HOMEWORK 2

Due in class Wednesday, Feb. 4.

1. More on Grassmannians

Let V be a n-dimensional real vector space and recall that given an integer $1 \leq k \leq n$, $G_k(V)$ is the Grassmann manifold whose elements are all the k-dimensional subspaces of V.

- (a) We have seen that $G_k(V)$ is a smooth manifold for each k. Prove that it is compact.
- (b) Prove that $G_k(V)$ and $G_{n-k}(V)$ are diffeomorphic.
- **2.** (Lee, Problem 2-8). Define $F : \mathbb{R}^n \to \mathbb{R}P^n$ by $F(x^1, \ldots, x^n) = [x^1, \ldots, x^n, 1]$. Show that F is a diffeomorphism onto a dense open subset of $\mathbb{R}P^n$. Do the same for $G : \mathbb{C}^n \to \mathbb{C}P^n$ defined by $G(z^1, \ldots, z^n) = [z^1, \ldots, z^n, 1]$.
- **3.** (Lee, Problem 2-9). Let p be a non-zero polynomial in one variable with complex coefficients. Show that there is a unique continuous map $\tilde{p}: \mathbb{C}P^1 \to \mathbb{C}P^1$ such that the following diagram commutes, where G is as in the previous problem.

$$\begin{array}{c} \mathbb{C} \xrightarrow{G} \mathbb{C}P^1 \\ \downarrow^p & \downarrow^{\tilde{p}} \\ \mathbb{C} \xrightarrow{G} \mathbb{C}P^1 \end{array}$$

Show that the map \tilde{p} is smooth. Is it a diffeomorphism?

- 4. (Lee, Problem 2-10). Smoothness via functions For any topological space M, let C(M) denote the algebra of continuous functions $f: M \to \mathbb{R}$. Given a continuous map $F: M \to N$, define $F^*: C(N) \to C(M)$ by $F^*(f) = f \circ F$.
 - (a) Show that F^* is a linear map.
 - (b) Suppose M and N are smooth manifolds. Show that $F: M \to N$ is smooth if and only $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$.
 - (c) Suppose $F: M \to N$ is a homeomorphism between smooth manifolds. Show that it is a diffeomorphism iff F^* restricts to an isomorphism from $C^{\infty}(N)$ to $C^{\infty}(M)$.

5. Tori as quotients by lattices

Let $v, w \in \mathbb{R}^2$ be independent (hence a basis), and let $\Lambda = v\mathbb{Z} + w\mathbb{Z} = \{av + bw \mid a, b \in \mathbb{Z}\}$. We say that $\Lambda \subset \mathbb{R}^2$ is a **lattice**. The lattice Λ induces an equivalence relation on \mathbb{R}^2 by putting $x \sim y$ iff $x - y \in \Lambda$. Let $M_{\Lambda} = \mathbb{R}^2/\Lambda$ be the topological space obtained as the quotient of \mathbb{R}^2 by this equivalence relation.

- (a) Fix a lattice Λ and let $\pi : \mathbb{R}^2 \to M_\Lambda$ be the quotient map. Given $p \in \mathbb{R}^2$ and $r \in (0, \frac{1}{2})$, let $\hat{U}_p^r = B_r(p) \subset \mathbb{R}^2$, and show that $\pi|_{\hat{U}_p^r}$ is a bijection onto its image $U_p^r \subset M_\Lambda$. Let $\varphi_p^r = \pi|_{\hat{U}_p^r}^{-1} : U_p^r \to \hat{U}_p^r$. Let $r_0 = \frac{1}{2} \min\{|u| : u \in \Lambda, u \neq \mathbf{0}\}$. Show that the collection $\mathcal{A} = \{(U_p^r, \varphi_p^r) \mid p \in \mathbb{R}^2, 0 < r < r_0\}$ satisfies the conditions of the smooth manifold chart lemma, so M_Λ is a smooth manifold with smooth structure generated by this atlas.
- (b) Let Λ_1 and Λ_2 be any two lattices in \mathbb{R}^2 , and show that M_{Λ_1} and M_{Λ_2} are diffeomorphic (when equipped with the smooth structure from the previous part). **Hint:** Start by finding a smooth map $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ such that $F(\Lambda_1) = \Lambda_2$.
- (c) Let $\Lambda = \mathbb{Z}^2$ be the lattice generated by the standard basis vectors, and show that M_{Λ} is diffeomorphic to the torus $\mathbb{T}^2 = S^1 \times S^1$ with its standard smooth structure.

Remarks:

- The last two parts show that $M_{\Lambda} \approx \mathbb{T}^2$ for any lattice Λ . You should convince yourself that $\Lambda = \{(1,0), (0,1)\}$ corresponds to the square with opposite edges identified (the usual planar model of the torus), and that $\Lambda = \{(1,0), (\frac{1}{2}, \frac{\sqrt{3}}{2})\}$ corresponds to the hexagon with opposite edges identified (an alternate planar model). (Question: what does "corresponds to" mean here?)
- This works in any dimension: one can define a lattice in Rⁿ as the integer span of a basis, and then get Tⁿ = Rⁿ/Λ.
- In two dimensions, one can also put some extra structure on M_{Λ} by identifying \mathbb{R}^2 with \mathbb{C} and observing that the transition maps between charts in \mathcal{A} are holomorphic. Thus M_{Λ} is an example of a **Riemann surface**, a manifold with (real) dimension two equipped with an atlas whose local coordinates are in \mathbb{C} and whose transition maps are holomorphic. It turns out that while M_{Λ_1} and M_{Λ_2} are equivalent as smooth manifolds, they are not always equivalent as Riemann surfaces. Classifying tori up to equivalence as Riemann surfaces leads to something called *Teichmüller theory*.