HOMEWORK 1

Due in class Wednesday, Jan. 28.

- 1. (Lee, Problem 1-4). Locally finite covers
 - Let M be a topological manifold, and let \mathcal{U} be an open cover of M.
 - (a) Suppose each set in \mathcal{U} intersects only finitely many others. Show that \mathcal{U} is locally finite that is, every point of M has a neighbourhood that intersects at most finitely many of the sets in \mathcal{U} .
 - (b) Give an example showing that the converse may be false.
 - (c) Show that the converse is true if the elements of \mathcal{U} are precompact (have compact closures).
- **2.** (Lee, Problem 1-6). Distinct smooth structures
 - Let M be a nonempty topological manifold of dimension $n \ge 1$. If M has a smooth structure, show that it has uncountably many distinct ones. [Hint: first show that for any s > 0, $F_s(x) = |x|^{s-1}x$ defines a homeomorphism from the unit ball in \mathbb{R}^n to itself, which is a diffeomorphism if and only if s = 1.]
- 3. (Lee, Problem 1-7). Stereographic coordinates Let $N = (0, ..., 0, 1) \in S^n \subset \mathbb{R}^{n+1}$ be the north pole, and S = (0, ..., 0, -1) the south pole. The stereographic projection from the north pole is $\sigma \colon S^n \setminus \{N\} \to \mathbb{R}^n$ given by

$$\sigma(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}.$$

The stereographic projection from the south pole is $\tilde{\sigma}(x) = -\sigma(-x)$ for $x \in S^n \setminus \{S\}$.

- (a) Given $x \in S^n \setminus \{N\}$, show that $(\sigma(x), 0)$ is the point where the line in \mathbb{R}^{n+1} through N and x intersects the linear subspace $x^{n+1} = 0$. Prove a similar result for $\tilde{\sigma}(x)$ when $x \in S^n \setminus \{S\}$.
- (b) Show that σ is bijective, with

$$\sigma^{-1}(u^1, \dots, u^n) = \frac{(2u^1, \dots, 2u^n, |u|^2 - 1)}{|u|^2 + 1}$$

Math 7350	Homework 1	Page 2 of 2

- (c) Compute the transition map $\tilde{\sigma} \circ \sigma^{-1}$ and verify that the atlas consisting of the two stereographic projection charts defines a smooth structure on S^n .
- (d) Show that this smooth structure is the same as the one defined in lecture (Example 1.31 in the book).

4. (Lee, Problem 1-9). Complex projective n-space

Complex projective *n*-space, denoted by $\mathbb{C}P^n$, is the set of all 1-dimensional complex-linear subspaces of \mathbb{C}^{n+1} , with the quotient topology inherited from the natural projection $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{C}P^n$. Show that $\mathbb{C}P^n$ is a compact 2*n*-dimensional topological manifold, and show how to give it a smooth structure analogous to the one we constructed for $\mathbb{R}P^n$. Note that we identify \mathbb{C}^{n+1} with \mathbb{R}^{2n+2} via the correspondence

 $(x^1 + iy^1, \dots, x^{n+1} + iy^{n+1}) \leftrightarrow (x^1, y^1, \dots, x^{n+1}, y^{n+1}).$

5. (Lee, Exercise 1.18). Compatibility of atlases

Let M be a topological manifold. Show that two smooth atlases for M determine the same smooth structure if and only if their union is a smooth atlas.