UH SUMMER SCHOOL 2016 HYPERBOLIC DYNAMICS AND BEYOND

DAY 1 PROBLEMS

Throughout these problems, $f : \mathbb{R} \to \mathbb{R}$ is a continuously differentiable homeomorphism and $E_{\lambda} : \mathbb{R} \to \mathbb{R}$ is defined by $E_{\lambda}(x) = \lambda x$.

Problem 1. This problem deals with the first linearization construction. Assume that f(0) = 0, f(x) < x for every x > 0 and f(x) > x for every x > 0.

- (i) Show that $\lim_{n\to\infty} f^n(x) = 0$ for every $x \in \mathbb{R}$
- (ii) The first construction of the lecture identifies a fundamental interval $I \subset \mathbb{R}$ for f and a corresponding interval $J \subset \mathbb{R}$ for E_{λ} . Then let h_0 be any orientation-preserving taking I to J, and h is the extension to \mathbb{R} defined by:

 $h(x) = \lambda^n h_0(f^{-n}(x)), n \text{ is chosen so that } f^{-n}(x) \in I$

Is h well-defined and continuous?

- (iii) Can h_0 be chosen so that h is differentiable everywhere except possibly 0?
- (iv) Can h_0 be chosen so that h is differentiable at 0? What if $\lambda = f'(0)$?

Problem 2. Show that if h is C^1 and $h \circ E_{\lambda} = E_{\lambda} \circ h$, then h(x) = cx for some c. Find some h such that $h \circ E_{\lambda_1} = E_{\lambda_2} \circ h$. What are the differentiability properties of h if $\lambda_1 \neq \lambda_2$?

Problem 3. This problem deals with the second linearization construction. Recall that here, f is assumed to be twice differentiable, f(0) = 0 and $f'(0) = \lambda > 0$. Define $\varphi(x) = f(x)/(\lambda x)$ if $x \neq 0$.

- (i) Show that φ extends continuously to 0
- (ii) Show that the continuous extension of φ is continuously differentiable, and at 0, the derivative is $\varphi'(0) = f''(0)/(2\lambda)$
- (iii) Show that the continuous solution obtained in the lecture is differentiable by differentiating directly.

Problem 4 (*). Find a continuously differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that the *h* of the second linearization construction is continuous but not differentiable.

Problem 5. This problem deals with the third linearization construction. Assume that $f(x) = \lambda x + u(x)$, with u(x) some function bounded above and below.

- (i) Without using the linearization theorem, show that f has at least one fixed point
- (ii) Show that if $|u'(x)| < |\lambda 1|$, f has a unique fixed point