
REVIEW SHEET: BASICS OF MEASURES AND INTEGRATION

VAUGHN CLIMENHAGA – MATH 6320, FALL 2017

This document contains the essential definitions, examples, and properties that
you need to know. It is written in a somewhat informal style with the goal of giving
an overview that can be read easily; you should refer to the textbook/notes for careful
statements and full details.

Most of the exercises included here are (in my opinion) straightforward applica-
tions of the relevant definitions and have solutions requiring only a few lines. In
cases where the solution requires a little more thought and a more creative step is
needed, I have marked the exercise with a +. In cases where the solution is relatively
straightforward but would be tedious to write down in full detail, I have marked the
exercise with a *.

1. Measures

1.1. Algebras and σ-algebras.

Definition 1.1. Let X be a set and 2X := {A ⊂ X} its power set. An algebra on
X is a collection A ⊂ 2X that contains X and is closed under complements and
finite unions. A σ-algebra is an algebra that is also closed under countable unions.

Exercise 1. If the above is taken as the definition of an algebra, then every algebra
is also closed under finite intersections, so this definition agrees with the one in Cohn’s
book. Similarly for σ-algebras.

Exercise 2. (Folland 1.4): Show that an algebra A is a σ-algebra iff A is closed under
countable increasing unions (i.e., if {Ej}∞1 ⊂ A and E1 ⊂ E2 ⊂ · · · , then

⋃∞
1 Ej ∈ A).

Proposition 1.2. The intersection of σ-algebras is a σ-algebra.

Definition 1.3. The σ-algebra generated by F ⊂ 2X is denoted by σ(F) and is
the intersection of all σ-algebras containing F . The most important example comes
when X = Rd and F is the collection of open subsets; then σ(F) is the Borel
σ-algebra on Rd and is denoted B(Rd).

Exercise 3. Describe 4 other examples of σ-algebras on R.

Example 1.4. Let X = {0, 1}N be the set of all infinite binary sequences. Given a
finite binary word w = w1 · · ·wn ∈ {0, 1}n, let C(w) = {x ∈ X : xi = wi ∀1 ≤ i ≤ n}
be the corresponding cylinder set. Let Fn := {C(w) : w ∈ {0, 1}k, 0 ≤ k ≤ n} be the
collection of cylinder sets of order ≤ n, and let An := σ(Fn). If we view x ∈ X as

1
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one specific outcome of an of an infinite sequence of experiments, so that xn records
the outcome of the nth experiment, then An is the σ-algebra consisting of all events
which are determined by the first n experiments.

Exercise 4. In the above example, let F =
⋃
n∈NFn be the collection of all cylinder

sets, and let A = σ(F). Is it true that A =
⋃
n∈NAn?

1.2. Measures.

Definition 1.5. Let X be a set and A a σ-algebra on X. Then (X,A) is called a
measurable space. A measure on (X,A) is a countably additive function µ : A →
[0,+∞] such that µ(∅) = 0. The triple (X,A, µ) is a measure space.

Example 1.6. Counting measure. The point mass at x for any x ∈ X.

Exercise 5. (Bass 3.4): Prove that µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B).

Definition 1.7. A measure µ is said to be finite if µ(X) <∞ and σ-finite if there
is a sequence An ∈ A such that X =

⋃
n∈NAn and µ(An) <∞ for all n.

All the measures we consider in this course will be σ-finite.

Proposition 1.8. Measures are monotonic: A ⊂ B implies µ(A) ≤ µ(B). If
A1 ⊂ A2 ⊂ · · · then µ(

⋃
nAn) = limn µ(An). If A1 ⊃ A2 ⊃ · · · and µ(A1) < ∞

then µ(
⋂
nAn) = limn µ(An).

Exercise 6. (Bass 3.1): Let (X,A) be a measurable space and µ : A → [0,∞] a
finitely additive function with µ(∅) = 0. Suppose that whenever An ∈ A is a sequence
with An ⊂ An+1 for all n, we have µ(

⋃
nAn) = limn µ(An). Prove that µ is a measure.

1.3. Outer measures. Our most important tool for defining measures relies on the
following notions.

Definition 1.9. An outer measure on X is a function µ∗ : 2X → [0,∞] that is
monotonic, countably subadditive, and has µ∗(∅) = 0. A set E ⊂ X is µ∗-measurable
if

(1) µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec)

for every A ⊂ X.

To remember the definition of µ∗-measurability, it may be helpful to think of
x ∈ X as representing a random point, with x ∈ E representing the statement
that some event occurs, and x ∈ Ec representing the statement that the event does
not occur. Then the terms on the right-hand side of (1) represent the conditional
probabilities that an event A occurs, conditioned on whether or not E occurred. The
µ∗-measurable events are those that behave well when we use them as conditions.

Theorem 1.10. If µ∗ is an outer measure on X, then the collection A ⊂ 2X of
µ∗-measurable sets is a σ-algebra, and µ = µ∗|A is a measure.
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Example 1.11. One can check that the following formula defines an outer measure
on R, called Lebesgue outer measure:

(2) λ∗(A) = inf

{∑
i

(bi − ai) : {ai, bi}∞i=1 ⊂ R, A ⊂
∞⋃
i=1

(ai, bi)

}
.

A λ∗-measurable set is called Lebesgue measurable; the collection of such sets is
the Lebesgue σ-algebra on R. Every open interval is Lebesgue measurable and has
λ∗((a, b)) = b − a. Thus the Lebesgue σ-algebra contains the Borel sets, and the
Lebesgue measure λ generalizes the notion of length.

