSKI, J. PERIAUX, M. SEFRIOUI, B. MANTEL, M.O. BRISTEAU, Optimal Backscattering of an Active Reflector by means of Genetic Algorithms, in Computational Methods in Applied Sciences, 96, J.A. Desideri, C. Hirsh, P. LeTallec, E. Onate, M. Pandolfi, J. Periaux, E. Stein, eds., J. Wiley, Chichester, 1996, pp. 251-257.
214. R. GLOWINSKI, T.W. PAN, J. PERIAUX, Fictitious Domain Methods for the Simulation of Stokes Flow Past a Moving Disk, in Computational Fluid Dynamics '96, in J.A. Desideri, C. Hirsh, P. LeTallec, M. Pandolfi, J. Periaux, eds, J. Wiley, Chichester, 1996, pp. 64-70.
215. M.O. BRISTEAU, R. GLOWINSKI, J. PERIAUX, Wave Scattering Using Exact Controllability, in Numerical Methods in Engineering '96, J.A. Desideri, P. Le Tallec, E. Onate, J. Periaux, E. Stein, eds., J. Wiley, Chichester, 1996, pp. 97-103.
216. E.J. DEAN, R. GLOWINSKI, D. TREVAS, An Approximate Factorization/Least Squares Solution Method for a Mixed Finite Element Approximation of the Cahn-Hilliard Equation, Japan Journal of Industrial and Applied Mathematics, 13, (1996), 3, pp. 495-517.
217. R. GLOWINSKI, A. RIEDER, R.O. WELLS, X. ZHOU, A WaveletMultigrid Preconditioner for Dirichlet Boundary Value Problems in General Domains, Math. Modelling and Num. Anal. (M2AN), 30, (1996), 6, pp. 711-729.