HOMEWORK 11

Due in class Fri, Nov. 13.

- **1.** Folland, 2.64. For which real values of a and b is $|x|^a |\log |x||^b$ integrable over $\{x \in \mathbb{R}^n : |x| < \frac{1}{2}\}$? Over $\{x \in \mathbb{R}^n : |x| > 2\}$?
- **2.** Folland, 3.2. If ν is a signed measure, E is ν -null iff $|\nu|(E) = 0$. Also, if ν and μ are signed measures, $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.
- **3.** Folland, 3.4. If ν is a signed measure and λ, μ are positive measures such that $\nu = \lambda \mu$, then $\lambda \ge \nu^+$ and $\mu \ge \nu^-$.
- **4.** Folland, 3.6. Suppose $\nu(E) = \int_E f d\mu$ where μ is a positive measure and f is an extended μ -integrable function. Describe the Hahn decomposition of ν and the positive, negative, and total variations of ν in terms of f and μ .
- 5. Folland, 3.7. Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$. (a) $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$ and $\nu^-(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\}$
 - $F \in \mathcal{M}, F \subset E\}.$ (b) $|\nu|(E) = \sup\{\sum_{j=1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{j=1}^{n} E_j = E\}.$