HOMEWORK 7

Due in class Fri, Oct. 9.

- **1.** Folland, 2.12. Prove Proposition 2.20: If $f \in L^+$ and $\int f < \infty$, then $\{x \mid f(x) = \infty\}$ is a null set and $\{x \mid f(x) > 0\}$ is σ -finite. (See Proposition 0.20, where a special case is proved.)
- **2.** Folland, 2.13. Suppose $\{f_n\} \subset L^+$, $f_n \to f$ pointwise, and $\int f = \lim \int f_n < \infty$. Then $\int_E f = \lim \int_E f_n$ for all $E \in \mathcal{M}$. However, this need not be true if $\int f = \lim \int f_n = \infty$.
- **3.** Folland, 2.14. If $f \in L^+$, let $\lambda(E) = \int_E f d\mu$ for $E \in \mathcal{M}$. Then λ is a measure on \mathcal{M} , and for any $g \in L^+$, $\int g d\lambda = \int fg d\mu$. (First suppose that g is simple.)
- 4. *Folland*, 2.17. Assume Fatou's lemma and deduce the monotone convergence theorem from it.