UH SUMMER SCHOOL 2016 HYPERBOLIC DYNAMICS AND BEYOND

DAY 2 PROBLEMS

Problem 1. Let $f, g : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be maps of the circle. We take for granted the *lifting lemma*. That is, that there exist continuous functions $\tilde{f}, \tilde{g} : \mathbb{R} \to \mathbb{R}$ such that $f([x]) = [\tilde{f}(x)]$ (here, [x] represents the equivalence class of $x \in \mathbb{R}$ modulo the integers).¹

- (i) Show that if \tilde{f}_1 and \tilde{f}_2 are two lifts of f, then $\tilde{f}_1 \tilde{f}_2 \equiv m$ for some $m \in \mathbb{Z}$
- (ii) Show that $\tilde{f}(x+1) \tilde{f}(x) \equiv d$ for some d. d is called the *degree* of f.
- (iii) Show that $\deg(f \circ g) = \deg(f) \cdot \deg(g)$
- (iv) Show that if f is a homeomorphism, then $|\deg(f)| = 1$
- (v) Show that if f is a continuous map of degree 1 and f is a homeomorphism f is a homeomorphism
- (vi) Give an example of a continuous map of degree 1 which is not a homeomorphism (just draw the graph)
- (vii) Show that $\deg(f+g) = \deg(f) + \deg(g)$
- (viii) Show that if $\deg(f) = 0$, then \widetilde{f} is 1-periodic
- (ix) Using the previous 2 parts, show that any lift of f can be written as $\tilde{f}(x) = E_d(x) + \varphi(x)$ for some 1-periodic function $\varphi(x)$
- (x) Show that if f is expanding, $|\deg(f)| \ge 2$

Problem 2. Using the formula for the conjugacy h between an expanding map f and its linear model E_d (coming from the Hartman-Grobman theorem), show that h is Hölder continuous. That is, show that:

$$d(h(x), h(y)) \le Cd(x, y)^{\alpha}$$

For some $\alpha > 0$. Estimate α .

Problem 3. Show that if $A : \mathbb{R}^d \to \mathbb{R}^d$ is a linear map, if all eigenvalues of A have modulus > 1, then there exists a norm on \mathbb{R}^d such that $||A^{-1}|| < 1$. Furthermore, show that if there exists a norm for which $||A^{-1}|| < 1$, then for any other norm, $||A^{-n}||' < 1$ for some n (which depends on the norm).

Problem 4. A Riemannian metric on \mathbb{R}^d is a function $g : \mathbb{R}^d \to \mathcal{PD}_d$, where \mathcal{PD}_d is the space of $d \times d$ symmetric positive definite matrices. Then given a vector $v \in \mathbb{R}^d$, we can define its norm at x to be $||v||_x = v^T g(x)v$ and the inner product of v and w as $\langle v, w \rangle_x = v^T g(x)w$. Show that if f^n is expanding with respect to some Riemannian metric g, then f is expanding with respect to the adapted metric (for some $\lambda < 1$)²:

$$g_{\lambda}(x) = \sum_{n \ge 0} \lambda^n (Df_x^n)^{-1} (g \circ f^n(x)) (Df_x^n)$$

Problem 5. Show that the conjugating homeomorphism of the Hartman-Grobman theorem is a homeomorphism in \mathbb{R}^d with $d \geq 2$

¹While intuitively clear, this is a nontrivial topological lemma which requires some additional background ²First, show that this converges for nice λ and is a metric

Problem 6 (*). This problem outlines an alternate, geometric proof that all expanding maps are topologically conjugate to E_d for some d. Let $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be an expanding map of degree d.

- (i) Show that the sets $D_m = [m/d, (m+1)/d]$ have the property that $E_d(D_m) = \mathbb{R}/\mathbb{Z}$ and $E_d(\operatorname{Int}(D_m)) = \mathbb{R}/\mathbb{Z} \setminus \{0\}$
- (ii) Show that the sets $D_{m,n} = [m/d^n, (m+1)/d^n]$ have the property that $E_d(D_{m,n}) = D_{m,n-1}$ if $n \ge 2$
- (iii) Show that for each $x \in \mathbb{R}/\mathbb{Z}$, $x = \bigcap_{n=1}^{\infty} D_{m_n,n}$ for some sequence m_n with $D_{m_{n+1},n+1} \subset D_{m_n,n}$. Furthermore, show that m_n is either unique, or x takes the form c/d^N for some $c, N \in \mathbb{N}$ and the sequence m_n can be chosen in at most 2 ways.
- (iv) Show that the sequence m_n satisfies $x = \lim_{n \to \infty} \frac{m_n}{d^n}$
- (v) Show that there are intervals $\Delta_m \subset \mathbb{R}/\mathbb{Z}$ such that:
 - (a) The left endpoint on Δ₀ is a fixed point for f
 (b) f(Δ_m) = ℝ/Z
 - (c) $f(\operatorname{Int}(\Delta_m)) = \mathbb{R}/\mathbb{Z} \setminus \{0\}$
- (vi) Show that there exist intervals $\Delta_{m,n}$ such that:
 - (a) the right endpoint of $\Delta_{m,n}$ is the left endpoint of $\Delta_{m+1,n}$
 - (b) $\Delta_{m,1} = \Delta_m$
 - (c) If $n \ge 2$, $f(\Delta_{m,n}) = \Delta_{m+1,n}$
- (vii) Show that the length of $\Delta_{m,n}$ is less than $c\lambda^n$ for some $\lambda < 1$ [*Hint*: Use the expansivity of f]
- (viii) Show that if $\bigcap_{n\geq 1} \Delta_{m_n,n} = \{x_0\}$, then $\bigcap_{n\geq 1} D_{m_n,n} = \{x_1\}$ is also a singleton.
- (ix) Show that if we define $h(x_0) = x_1$, then h is well-defined, continuous and conjugates the dynamics of f and h [*Hint*: For continuity, use part (vii)]
- (x) (**) Use these to show that any expanding map is topologically semiconjugate to $\sigma : \Sigma_d^+ \to \Sigma_d^+$, the full (one-sided) shift on d symbols (the semiconjugacy will be a map $h : \Sigma_d \to S^1$ which intertwines the dynamics).