HOMEWORK 4

Due in class Fri, Sep. 18.

- **1.** Folland, 1.18. Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure.
 - (a) For any $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*(A) \le \mu^*(E) + \epsilon.$
 - (b) If $\mu^*(E) < \infty$, then E is μ^* -measurable iff there exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B \setminus E) = 0$.
 - (c) If μ_0 is σ -finite, the restriction $\mu^*(E) < \infty$ in (b) is superfluous.
- **2.** Folland, 1.19. Let μ^* be an outer measure on X induced from a finite premeasure μ_0 . If $E \subset X$, define the **inner measure** of E to be $\mu_*(E) = \mu_0(X) - \mu^*(E^c)$. Then E is μ^* -measurable iff $\mu^*(E) = \mu_*(E)$. (Use the previous exercise.)
- **3.** Folland, 1.23. Let \mathcal{A} be the collection of finite unions of sets of the form $(a, b] \cap \mathbb{Q}$ where $-\infty \leq a < b \leq \infty$.
 - (a) \mathcal{A} is an algebra on \mathbb{Q} . (Use Proposition 1.7.)
 - (b) The σ -algebra generated by \mathcal{A} is $\mathcal{P}(\mathbb{Q})$.
 - (c) Define μ_0 on \mathcal{A} by $\mu_0(\emptyset) = 0$ and $\mu_0(A) = \infty$ for $A \neq \emptyset$. Then μ_0 is a premeasure on \mathcal{A} , and there is more than one measure on $\mathcal{P}(\mathbb{Q})$ whose restriction to \mathcal{A} is μ_0 .
- **4.** Folland, 1.30. If $E \in \mathcal{L}$ and m(E) > 0, for any $\alpha < 1$ there is an open interval I such that $m(E \cap I) > \alpha m(I)$. (Recall that m is Lebesgue measure and \mathcal{L} is the collection of Lebesgue measurable sets.)
- 5. Folland, 1.32. Suppose $\{\alpha_j\}_1^\infty \subset (0,1)$. (a) $\prod_1^\infty (1-\alpha_j) > 0$ iff $\sum_1^\infty \alpha_j < \infty$. (Compare $\sum_1^\infty \log(1-\alpha_j)$ to $\sum \alpha_i$.)
 - (b) Given $\beta \in (0, 1)$, exhibit a sequence $\{\alpha_j\}$ such that $\prod_{j=1}^{\infty} (1 \alpha_j) =$ β.