Math 1431

Section 16679

Bekki George: rageorge@central.uh.edu

University of Houston

09/17/19

Bekki George (UH)

Office Hours: Tuesdays & Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH

Course webpage: www.casa.uh.edu

Questions

Section 2.2 - Differentiation Formulas

The Power Rule:

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}, \ n \neq 0$$

Popper 05

• Find the derivative of $f(x) = \frac{1}{x} + \sqrt{x} + x$.

Section 2.2 - Differentiation Formulas

Higher Order Derivatives:

$$f'(x), \qquad f''(x), \qquad f'''(x), \qquad f^{(4)}(x)$$

$$\frac{d}{dx}f(x),$$
 $\frac{d^2}{dx^2}f(x),$ $\frac{d^3}{dx^3}f(x),$ $\frac{d^4}{dx^4}f(x)$

Section 2.2 - Differentiation Formulas

Examples:

Bekki George (UH)

Popper 05

$$ightarrow Find $\frac{d^2}{dx^2} \left(\frac{2}{x} - x^5 \right)$$$

Section 2.2 - Trig Derivatives

$$\frac{d}{dx}\sin(x) = \cos(x)$$

$$\frac{d}{dx}\cos(x) = -\sin(x)$$

$$\frac{d}{dx}\tan(x) = \sec^2(x)$$

$$\frac{d}{dx}\cot(x) = -\csc^2(x)$$

$$\frac{d}{dx}\sec(x) = \sec(x) \cdot \tan(x)$$

$$\frac{d}{dx}\csc(x) = -\csc(x) \cdot \cot(x)$$

Popper 05

The Product Rule:

If f and g are differentiable, then $f \cdot g$ is differentiable and

$$\frac{d}{dx}(f(x)\cdot g(x)) = f(x)\cdot g'(x) + f'(x)\cdot g(x)$$

Another way to write the Product Rule:

Suppose that $f(x) = u \cdot v$ where u and v are differentiable functions of x. Then,

$$f'(x) = u \cdot v' + u' \cdot v$$

or

$$f'(x) = u' \cdot v + u \cdot v'$$

Proof: Let $F(x) = f(x) \cdot g(x)$, then $F(x+h) = f(x+h) \cdot g(x+h)$ and

$$F'(x) = \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) \cdot g(x+h) - f(x+h) \cdot g(x) + f(x+h) \cdot g(x) - f(x) \cdot g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)[g(x+h) - g(x)] + [f(x+h) - f(x)]g(x)}{h}$$

$$= \left[\lim_{h \to 0} f(x+h)\right] \cdot \left[\lim_{h \to 0} \frac{g(x+h) - g(x)}{h}\right]$$

$$+ \left[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\right] \cdot \left[\lim_{h \to 0} g(x)\right]$$

$$= f(x) \cdot g'(x) + f'(x) \cdot g(x)$$

Examples: Find the derivative of each:

$$(3x - 1)(2x^4 - x)$$

Bekki George (UH)

$$y = x^2 \cos(x)$$

$$f(x) = (x^2 - 2x + 1)\tan(x)$$

Popper 05

• Find the derivative of $y = x^3 \cdot f(x)$.

The Quotient Rule:

If f and g are differentiable, then $\frac{f}{g}$ is differentiable (providing $g \neq 0$)

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$$

Another way to write the QuotientRule:

Suppose that $f(x) = \frac{u}{v}$ where u and v are differentiable functions of x and $v \neq 0$. Then,

$$f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$$

Examples: Find the derivative of each:

$$y = \frac{x}{x^2 + 1}$$

$$f(x) = \frac{x^2 - 4}{x - 3}$$

$$y = \frac{1}{x+1}$$

Quiz 7 Questions

5) Consider the function $f(x) = x^3 - 3x^2 + 3$. Find the points where the tangent line is horizontal.

Quiz 7 Questions

6) Given the function $f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 4x + 2$, find the points where the tangent line has slope -2.

Bekki George (UH)

Quiz 7 Questions

9) Determine the number(s), x, between 0 and 2π where the line tangent to the function $f(x) = 4\sqrt{3}\sin(x) + 4\cos(x)$ is horizontal.

Motivation behind the chain rule:

Find the derivative of each:

$$y = 5x^4$$

$$y = (2x+1)^2$$

$$y = (2x+1)^{14}$$

Recall:

Composite functions are functions within functions.

They are written f(g(x)) or $(f \circ g)(x)$.

For example:

If
$$f(x) = 3x - 4$$
 and $g(x) = x^2$

then f(g(x)) =

and
$$g(f(x)) =$$

To find the derivative of composite functions, we use the chain rule.

The Chain Rule:

Let f(x) and g(x) be separate functions of x and let y = f(g(x)), then

$$y' = f'(g(x)) \cdot g'(x)$$

or

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Where in $\frac{dy}{du}$ we have substituted y = f(x) and u = g(x).

Examples: Find the derivative of each:

$$y = (2x+1)^{14}$$

$$f(x) = (x-1)^5$$

$$y = (x^2 + 6x - 4)^3$$

$$g(x) = \sqrt{x^2 + 3}$$

$$g(x) = \sin^2(x)$$

•
$$f(x) = \left(x^2 + \frac{1}{x^2}\right)^3$$

Bekki George (UH)

Math 1431

$$f(x) = \left(\frac{x}{2x^2 + 1}\right)^3$$

Bekki George (UH)

■ Suppose G(x) = f(h(x)) with h(1) = 2, f'(1) = 3, f'(2) = -6, h'(1) = 7. Find G'(1).

Popper 05

5 $Find <math>\frac{d}{dx}(f(g(x))).$