UH SUMMER SCHOOL 2016 HYPERBOLIC DYNAMICS AND BEYOND

DAY 3 PROBLEMS: THE LAST DAY 😕

Problem 1. If X is a topological space, a vector bundle over X is a function $V : X \to \operatorname{Gr}(d, k)^1$. The fiber over $x \in X$ is the space $V_x = V(x)$. A section of a vector bundle is a map $v : X \to \mathbb{R}^d$ such that $v(x) \in V_x$ for every $x \in X$.

- (i) Show that if at each point $x \in X$, $\mathbb{R}^d = E_x^s \oplus E_x^u$, then any \mathbb{R}^d -valued function $\delta : X \to \mathbb{R}^d$ can be written as $\delta = \delta^s + \delta^u$, where δ^σ is section of the vector bundle E^σ
- (ii) Show that if V is continuous, then $\mathcal{B} = \{(x, v) : v \in V(x)\}$ is a closed subspace of $X \times \mathbb{R}^d$ (\mathcal{B} is called the *total space*) and the projection $\pi : \mathcal{B} \to X$ defined by $\pi(x, v) = x$ has $\pi^{-1}(x) = V_x$
- (iii) A bundle V is called *invariant* under a dynamical system $f : X \to X$ and a cocycle A_x if $A_x V(x) \subset V(f(x))$. If $T : \mathcal{B} \to \mathcal{B}$ is defined by $T(x, v) = (f(x), A_x v)$, show that T is well-defined, continuous, and that $T^n(x, v) = (f^n(x), A_x^{(n)}(v))$
- (iv) Show that if $V = V^1 \oplus V^2$ is a sum of two subbundles, V^1 and V^2 are invariant under f and A, and $\pi_x^i : V_x \to V_x^i$ is the projection of V onto V_i , then $A_x \circ \pi_x^i = \pi_{f(x)}^i \circ A_x$
- (v) Assume that $\mathbb{R}^d = E^s \oplus E^u$, A_x is invertible and $||A_x|_{E^s}|| < \lambda < 1$ and $||A_x^{-1}|_{E^u}|| < \lambda < 1$. Let B_x be a cocycle such that $||A_x B_x|| < \varepsilon$. If V is a vector bundle, let $C(V, \delta) = \{v : \angle(v, V) < \delta\}$.
 - (a) Show that for sufficiently small $\varepsilon, \delta B_x(C(E_x^s, \delta)) \subset C(E_{f(x)}^s, \delta)$
 - (b) Show that if $d_{C^0}(f,g)$ is sufficiently small, then the same property holds
 - (c) Show that $\bigcap_{n < 0} B_x^{-n}(\overline{C(E_{q^n(x)}^s, \delta)})$ is a subspace of dimension dim E^s

Problem 2. Let Σ_d be the space of (2-sided) sequences on the alphabet $\{1, \ldots, d\}$ equipped with the metric:

$$d((x_n), (y_n)) = \sum_{n=-\infty}^{\infty} 2^{-|n|} \delta(x_n, y_n)$$

where $\delta(a, b) = 1$ if a = b and 0 otherwise. Show that the shift $\sigma : \Sigma_d \to \Sigma_d$ satisfies the same shadowing property and Anosov closing lemma proved in lecture for hyperbolic sets.

¹Technically, this definition only gives subbundles of a trivial bundle, but often this is enough

Problem 3 (Invertible Extensions). Given $f: Y \to Y$ a continuous dynamical system on a compact metric space Y, we construct a compact metric space X_f as:

$$X_f = \{(\dots, x_{-1}, x_0, x_1, \dots) : x_{i+1} = f(x_i)\} \subset Y^{\mathbb{Z}}$$

- (i) Show that X_f is a closed, σ -invariant (and hence compact) subset of $Y^{\mathbb{Z}}$
- (ii) Show that f is a factor $\sigma: X_f \to X_f$ (ie, there is a semiconjugacy $h: X_f \to Y$)
- (iii) Show that f and σ are topologically conjugate if f is invertible
- (iv) (*) Let $f = E_2 : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$. Show that σ is topologically conjugate to the Smale-Williams solenoid. An exact formula for a Smale-Williams Solenoid system $f : D^2 \times S^1 \to D^2 \times S^1$ is:

$$f(x,y) = \left(\frac{1}{10}x + \frac{1}{2}i(y), 2y\right)$$

Where $i: S^1 \to D^2$ is the inclusion of S^1 to the boundary. [*Hint*: Construct a homeomorphism h_n from the space of sequences starting from index -n to $f^n(\{0\} \times S^1)$ such that in the second coordinate, $h_{n-1} \circ \sigma = f \circ h_{n-1}$. Then take a limit in $C^0(X_f, D^2 \times S^1)$]