HOMEWORK 1

Due in class *Fri*, *Aug. 28*.

- **1.** A relation on a set X is a subset $R \subset X \times X$. To use notation more compatible with familiar examples of relations such as $=, <, >, \subset, \supset$, write xRy to mean $(x, y) \in R$. An equivalence relation is a relation with the following properties:
 - symmetric: xRy iff yRx
 - transitive: xRy and yRz implies xRz
 - **reflexive:** xRx for every x

Here is a "proof" that every relation R that is both symmetric and transitive is also reflexive: "Since R is symmetric, aRb implies bRa. Since R is transitive, aRb and bRa together imply aRa, as desired." Find the flaw in this argument.

- 2. Which of the following sets are countable?
 - (a) The set A of all functions $f: \{0, 1\} \to \mathbb{N}$.
 - (b) The set B_n of all functions $f: \{1, \ldots, n\} \to \mathbb{N}$.
 - (c) The set $C = \bigcup_{n \in \mathbb{N}} B_n$.
 - (d) The set D of all functions $f \colon \mathbb{N} \to \mathbb{N}$.
 - (e) The set E of all functions $f \colon \mathbb{N} \to \{0, 1\}$.
 - (f) The set F of all functions $f: \mathbb{N} \to \{0, 1\}$ that are "eventually zero". [We say that f is *eventually zero* if there is a positive integer N such that f(n) = 0 for all $n \ge N$.]
 - (g) The set G of all functions $f \colon \mathbb{N} \to \mathbb{N}$ that are eventually 1.
 - (h) The set H of all functions $f \colon \mathbb{N} \to \mathbb{N}$ that are eventually constant.
 - (i) The set I of all two-element subsets of \mathbb{N} .
 - (j) The set J of all finite subsets of \mathbb{N} .
- **3.** Folland, 1.2.3. Let \mathcal{M} be an infinite σ -algebra.
 - (a) \mathcal{M} contains an infinite sequence of disjoint sets.
 - (b) $\operatorname{card}(\mathcal{M}) \geq \mathfrak{c}$.
- 4. If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} . (Hint: Show that the latter object is a σ -algebra.)