This example is a specific case of the following general framework for constructing
outer measures, and hence measures, represented by the schematic here:

premeasure ` on
an algebra A0

−→ outer measure
µ∗ on 2X

−→ measure µ on σ-algebraA of
µ∗-measurable sets

Definition 1.12. A premeasure on an algebra A0 is a function ` : A0 → [0,∞] that
has µ(∅) = 0 and for which `(

⊔∞
i=1Ai) =

∑
i `(Ai) whenever A1, A2, · · · ∈ A0 are

disjoint sets for which
⊔
iAi is also in A0.

Note that premeasures are finitely additive since given disjoint A1, . . . , An ∈ A0,
we can put Ai = ∅ for all i > n and then apply the definition. The following
result is Theorem 4.16 in Bass’s book, and formalizes the procedure outlined in the
schematic.

Theorem 1.13 (Carathéodory extension theorem). If A0 is an algebra on X and `
is a premeasure on A0, then

µ∗(A) = inf

{ ∞∑
i=1

µ(Ai) : A1, A2, · · · ∈ A0, A ⊂
∞⋃
i=1

Ai

}
defines an outer measure on X with the following properties:

(1) µ∗(A) = `(A) for all A ∈ A0;
(2) every A ∈ A0 is µ∗-measurable.

The first of these properties shows that µ∗ extends `, rather than redefining its
values; the second property guarantees that when we obtain a measure µ from µ∗

by restricting to the σ-algebra A of all µ∗-measurable sets, we have A ⊃ σ(A0).

Exercise 7. * Describe the algebra on R generated by the collection of all open intervals
(including intervals of the form (a,∞) and (−∞, b)), and describe the premeasure on
this algebra that leads to Lebesgue outer measure.

Exercise 8. + (Folland 1.30): Given a Lebesgue measurable set E ⊂ R with λ(E) > 0,
show that for every α < 1 there is an open interval I ⊂ R such that λ(E ∩ I) > αλ(I).
Hint: argue by contradiction, cover E by an arbitrary collection of open intervals, and
use the definition of Lebesgue measure in (2).
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Exercise 9. ** Describe the algebra on Rd generated by the collection of all sets of the
form (a1, b1)× (a2, b2)× · · · × (ad, bd), where we allow ai = −∞ and/or bi =∞. Then
describe the premeasure on this algebra that gives each such set the mass

∏d
i=1(bi−ai).

The premeasure in the last exercise leads to Lebesgue measure on Rd.

Example 1.14. Let X = {0, 1}N be the set of infinite binary sequences, and let

A0 = {
⊔k
i=1Ci : C1, . . . , Ck ⊂ X are cylinder sets, k ∈ N}. Then A0 is an algebra

(prove it!) and given p ∈ (0, 1) we can define a premeasure µp as follows: if C is the
cylinder set associated to a word w1 · · ·wn, then let

µp(C) = p#{1≤i≤n:wi=0}(1− p)#{1≤i≤n:wi=1}.

Extending µp to A0 by finite additivity gives a premeasure, which gives first an outer
measure and then a measure on X that we call the (p, 1− p)-Bernoulli measure.

Finally, one can give a complete description of all finite measures on R: the
statement of the following proposition does not use outer measures, but the proof
does (see Proposition 1.3.8 in Cohn).

Proposition 1.15. If µ is a finite Borel measure on R, then the function F : R→
[0,∞) defined by F (x) = µ((−∞, x]) is bounded, non-decreasing, right-continuous,
and has limx→−∞ F (x) = 0. Conversely, given any function with these properties,
there is a unique finite Borel measure µ on R such that µ((−∞, x]) = F (x).

Exercise 10. Given µ and F as in the proposition and x ∈ R, show that the function
F is continuous at x if and only if µ({x}) = 0.

Exercise 11. (Bass 4.6): Let (X,A, µ) be a probability space (a measure space for
which µ(X) = 1) and let An ∈ A for every n. Let B consist of those points x that are
in infinitely many of the An.

(a) Show that B ∈ A.
(b) If µ(An) > δ > 0 for all n, show that µ(B) ≥ δ.
(c) Prove the Borel-Cantelli lemma:1 If

∑
n µ(An) <∞, then µ(B) = 0.

(d) With X = [0, 1] and µ = λ, find An with
∑

n µ(An) =∞ but µ(B) = 0.
Hint: it will help to consider the sets BN :=

⋃
n≥N An.

1.4. Properties of Lebesgue measure on Rd.

Definition 1.16. Let A be a σ-algebra on Rd that contains B(Rd), and let µ be a
measure on A. We say that µ is regular if for every A ∈ A we have2

µ(A) = inf{µ(U) : A ⊂ U and U is open}
= sup{µ(K) : K ⊂ A and K is compact}.

1This is a result from probability theory saying that if a sequence of events, such as our An’s,
have summable probabilities, then with probability 1, only finitely many of them occur.

2Different authors may use slightly different definitions of ‘regular’; indeed, Cohn’s definition is
not quite the one given here. In all the spaces we will encounter, the definitions are equivalent.
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Proposition 1.17. Lebesgue measure on Rd is regular; in fact, every finite Borel
measure on Rd is regular.

Definition 1.18. A set A ⊂ Rd is called a Gδ set if A =
⋂∞
n=1 Un for some sequence

of open sets Un ⊂ Rd. It is called a Fσ set if A =
⋃∞
n=1En for some sequence of

closed sets En ⊂ Rd.

Exercise 12. Prove that if µ is a regular measure on (Rd,A), then for every A ∈ A
there is a Gδ set Y ⊂ Rd and a Fσ set Z ⊂ Rd such that Z ⊂ A ⊂ Y and µ(Z) =
µ(A) = µ(Y ).

Regularity of λ is used in the proof of the following result.

Proposition 1.19. Lebesgue measure is the only measure on Rd with the property
that µ

(∏d
i=1[ai, bi)

)
=
∏d

i=1(bi − ai) for all ai, bi.

