HOMEWORK 10

Due in class Fri, Nov. 6.

1. Folland, 2.50. Suppose (X, \mathcal{M}, μ) is a σ -finite measure space and $f \in$ $L^+(X)$. Let

$$G_f = \{(x, y) \in X \times [0, \infty] : y \le f(x)\}.$$

Then G_f is $\mathcal{M} \times \mathcal{B}_{\mathbb{R}}$ -measurable and $\mu \times m(G_f) = \int f d\mu$; the same is also true if the inequality $y \leq f(x)$ in the definition of G_f is replaced by y < f(x). (To show measurability of G_f , note that the map $(x, y) \mapsto$ f(x) - y is the composition of $(x, y) \mapsto (f(x), y)$ and $(z, y) \mapsto z - y$.) This is the definitive statement of the familiar theorem from calculus, "the integral of a function is the area under its graph."

- **2.** Folland, 2.51. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be arbitrary measure spaces (not necessarily σ -finite).
 - (a) If $f: X \to \mathbb{C}$ is M-measurable, $q: Y \to \mathbb{C}$ is N-measurable, and h(x,y) = f(x)q(y), then h is $\mathcal{M} \otimes \mathcal{N}$ -measurable.
 - (b) If $f \in L^1(\mu)$ and $g \in L^1(\nu)$, then $h \in L^1(\mu \times \nu)$ and $\int h d(\mu \times \nu) =$ $\left[\int f \, d\mu\right] \left[\int g \, d\nu\right].$
- **3.** Folland, 2.55. Let $E = [0,1] \times [0,1]$. Investigate the existence and equality of $\int_E f \, dm^2$, $\int_0^1 \int_0^1 f(x, y) \, dx \, dy$, and $\int_0^1 \int_0^1 f(x, y) \, dy \, dx$ for the following f. (a) $f(x,y) = (x^2 - y^2)(x^2 + y^2)^{-2}$.
 - (b) $f(x,y) = (1 xy)^{-a}$ for some a > 0. (c) $f(x,y) = \begin{cases} (x \frac{1}{2})^{-3} & \text{if } 0 < y < |x \frac{1}{2}|, \\ 0 & \text{otherwise.} \end{cases}$
- 4. Folland, 2.59. Let $f(x) = x^{-1} \sin x$. (a) Show that $\int_0^\infty |f(x)| \, dx = \infty$.

 - (b) Show that $\lim_{b\to\infty} \int_0^b f(x) \, dx = \frac{1}{2}\pi$ by integrating $e^{-xy} \sin x$ with respect to x and y. (In view of part (a), some care is needed in passing to the limit as $b \to \infty$.)