HOMEWORK 5

Due in class Fri, Sep. 25.

- 1. Folland, 1.28. Let F be increasing and right continuous, and let μ_F be the associated measure. Then $\mu_F(\{a\}) = F(a) F(a-), \ \mu_F([a,b]) = F(b-) F(a-), \ \mu_F([a,b]) = F(b) F(a-), \ \text{and} \ \mu_F((a,b)) = F(b-) F(a).$ Here $F(x-) := \lim_{y \to x^-} F(y).$
- **2.** Folland, 1.31. If $E \in \mathcal{L}$ and m(E) > 0, the set $E E = \{x y \mid x, y \in E\}$ contains an interval centered at 0. (If I is an open interval as in Exercise 30 with $\alpha > \frac{3}{4}$, so $m(E \cap I) > \alpha m(I)$, then E E contains $(-\frac{1}{2}m(I), \frac{1}{2}m(I))$.)
- **3.** As in the lecture, let *S* be a finite set with *d* elements, and $X = S^{\mathbb{N}}$ the space of infinite sequences of symbols from *S*, with $d(x, y) = 2^{-\min\{n|x_n \neq y_n\}}$. Recall that given a word $w \in S^n$, we write |w| = n, and $[w] = \{x \in X \mid x_i = w_i \text{ for all } 1 \leq i \leq n\}$ for the *cylinder* defined by *w*.

The shift map on X is $\sigma: X \to X$ defined by $\sigma(x_1x_2x_3\cdots) = x_2x_3x_4\cdots$. A Borel measure μ on X is said to be σ -invariant if $\mu(\sigma^{-1}E) = \mu(E)$ for every Borel set $E \subset X$. Prove the following.

- (a) For every probability vector p, the Bernoulli measure μ defined by $\mu[w] = \prod_{i=1}^{|w|} p_{w_i}$ is σ -invariant.
- (b) If $x \in X$ is a periodic sequence (there is k such that $x_{n+k} = x_n$ for all $n \in \mathbb{N}$), then the measure $\mu = \frac{1}{k} \sum_{i=0}^{k-1} \delta_{\sigma^i x}$ is σ -invariant, where δ_y is the point mass at y defined by

$$\delta_y(E) = \begin{cases} 1 & \text{if } y \in E, \\ 0 & \text{otherwise.} \end{cases}$$

(c) Given a probability vector π and a $d \times d$ matrix P whose rows are probability vectors, recall that the Markov measure defined by (π, P) is given by $\mu[w] = \pi_{w_1} \prod_{i=1}^{|w|-1} P_{w_i w_{i+1}}$. Prove that this measure is σ -invariant if and only if π is a left eigenvector of Pwith eigenvalue 1; that is, iff $\pi P = \pi$. 4. Let X be as in the previous problem and let μ be a σ -invariant measure. Consider for each $n \in \mathbb{N}$ the number

$$H_n(\mu) := \sum_{w \in S^n} -\mu[w] \log \mu[w].$$

- (a) Prove that $H_{m+n}(\mu) \leq H_m(\mu) + H_n(\mu)$ for every $m, n \in \mathbb{N}$; that is, the sequence $\{H_n(\mu)\}_n$ is subadditive.
- (b) Prove that if a_n is any subadditive sequence $(a_{m+n} \leq a_m + a_n)$, then $\lim_{n\to\infty} \frac{1}{n}a_n$ exists and is equal to $\inf_n \frac{1}{n}a_n$.
- (c) The previous two parts show that the limit $\lim_{n\to\infty} \frac{1}{n}H_n(\mu)$ exists for any μ . Denote this limit by $h(\mu)$; this is called the *(Kolmogorov-Sinai) entropy* of μ . Prove that if μ is a Bernoulli measure given by a probability vector p, then $h(\mu) = \sum_{i=1}^{d} -p_i \log p_i$.