Proposition 1.20. Lebesgue measure is translation-invariant, in the sense that if
A ⊂ Rd is Lebesgue measurable, then so is A + x for every x ∈ Rd, and λ(A) =
λ(A + x). Moreover, if µ is any translation-invariant Borel measure on Rd, then
there is c > 0 such that µ(A) = cλ(A) for every Borel A.

Proposition 1.21. The middle-third Cantor set is a compact uncountable set with
Lebesgue measure 0.

Exercise 13. * LetX = {0, 1}N as in Examples 1.4 and 1.14. Define a map T : X → R
by T (x1x2 · · · ) =

∑∞
n=1 2xn3−n.

(a) Prove that T (X) is the middle-third Cantor set and that T is injective.
(b) Prove that if A ⊂ R is Borel, then T−1(A) ⊂ X lies in the σ-algebra generated

by all cylinder sets. Hint: first prove it when A is an interval.

Exercise 14. Let X be as in the previous exercise and let µ be the (1
2
, 1
2
)-Bernoulli

measure on X from Example 1.14. Define a Borel measure ν on R by ν(A) = µ(T−1A),
so that ν gives weight 2−n to each of the 2n closed intervals that appear in the nth step
of the construction of the Cantor set. Let F : R→ [0, 1] be the cumulative distribution
function of ν given by F (x) = ν((−∞, x]), as in Proposition 1.15. This function is
sometimes called the Cantor function or the devil’s staircase. Prove that:

(a) F is continuous and F (C) = [0, 1], where C is the middle-third Cantor set;
(b) F ′(x) exists if and only if x /∈ C;
(c) F ′ vanishes everywhere that it exists.

Exercise 15. * (Folland 1.32). Given a sequence aj ∈ (0, 1), show that
∏∞

j=1(1−aj) >
0 iff

∑∞
j=1 aj < ∞ by comparing the sum to

∑∞
j=1 log(1− aj). Use this to prove that

for every β ∈ (0, 1), there is a sequence aj ∈ (0, 1) such that
∏∞

j=1(1− aj) = β.

Exercise 16. Construct a set C ⊂ [0, 1] as C =
⋂∞
n=1Cn, where C0 = [0, 1] and

Cn ⊂ Cn−1 is a finite union of closed intervals obtained by removing some open interval
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from the middle of each component interval of Cn−1. If we remove the middle-third of
each interval at each step, then we get the usual Cantor set. Show that by adjusting the
proportion that we remove and using the result of the previous exercise, it is possible to
make λ(C) take any value in (0, 1); we call this a fat Cantor set.

Proposition 1.22. There is a subset of R that is not Lebesgue measurable.

1.5. Completeness.

Definition 1.23. A measure space (X,A, µ) is complete if for every A ∈ A with
µ(A) = 0, we have B ∈ A for every B ⊂ A. Such a set B is called µ-null.

Proposition 1.24. If µ∗ is an outer measure on X and A the σ-algebra of µ∗-
measurable sets, then (X,A, µ = µ∗|A) is complete. In particular, Lebesgue measure
on the Lebesgue σ-algebra is complete.

Definition 1.25. Given a measure space (X,A, µ), the completion of A under µ
is the collection Aµ of all A ⊂ X such that E ⊂ A ⊂ F for some E,F ∈ A with
µ(F \ E) = 0. Define a measure µ̄ : Aµ → [0,∞] by letting µ̄(A) = µ(F ) = µ(E)
when A,E, F are as above. Then µ̄ is the completion of µ.

Proposition 1.26. For every measure space (X,A, µ), the completion (X,Aµ, µ̄)
is complete.

Proposition 1.27. The Lebesgue σ-algebra is the completion of the Borel σ-algebra
under Lebesgue measure.

Exercise 17. Given a measure space (X,A, µ), let N be the collection of µ-null sets.
Show that Aµ = σ(A ∪N ).

2. Integration

2.1. Measurable functions.

Definition 2.1. Given a measurable space (X,A), a function f : X → [−∞,∞] is
measurable if f−1([−∞, t]) ∈ A for all t ∈ R. When X = Rd and A is the Borel (or
Lebesgue) σ-algebra, we say that f is Borel (or Lebesgue) measurable.

Proposition 2.2. We get the same definition if we replace [−∞, t] with [−∞, t),
[t,∞], or (t,∞]. Indeed, we get the same definition if we replace the collection
{[−∞, t] : t ∈ R} with the collection of all open subsets of R, or the collection of all
closed subsets of R, or the collection of all Borel subsets of R.

Exercise 18. (Folland 2.4): Show that if f : X → R is such that f−1((r,∞)) is
measurable for every r ∈ Q, then f is measurable.

Example 2.3. Continuous functions on Rd are Borel measurable, as are monotonic
functions on R.

Example 2.4. For every A ∈ A, the characteristic function 1A is measurable.
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Definition 2.5. A simple function is a finite linear combination of characteristic
functions. Equivalently, it is a function that only takes finitely many values, and it
is measurable if f−1(α) ∈ A for each of these finitely many values α. We denote
collection of all measurable simple functions by S, and non-negative simple functions
by S+.

Proposition 2.6. Measurable functions are well-behaved under standard opera-
tions: If f1, f2, . . . are measurable then so are supn fn, infn fn, lim supn fn, and
lim infn fn. If f, g are measurable then so are f +g, f −g, fg, f/g, and αf for every
α ∈ R, provided we restrict each of these to the domain where it is defined. (For
example, f − g is undefined on the set of points where f(x) = g(x) = ∞, and f/g
is undefined on the set of points where g(x) = 0.)

Exercise 19. Given a sequence of measurable functions fn, show that {x : limn fn(x)
exists} is measurable.

