### Math 1431

Section 16679

Bekki George: rageorge@central.uh.edu

University of Houston

10/31/19

Bekki George (UH)

Office Hours: Tuesdays & Thursdays 11:45-12:45
(also available by appointment)
Office: 218C PGH

Course webpage: www.casa.uh.edu

Questions?

#### Popper 17

• Use differentials to approximate  $\sqrt{24}$ .

Sometimes when taking the limit of a function we encounter answers in the form of  $\frac{0}{0}$  or  $\frac{\infty}{\infty}$ . These forms are called **indeterminate** because they do not guarantee that the limit exists or fails to exist, nor do they indicate what the limit is.

For the indeterminate form  $\frac{0}{0}$ , L'Hopital's Rule states:

Suppose that  $f(x) \to 0$  and  $g(x) \to 0$  as either  $x \to c^+$ ,  $x \to c^-$ ,  $x \to c$ ,  $x \to \infty$  or  $x \to -\infty$ , if  $\frac{f'(x)}{g'(x)} \to L$ , then  $\frac{f(x)}{g(x)} \to L$ .

Note that this theorem includes the possibility that the limit L equals infinity or negative infinity.

Bekki George (UH)

For the indeterminate form  $\frac{\infty}{\infty}$ , L'Hopital's Rule states:

Suppose that 
$$f(x) \to \pm \infty$$
 and  $g(x) \to \pm \infty$  as either  $x \to c^+$ ,  $x \to c^-, x \to c, x \to \infty$  or  $x \to -\infty$ , if  $\frac{f'(x)}{g'(x)} \to L$ , then  $\frac{f(x)}{g(x)} \to L$ .

Note that this theorem includes the possibility that the limit L equals infinity or negative infinity.

Examples: Find each limit.

$$\lim_{x \to 0} \frac{5e^{3x} - 5}{x^2}$$

$$\lim_{x \to \infty} \frac{7x^5 - 3x^2 + 4x}{2x^5 + x^2}$$

$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin(3x)}$$

$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

$$\lim_{x \to 0} \frac{\tan(2x)}{e^x - 1}$$

$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$$



$$\lim_{x \to 0} \frac{e^x - 1}{x^2}$$

#### Popper 17

Does L'Hopital's Rule apply?





Other indeterminate forms of L'Hopital's Rule:

$$1^{\infty}$$
  $\infty^0$   $0^0$   $0 \cdot \infty$   $\infty - \infty$ 

The first three arise from limits of functions that have variable bases and variable exponents.

When we encounter these forms, we must re-write the problem to the form of  $\frac{f(x)}{g(x)}$  in order to use LR.

#### Examples:

$$\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x =$$

$$\lim_{x \to \infty} (3^x + 4^x)^{1/x} =$$

#### Popper 17

Does L'Hopital's Rule apply?



