HOMEWORK 7

Due in class Wed, Apr. 8.

1. Lee, Problem 5-6. Suppose $M \subset \mathbb{R}^n$ is an embedded *m*-dimensional submanifold, and let $UM \subset T\mathbb{R}^n$ be the set of all unit tangent vectors to M:

$$UM := \{ (x, v) \in T\mathbb{R}^n \mid x \in M, v \in T_x M, |v| = 1 \}.$$

It is called the *unit tangent bundle of* M. Prove that UM is an embedded (2m-1)-dimensional submanifold of $T\mathbb{R}^n \approx \mathbb{R}^n \times \mathbb{R}^n$.

2. Lee, Problem 6-2. Prove the Whitney immersion theorem: every smooth *n*-manifold admits a smooth immersion into \mathbb{R}^{2n} .

Hint: using the Whitney embedding theorem, we can assume without loss of generality that M is an embedded n-dimensional submanifold of \mathbb{R}^{2n+1} . Let $UM \subset T\mathbb{R}^{2n+1}$ be the unit tangent bundle of M, and let $G: UM \to \mathbb{R}P^{2n}$ be the map G(x, v) = [v]. Use Sard's theorem to conclude that there is some $v \in \mathbb{R}^{2n+1} \setminus \mathbb{R}^{2n}$ such that [v] is not in the image of G, and show that the projection from \mathbb{R}^{2n+1} to \mathbb{R}^{2n} with kernel $\mathbb{R}v$ restricts to an immersion of M into \mathbb{R}^{2n} .

- **3.** Lee, Problem 7-1. Show that for any Lie group G, the multiplication map $m: G \times G \to G$ is a smooth submersion. Hint: use local sections
- 4. Lee, Problem 7-4. Let det: GL(n, R) → R be the determinant function. Use Corollary 3.25 to compute the differential of det, as follows.
 (a) For any A ∈ M(n, R), show that

$$\left. \frac{d}{dt} \right|_{t=0} \det(I_n + tA) = \operatorname{Tr} A.$$

Hint: Writing determinant as a sum over permutations, $det(I_n + tA)$ is a polynomial in t. What is the linear term?

(b) For $X \in GL(n, \mathbb{R})$ and $B \in T_X GL(n, \mathbb{R}) \cong M(n, \mathbb{R})$, show that

$$d(\det)_X(B) = (\det X) \operatorname{Tr}(X^{-1}B).$$

Hint: $\det(X + tB) = \det(X) \det(I_n + tX^{-1}B).$

Math 7350	Homework 7	Page 2 of 2

5. Lee, Problem 7-11. Considering S^{2n+1} as the unit sphere in \mathbb{C}^{n+1} , define an action of S^1 on S^{2n+1} , called the *Hopf action*, by

$$z \cdot (w^1, \dots, w^{n+1}) = (zw^1, \dots, zw^{n+1}).$$

Show that this action is smooth and its orbits are disjoint unit circles in \mathbb{C}^{n+1} whose union is S^{2n+1} .