Exercise 20. * (Folland 2.7): Let (X,A, µ) be a measure space. Suppose that we are
given a one-parameter family of measurable sets {Eα : α ∈ R} ⊂ A that are nested in
the sense that Eα ⊂ Eβ whenever α < β, and that have

⋃
αEα = X and

⋂
αEα = ∅.

Define f : X → R by f(x) = inf{α ∈ R : x ∈ Eα}. Prove that f is a measurable
real-valued function such that f(x) ≤ α on each Eα and f(x) ≥ α on each Ec

α.

Definition 2.7. Given a [−∞,∞]-valued function f , write f+ = f ∨ 0 and f− =
(−f) ∨ 0 for the positive and negative parts, so f± ≥ 0 and f = f+ − f−.

2.2. Integrating nonnegative functions.

Definition 2.8. The integral of a non-negative simple function f =
∑m

i=1 ci1Ai
with

respect to a measure µ is defined to be
∫
f dµ =

∑m
i=1 ciµ(Ai).

Exercise 21. (Bass 6.1): Suppose we write a non-negative simple function f in two
different ways as f =

∑m
j=1 aj1Aj

=
∑n

i=1 bi1Bi
. Prove that

∫
f is well-defined by

showing that
∑m

j=1 ajµ(Aj) =
∑n

i=1 biµ(Bi).

Definition 2.9. The integral of a measurable function f : X → [0,∞] is defined as

(3)

∫
f dµ = sup

{∫
g dµ : g ∈ S+ and g ≤ f

}
.

Proposition 2.10. For every measurable function f : X → [0,∞], there is a se-
quence fn ∈ S+ such that f1(x) ≤ f2(x) ≤ · · · and f(x) = limn fn(x) for all x ∈ X.
Given any such sequence, we have

∫
fn dµ→

∫
f dµ, where

∫
fn dµ is interpreted as

the sum from Definition 2.8, and
∫
f dµ is given by (3).

Proposition 2.11. The integral is linear and monotonic.

Definition 2.12. Two functions f and g are equal µ-a.e. if {x : f(x) 6= g(x)} is a
µ-null set. In this case we write f = g a.e., or f = g µ-a.e. if we need to highlight
the measure.
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Proposition 2.13. If f, g : X → [0,∞] are measurable and f = g a.e., then∫
f dµ =

∫
g dµ.

Definition 2.14. Given a measure space (X,A, µ), a measurable function f : X →
[0,∞], and a set A ∈ A, we write

∫
A
f dµ =

∫
f1A dµ.

Exercise 22. + With X,A, µ, f as above, try to prove that ν(A) :=
∫
A
f dµ defines

a measure on (X,A). Explain why we do not yet have all the tools to prove this: where
do you get stuck?

The previous exercise should lead you to the following fundamental question:
under what conditions does convergence of functions imply convergence
of their integrals?

Example 2.15. Pointwise convergence of functions does not imply convergence of
integrals: fn = n1(0, 1

n
] has fn → 0 pointwise, but

∫
fn dλ = 1 6→ 0 =

∫
0 dµ.

Theorem 2.16 (Monotone convergence theorem). If f1, f2, . . . are measurable [0,∞]-
valued functions such that fn ≤ fn+1 a.e., then writing f(x) = limn fn(x) we have∫
f dµ = limn

∫
fn dµ.

The next two results are easy consequences of the MCT (apply the MCT to
gn =

∑n
k=1 fk for the first, and gn = infk≥n fk for the second).

Theorem 2.17 (Beppo Levi’s theorem). If f1, f2, . . . are measurable [0,∞]-valued
functions, then

∫ ∑∞
k=1 fk dµ =

∑∞
k=1

∫
fk dµ.

Theorem 2.18 (Fatou’s lemma). If f1, f2, . . . are measurable [0,∞]-valued func-
tions, then

∫
limn fn dµ ≤ limn

∫
fn dµ.

Note that you can remember the direction of the inequality in Fatou’s lemma by
remembering the sequence of functions in Example 2.15.

Exercise 23. + Let fn be a sequence of non-negative measurable functions. Is it
necessarily true that

∫
limn fn dµ ≤ limn

∫
fn dµ? If not, give a counterexample.

Exercise 24. Complete the proof you began in Exercise 22.

2.3. The space of integrable functions.

Definition 2.19. A [−∞,∞]-valued measurable function f is integrable if
∫
f+ dµ

and
∫
f− dµ are both finite. In this case we define

∫
f dµ =

∫
f+ dµ −

∫
f− dµ.

When µ = λ is Lebesgue measure we may write either
∫
f dλ or

∫
f(x) dx.

Proposition 2.20. A measurable function f is integrable if and only if |f | is inte-
grable, in which case |

∫
f dµ| ≤

∫
|f | dµ.

Definition 2.21. The set of R-valued integrable functions on a measure space
(X,A, µ) is denoted by L1(X,A, µ,R). We often omit one or more of the parameters
in brackets in order to simplify notation.
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Exercise 25. + (Bass 8.6) Let µ be a finite measure and f : X → R measurable.
Prove that f ∈ L1(µ) iff

∑∞
n=1 µ({x : |f(x)| ≥ n}) <∞.

To review: The definition of integration follows a schematic reminiscent of the
one for premeasures, outer measures, and measures.

simple non-negative f :∫
f =

∑
ciµ(Ai)

−→
measurable non-negative f :∫
f = sup{

∫
g : 0 ≤ g ≤ f
and g simple}

−→ integrable f :∫
f =

∫
f+ −

∫
f−

Proposition 2.22. L1 is a vector space, and
∫

: L1 → R is a linear map with the
property that

∫
f dµ ≤

∫
g dµ whenever f ≤ g a.e.

