Lesson 13
Analyzing Other Types of Functions

When working with functions different from polynomials, the critical numbers are defined as
follows: The critical numbers of a function are numbers in the domain of the function where

f'(x)=0 or where f’(x)is undefined.

The derivative is undefined whenever a function has a cusp, vertical tangent, hole, vertical
asymptote, or jump discontinuity. Examples are shown below.

Cusp Vertical Tangent
Hole Vertical Asymptote

Jump Discontinuity

-8

You must use caution when the graph of the derivative of a function is undefined since if this
point is in the domain of the function, it is a critical number.
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Example 1: The graph shown below is the graph of the derivative of f(X) = Yx—x>. Give the
domain of function f and its critical numbers.
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Example 2: The graph shown below is the graph of the derivative of a function f. The original
function’s domain is (—o0,1)U(1,o0). Find any critical numbers.
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Next we’ll analyze other types of functions almost the same way we analyzed polynomial
functions in Lesson 12.

Recall the commands are slightly different:

Roots[<Function>, <Start x-Value>, <End x-Value>]

Extremum[<Function>, <Start x-Value>, <End x-Value>]

Asymptote[<function>]

Inflectionpoint[<polynomial>] will NOT WORK FOR FUNCTIONS DIFFERENT
FROM POLYNOMIALS. So we’ll simply analyze the second derivative of a function to
find any points of inflection.

A critical number is a number in the domain of the function f when f'(X) =0 or when f'(X) is
undefined.
e Intervals where f' >0, then f is increasing.

e Intervals where f' <0, then f is decreasing.
e A relative maximum or a relative minimum can only occur at a critical number.
e A function has a relative maximum if it changes from increasing to decreasing
across a critical number.

¢ A function has a relative minimum if it changes from decreasing to increasing
across a critical number.

A point where concavity changes is a point of inflection. This point must be in the domain of
the function. In order to find the candidates of points of inflection, we’ll need to find when: ’L-_ .
e f"X)=0o0r f"(x) isundefined. P. O

e Intervals where f" >0, then f is concave up.

e Intervals where f" <0, then f is concave down. ] N M/P
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Example 3: Let f(x)=3(x— 1)% +2x. Find the function’s domain, then find where the function
is increasing/decreasing and any relative extrema. Enter the function into GGB.
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Example 4: The graph below is the graph of the first derivative of a function f whose domain is
all real numbers except -1 and 1. Find any critical numbers, intervals of increase/decrease and
relative extrema for function f.
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Example 5: Let g(x) = Xz—i find the function’s domain, any intervals of concavity and any
points of inflection. ' ____
Pow\m 3 ( o) 03 U (o ) OCD

Enter the function into GGB. The graph below is the graph of the second derivative of the
function g.
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Example 6: Let f(x)=(x>—2x)e* +1. Find the function’s domain, any intervals of concavity,

and any points of inflection. .
boman (- og00)

Enter the function into GGB. The graph below is the graph of the second derivative of the
function f.
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