HOMEWORK 9

Due in class Fri, Oct. 30.

1. Folland, 2.32. Suppose $\mu(X) < \infty$. If f and g are complex-valued measurable functions on X, define

$$\rho(f,g) = \int \frac{|f-g|}{1+|f-g|} \, d\mu.$$

Then ρ is a metric on the space of measurable functions if we identify functions that are equal a.e., and $f_n \to f$ with respect to this metric iff $f_n \to f$ in measure.

- **2.** Folland, 2.33. If $f_n \ge 0$ and $f_n \to f$ in measure, then $\int f \le \liminf \int f_n$.
- **3.** Folland, 2.34. Suppose $|f_n| \leq g \in L^1$ and $f_n \to f$ in measure. (a) $\int f = \lim \int f_n$. (b) $f_n \to f$ in L^1 .
- **4.** Folland, 2.44. (Lusin's Theorem). If $f: [a, b] \to \mathbb{C}$ is Lebesgue measurable and $\epsilon > 0$, there is a compact set $E \subset [a, b]$ such that $\mu(E^c) < \epsilon$ and $f|_E$ is continuous. (Use Egorov's theorem and Theorem 2.26.)
- **5.** Folland, 2.46. Let X = Y = [0, 1], $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$, μ = Lebesgue measure, and ν = counting measure. If $D = \{(x, x) \mid x \in [0, 1]\}$ is the diagonal in $X \times Y$, then $\iint \mathbf{1}_D d\mu d\nu$, $\iint \mathbf{1}_D d\nu d\mu$, and $\int \mathbf{1}_D d(\mu \times \nu)$ are all unequal. (To compute $\int \mathbf{1}_D d(\mu \times \nu) = (\mu \times \nu)(D)$, go back to the definition of $\mu \times \nu$.)