Proposition 2.23. If f : R→ R is Riemann integrable in the sense of undergradu-
ate calculus, then it is integrable in the sense of Definition 2.19, and the two integrals
agree.

If we interpret the integral as the area under the graph, then we can think of
Riemann integration as slicing this region vertically, and Lebesgue integration (what
we have defined here) as slicing it horizontally.

Exercise 26. Given f ∈ L1(R, λ) and a ∈ R, let fa(x) = f(x− a). Using translation-
invariance of Lebesgue measure, prove that fa ∈ L1(R, λ) for all a ∈ R and that∫
fa dλ =

∫
f dλ.

Theorem 2.24 (Dominated convergence theorem). Suppose g : X → [0,∞] is in-
tegrable and f, fn : X → [−∞,∞] are measurable, with the property that |fn| ≤ |g|
a.e. for all n and fn → f a.e. Then

∫
fn dµ→

∫
f dµ.

Exercise 27. Let g ∈ L1(R, λ) and let f : R → R be bounded, measurable, and
continuous at 1. Prove that limn

∫ n
−n f(1 + x

n2 )g(x) dx exists, and determine its value.

Exercise 28. * (Folland 2.22): Let µ be counting measure on N. Interpret Fatou’s
lemma, the MCT, and the DCT as statements about infinite series.

Theorem 2.25 (Chebyshev’s inequality). Given t > 0 and f ∈ L1, we have

µ({x : |f(x)| ≥ t}) ≤ 1

t

∫
|f | dµ.

This has the following consequences: (1)
∫
|f | dµ = 0 implies f = 0 a.e., and (2)

if f is [−∞,∞]-valued and integrable, then |f | <∞ a.e.

3. Convergence

3.1. Modes of convergence. Given a set X and a sequence of functions fn : X →
R, there are two obvious senses in which the sequence fn may be said to converge
to a function f : X → R:
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(1) pointwise convergence, in which limn→∞ fn(x) = f(x) for every x ∈ X;
(2) uniform convergence, in which limn→∞ supx∈X |fn(x)− f(x)| = 0.

The relationship between these is most clearly seen by writing them as statements
in first-order logic.

(1) Pointwise: ∀x ∈ X ∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N we have |fn(x)− f(x)| < ε.
(2) Uniform: ∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N ∀x ∈ X we have |fn(x)− f(x)| < ε.

Observe that for pointwise convergence, N is allowed to depend on both x and ε,
while for uniform convergence it can only depend on ε.

Now consider a measure space (X,A, µ), and let M denote the set of all mea-
surable functions f : X → R. We are interested in studying different ways in which
a sequence fn ∈ M can converge to a limit f ∈ M. In this setting, the notions
above become more useful if we modify them slightly to account for the fact that
we ignore behavior that only occurs on a null set.

Definition 3.1. fn converges to f pointwise almost everywhere if there is a set
A ∈ A such that µ(A) = 0 and limn→∞ fn(x) = f(x) for all x ∈ Ac. We usually

write fn → f µ-a.e., or fn → f a.e., or fn
a.e.−−→ f . This is also referred to as almost

everywhere convergence or (in probability theory) as almost sure convergence.

Definition 3.2. fn converges to f uniformly almost everywhere if there is a set
A ∈ A such that µ(A) = 0 and limn→∞ supx∈Ac |fn(x) − f(x)| = 0. This is also
referred to as essentially uniform convergence.

The following definition and exercise justify the fact that essentially uniform con-

vergence is also called L∞-convergence and written fn
L∞−−→ f .

Definition 3.3. The µ-essential supremum of a measurable function f : X → R is

µ-ess sup(f) := sup{R ∈ R : µ{x ∈ X : f(x) > R} > 0}
= inf{R ∈ R : µ{x ∈ X : f(x) > R} = 0}.

(The essential infimum is defined similarly.) The L∞-norm of f is

‖f‖∞ = µ-ess sup(|f |).
Exercise 29. Show that fn → f uniformly a.e. if and only if limn→∞ ‖fn − f‖∞ = 0.

Exercise 30. Show that if f : R→ R is continuous, then λ-ess sup(f) = sup(f).
It is clear that L∞-convergence implies a.e.-convergence. The following two ex-

amples show that the converse fails; in both cases X is the real line (or a subset of
it) with Lebesgue measure λ.

Example 3.4. (Horizontal escape to infinity) Define fn : R → R by fn = 1[n,n+1].

Then fn
λ-a.e.−−−→ 0 but ‖fn − 0‖∞ = 1 for all n.

Example 3.5. (Vertical escape to infinity) Define fn : [0, 1] → R by fn = n1[0, 1
n
].

Then fn
λ-a.e.−−−→ 0 but ‖fn − 0‖∞ = n 6→ 0.
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The second of these examples has the property that the convergence becomes
uniform if we ignore a small set around 0. This is made precise by the following
definition, which lies in between L∞- and a.e.-convergence.

Definition 3.6. fn converges to f almost uniformly if for every ε > 0 there is a
set A ∈ A such that µ(A) < ε and limn→∞ supx∈Ac |fn(x) − f(x)| = 0. We may

abbreviate this as fn
a.u.−−→ f .

Clearly, L∞-convergence implies almost uniform convergence, but the converse
fails, as Example 3.5 shows.

Exercise 31. Show that if fn
a.u.−−→ f then fn

a.e.−−→ f .
It follows from Example 3.4 that a.e.-convergence does not in general imply almost

uniform convergence. However, this relies on the fact that λ(R) =∞, and for finite
measures we have the following important result.

Theorem 3.7 (Egorov’s theorem). If µ(X) <∞ and fn
a.e.−−→ f , then fn

a.u.−−→ f .

There are two more notions of convergence that we will use.

