HOMEWORK 6

Due in class Fri, Oct. 2.

- **1.** Folland, 2.4. If $f: X \to \overline{\mathbb{R}}$ and $f^{-1}((r, \infty]) \in \mathcal{M}$ for each $r \in \mathbb{Q}$, then f is measurable.
- 2. Folland, 2.6. The supremum of an uncountable family of measurable $\overline{\mathbb{R}}$ -valued functions on X can fail to be measurable (unless the σ -algebra \mathcal{M} is very special).
- **3.** Folland, 2.7. Suppose that for each $\alpha \in \mathbb{R}$ we are given a set $E_{\alpha} \in \mathcal{M}$ such that $E_{\alpha} \subset E_{\beta}$ whenever $\alpha < \beta$, $\bigcup_{\alpha \in \mathbb{R}} E_{\alpha} = X$, and $\bigcap_{\alpha \in \mathbb{R}} E_{\alpha} = \emptyset$. Then there is a measurable function $f: X \to \mathbb{R}$ such that $f(x) \leq \alpha$ on E_{α} and $f(x) \geq \alpha$ on E_{α}^{c} for every α . (Use Exercise 2.4.)
- **4.** Folland, 2.9. Let $f: [0,1] \to [0,1]$ be the Cantor function (§1.5), and let g(x) = f(x) + x. Recall that f is defined as follows: given $x \in C$ with $x = \sum_{1}^{\infty} a_j 3^{-j}$ for $a_j \in \{0,2\}$, let $f(x) = \sum_{1}^{\infty} \frac{a_j}{2} 2^{-j}$. This was referred to in the lecture as the 'devil's staircase'.
 - (a) g is a bijection from [0, 1] to [0, 2], and $h = g^{-1}$ is continuous from [0, 2] to [0, 1].
 - (b) If C is the Cantor set, m(g(C)) = 1.
 - (c) Let $A \subset g(C)$ be a Lebesgue nonmeasurable set (such a set exists by Exercise 1.29). Let $B = g^{-1}(A)$. Then B is Lebesgue measurable but not Borel.
 - (d) There exist a Lebesgue measurable function F and a continuous function G on \mathbb{R} such that $F \circ G$ is not Lebesgue measurable.