Honors Calculus, Math 1450: 17957- Partial Assignment 4

Dr Anna Vershynina, PGH 634

Due in class on 10/13/2017

1. Prove by induction that
(a) $\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$
(b) $\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}$
2. Use above results to show that $\int_{0}^{a} x d x=\frac{a^{2}}{2}$ and $\int_{0}^{a} x^{2} d x=\frac{a^{3}}{3}$ by using Riemann sums consisting of partitions of $[0, a]$ into n equal subintervals of length $\frac{a}{n}$ and taking the limit as n goes to infinity. Hint: Take the right endpoint as x_{i}^{*}.