Definition 3.8. fn converges to f in L1 if limn→∞
∫
|fn − f | dµ = 0. We usually

write fn
L1

−→ f . This is also referred to (in probability theory) as convergence in
mean.

Definition 3.9. fn converges to f in measure if for every ε > 0 the sequence of
sets Aεn := {x ∈ X : |fn(x) − f(x)| > ε} satisfy limn→∞ µ(Aεn) = 0. We may write

fn
meas−−→ f or fn

µ−→ f . This is also referred to (in probability theory) as convergence
in probability.

Exercise 32. Show that if fn
L1

−→ f then fn
meas−−→ f .

Exercise 33. Show that if fn
a.u.−−→ f then fn

meas−−→ f .
The various exercises above show that the five notions of convergence we have

introduced satisfy the following logical relationships.

(?) fn
L∞−−→ f +3 fn

a.u.−−→ f +3

��

fn
a.e.−−→ f

fn
L1

−→ f +3 fn
meas−−→ f

In general, there are no implications between these modes of convergence apart from
the ones in the diagram. For the top row we already saw this via Examples 3.4 and
3.5. It only remains to show that

(1) a.e.-convergence does not imply convergence in measure;
(2) L∞-convergence does not imply L1-convergence;
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(3) L1-convergence does not imply a.e.-convergence.

The first of these is accomplished by Example 3.4, where the horizontal escape to
infinity gives fn

a.e.−−→ 0 but
∫
|fn| dλ = 1 for all n. The second and third claims are

justified by the following two examples.

Example 3.10 (Widening). Define fn : R → R by fn = 1
n
1[0,n]. Then ‖fn‖∞ → 0

but
∫
|fn| dλ = 1 6→ 0.

Example 3.11 (Circling). Define fn : [0, 1] → R by fn = 1In , where the intervals
In are chosen as follows: first I1 = [0, 1

2
] and I2 = [1

2
, 1], then I3, I4, I5, I6 are the

four intervals [k−1
4
, k
4
] for k = 1, 2, 3, 4, and so on, so the sequence In contains every

interval of the form [k−1
2n
, k
2n

] for n ∈ N and 1 ≤ k ≤ 2n, ordered so that λ(In)→ 0.
Then

∫
|fn| dλ = λ(In) → 0, but fn does not converge to 0 λ-a.e., since for every

x ∈ [0, 1] there are infinitely many n ∈ N such that x ∈ In and hence fn(x) = 1.

In the last example we can think of the intervals In as “circling around the interval
[0, 1] and shrinking”. A more refined version of this example is given below as
Exercise 36.

The four examples in this section – (H)orizontal, (V)ertical, (W)idening, (C)ircling
– are sufficient to remember which implications between the five modes of conver-
gence hold. Indeed, if A and B are two of the five modes of convergence, then either
A implies B, or one of the four examples (H), (V), (W), (C) satisfies A but not B.

As Egorov’s theorem suggests, there are still some other useful relationships be-
tween the five modes of convergence. We saw there that in for a finite measure,
a.e.-convergence implies almost uniform convergence, so that in fact the two notions
coincide in this setting.

Exercise 34. Show that if µ is finite and fn
L∞−−→ f , then fn

L1

−→ f .

Of the four fundamental examples, (H) and (W) require the entire positive real line
– an infinite measure space – while (V) and (C) require only the unit interval, which
has finite measure. The two extra arrows that we can draw in (?) for finite measures
(a.e. implies a.u., and L∞ implies L1) are precisely those for which (H) and/or (W)
provided a counterexample but (V) and (C) did not. So when µ(X) <∞, we have
the following modification of (?).

Finite measures: fn
L∞−−→ f +3

��

fn
a.u.−−→ f

fn
a.e.−−→ f

��

fn
L1

−→ f +3 fn
meas−−→ f

There are two more results connected to a.e.-convergence that hold for all measure
spaces, which are worth mentioning.
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Proposition 3.12. If fn
meas−−→ f , then there is a subsequence with fnk

a.e.−−→ f .

Exercise 35. Show that if µ is finite, then fn
meas−−→ f if and only if every subsequence

fnk
has a further subsequence fnkj

such that fnkj

a.e.−−→ f .

Finally, although (C) shows that L1-convergence does not imply a.e.-convergence,
it turns out that the implication does hold if the L1-convergence is fast enough.

Proposition 3.13. If
∑∞

n=1

∫
|fn − f | dµ <∞, then fn

µ-a.e.−−−→ f .

In fact the summability condition is optimal, in a sense made precise by the
following exercise, which refines example (C).

Exercise 36. Given a sequence of real numbers an ≥ 0, let Sn =
∑n

k=1 ak, and let
Jn = [Sn−1, Sn] ⊂ [0,∞). Let π : [0,∞) → [0, 1) take x to its fractional part, and let
In = π(Jn); then let fn = 1In as before. Show that

∫
fn dλ = an; then show that

fn
λ-a.e.−−−→ 0 if and only if

∑
n an <∞.

Note that this reduces to example (C) when an = 1
2
, 1
2
, 1
4
, 1
4
, 1
4
, 1
4
, 1
8
, . . . .

3.2. Metrics, norms, and inner products. To put the notions of convergence
from the previous section into a more general framework, we start by recalling the
notion of convergence in metric spaces from undergraduate real analysis.

Definition 3.14. A metric space is a set Ω together with a distance function d : Ω×
Ω→ R satisfying the following axioms.

(1) Positivity: d(x, y) ≥ 0 for all x, y ∈ Ω, with equality if and only if x = y.
(2) Reflexivity: d(x, y) = d(y, x) for all x, y ∈ Ω.
(3) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ Ω.

Definition 3.15. Given a sequence xn in a metric space (Ω, d), we say that xn
converges to x ∈ Ω if the following is true:

∀ε > 0 ∃N ∈ N s.t. ∀n ≥ N we have d(xn, x) < ε.

In this case we say that xn → x with respect to d, and sometimes write xn
d−→ x.

Note that xn
d−→ x if and only if d(xn, x) → 0 in R. Taking Ω = R and d(x, y) =

|x− y| recovers the usual definition of convergence of real numbers. More generally
one can consider Rk with the Euclidean distance

(4) d(x,y) =
( k∑
i=1

|xi − yi|2
)1/2

, x = (x1, . . . , xk), y = (y1, . . . , yk).

Now consider a sequence x(1),x(2), · · · ∈ Rd; note that we write the index of the
sequence as a bracketed superscript, reserving subscripts for the the indices of the

k-tuple, so we write x(n) = (x
(n)
1 , . . . , x

(n)
d ) ∈ Rk.

Exercise 37. Given a sequence (x(n))n in Rk and a point x ∈ Rk, prove that the
following are equivalent.
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(1) d(x(n),x)→ 0.
(2) limn→∞max1≤i≤k |x(n)i − xi| = 0.
(3) limn→∞

∑k
i=1 |x

(n)
i − xi|.

(4) limn→∞ x
(n)
i = xi for all 1 ≤ i ≤ k.

Given v ∈ Rk, writing ‖v‖∞ := max1≤i≤k |vi| and ‖v‖1 :=
∑k

i=1 |vi|. Then the
first three conditions in Exercise 37 can be written as ‖x(n)−x‖p → 0 for p = 2, 1,∞,
respectively. These all fit into the following framework.

Definition 3.16. A norm on a real vector space V is a function ‖ · ‖ : V → R
satisfying the following axioms.

(1) Positivity: ‖v‖ ≥ 0 for all v ∈ V , with equality if and only if v = 0.
(2) Homogeneity: ‖cv‖ = |c| · ‖v‖ for all v ∈ V and c ∈ R.
(3) Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Exercise 38. Prove that ‖ · ‖∞ and ‖ · ‖1 as defined above give norms on Rk.

Proposition 3.17. If ‖ · ‖ is a norm on V , then d(v, w) = ‖v−w‖ defines a metric
on V .

Playing around with different norms in finite dimensions does not change the
notion of convergence.

Exercise 39. Prove that if ‖ · ‖ and ‖ · ‖′ are two norms on a finite-dimensional vector
space V , then there is C > 0 such that C−1‖v‖′ ≤ ‖v‖ ≤ C‖v‖′ for all v ∈ V .

To prove that ‖v‖2 :=
(∑k

i=1 |vi|2
)1/2

is a norm on Rk, and hence that d from (4)
is a metric, the following definition is useful.

Definition 3.18. An inner product on a real vector space V is a function 〈·, ·〉 : V ×
V → R satisfying the following axioms.3

(1) Positivity: 〈v, v〉 ≥ 0 for all v ∈ V , with equality if and only if v = 0.
(2) Symmetry: 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
(3) Linearity: 〈cu+ v, w〉 = c〈u,w〉+ 〈v, w〉 for all c ∈ R and u, v, w ∈ V .

Example 3.19. 〈v,w〉 =
∑k

i=1 viwi is an inner product on Rk.

Inner products induce norms by defining ‖v‖ = (〈v, v〉)1/2. This can be proved
by the following steps: first expand 〈v−w, v−w〉 to deduce the following, which is
related to Young’s inequality.

Lemma 3.20. 〈v, w〉 ≤ ‖v‖2
2

+ ‖w‖2
2

for all v, w ∈ V .

Applying this to v/‖v‖ and w/‖w‖ gives

Proposition 3.21 (Cauchy–Schwarz inequality). 〈v, w〉 ≤ ‖v‖·‖w‖ for all v, w ∈ V .

3If V is a complex vector space then 〈v, w〉 ∈ C and instead of symmetry one should assume

conjugate symmetry 〈v, w〉 = 〈w, v〉.
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Exercise 40. Prove that if 〈·, ·〉 is an inner product on V , then ‖v‖ = (〈v, v〉)1/2
defines a norm on V . Hint: For the triangle inequality, apply Cauchy–Schwarz to the
right-hand side of 〈v + w, v + w〉 = 〈v, v + w〉+ 〈w, v + w〉.

Exercise 41. Show that if ‖v‖ is a norm induced by an inner product, then it satisfies
the parallelogram law : ‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2 for all v, w ∈ V .

Exercise 42. Show that for k ≥ 2, there is no inner product on Rk that induces the
norm ‖ · ‖p for p = 1 or p =∞.

3.3. More about modes of convergence. Return to the vector spaceM of mea-
surable functions on a measure space (X,A, µ). Are there metrics, norms, or inner
products on M that correspond to the notions of convergence described earlier?

First note that since we identify functions that agree a.e., we should actually work
not with M itself, but with the quotient space

M′ :=M/∼, where f ∼ g if f = g µ-a.e.

Each element of M′ is an equivalence class [f ] := {g ∈ M : g = f µ-a.e.}. Equiva-
lently, let N = {f ∈M : f = 0 µ-a.e.}, then N is a subspace of M, and M′ is the
quotient spaceM/N . All of our definitions so far are well-behaved if we work with
M′ instead ofM; for example, if f, g ∈M have f = g µ-a.e., then

∫
f dµ =

∫
g dµ,

so integration is well-defined on elements of M′.

Exercise 43. * Prove that if a sequence fn ∈ M converges to f ∈ M in any of
the five senses from the previous section, then given any sequence gn ∈ [fn] and any
g ∈M[f ], we have gn → g (in the same sense) if and only if g ∈ [f ].

This exercise shows that we can (and will) work with equivalence classes of func-
tions as the elements of the space on which we construct a metric, norm, etc.

Definition 3.22. Given a σ-finite measure space (X,A, µ), let L∞(X,A, µ) =
{[f ] ∈ M′ : ‖f‖∞ < ∞}, where ‖f‖∞ = µ-ess sup(|f |) as in Definition 3.3. We
will often write L∞ or L∞(X) or L∞(µ) when there is no risk of confusion.

Definition 3.23. Given a measure space (X,A, µ), let L1(X,A, µ) = {[f ] ∈M′ : f
is integrable}, and let ‖f‖1 =

∫
|f |, dµ.

Although elements of L∞ and L1 are equivalence classes of functions, we will often
abuse notation and simply write f ∈ L1 (and so on), conflating f and [f ]. It is easy
to show that L∞ and L1 are both normed vector spaces, and that

fn
L∞−−→ f if and only if ‖fn − f‖∞ → 0,

fn
L1

−→ f if and only if ‖fn − f‖1 → 0.

Thus L∞ and L1-convergence both come from norms. What about the other three
notions of convergence?
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Exercise 44. Suppose (Ω, d) is a metric space, x ∈ Ω, and xn ∈ Ω is a sequence with
the property that every subsequence xnk

has a further subsequence xnkj
that converges

to x in the metric d. Prove that d(xn, x)→ 0.

Exercise 45. Use the previous exercise together with Exercise 35 to prove that when
X = [0, 1] and λ is Lebesgue measure, there is no metric onM′ that induces the notion
of a.e.-convergence.

Because a.e.-convergence and almost uniform convergence are equivalent for finite
measures, we conclude that neither of these comes from a metric in general. It only
remains to consider convergence in measure.

Exercise 46. Let µ be a finite measure on X and define φ : [0,∞) → [0, 1) by
φ(r) = r

1+r
. Prove that d([f ], [g]) =

∫
φ(|f − g|) dµ defines a metric on M′, and

that d([fn], [f ])→ 0 if and only if fn
meas−−→ f .

Thus convergence in measure is induced by a metric. However, it is not induced
by any norm, as the next exercise shows.

Exercise 47. + Consider the unit interval with Lebesgue measure. Let fn be the
sequence of functions from example (C), and prove that for any sequence cn ∈ R we
have cnfn

meas−−→ 0. Show that for any norm ‖ · ‖ on M′, there is a sequence cn such
that ‖cnfn‖ 6→ 0. Hint: for the second part, use the fact that the constant function 1
can be written as f1 + f2, and as f3 + f4 + f5 + f6, and so on, in order to get a lower
bound on ‖fn‖ for some n.

3.4. Lp spaces.

Definition 3.24. A sequence xn in a metric space X is a Cauchy sequence if

∀ε > 0 ∃N ∈ N s.t. ∀m,n ≥ N we have d(xm, xn) < ε.

X is complete if every Cauchy sequence converges.

Definition 3.25. A normed vector space V is a Banach space if it is complete in
the metric induced by the norm. A Banach space whose norm is induced by an
inner product is called a Hilbert space.

Exercise 48. Prove that Rk is complete in the metric induced by the Euclidean norm.
Since all norms on a finite-dimensional space are equivalent, this shows that every

finite-dimensional normed vector space is a Banach space. The infinite-dimensional
situation is rather more subtle.

Exercise 49. Let `∞ be the set of all bounded sequences of real numbers, with the
norm ‖x‖∞ := supn |xn|. Prove that `∞ is a Banach space.

Exercise 50. More generally, let µ be σ-finite and prove that L∞(µ) is a Banach space.
Recall the following definitions from topology.
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Definition 3.26. Given a metric space Ω, a set U ⊂ Ω is open if

∀x ∈ U ∃ε > 0 s.t. B(x, ε) ⊂ U,

where B(x, ε) = {y ∈ Ω : d(x, y) < ε}. A set V is closed if V c is open. The closure
of a set A is the closed set

A = {x ∈ Ω : B(x, ε) ∩ A 6= ∅ ∀ε > 0}.
Exercise 51. Given a complete metric space (Ω, d) and a subset A ⊂ Ω, prove that
A is closed if and only if (A, d) is a complete metric space.

Exercise 52. Consider the following sets of sequences:
c0 := {x ∈ `∞ : xn → 0},
c00 := {x ∈ `∞ : ∃N ∈ N s.t. xn = 0 ∀n ≥ N}.

Show that c0 and c00 are linear subspaces of `∞, and that c0 is the closure of c00 in the
`∞-norm. Use this to deduce that c0 is a Banach space and c00 is not.

To determine whether a normed vector space is complete, it turns out to be helpful
to have a criterion in terms of series convergence.

Definition 3.27. Let V be a normed vector space and v1, v2, · · · ∈ V . The series is
absolutely convergent if

∑∞
n=1 ‖vn‖ <∞, and convergent if there if v ∈ V such that

the partial sums wN =
∑N

n=1 vn converge to v in norm: ‖v − wN‖ → 0.

Proposition 3.28. Let V be a normed vector space. Then V is complete if and
only if every absolutely convergent series in V is convergent.

Example 3.29. Let (X,A, µ) be a measure space and fix 1 ≤ p <∞. The set

Lp(X,A, µ) :=
{

[f ] ∈M′ :

∫
|f |p dµ <∞

}
is a vector space. We often write Lp(X) or Lp(µ) or Lp when there is no risk of
confusion.

Definition 3.30. Given f ∈ Lp, we write ‖f‖p := (
∫
|f |p dµ)1/p for the Lp-norm of

f . Of course, to justify this terminology one must prove that this is in fact a norm.

Most properties of a norm can be easily verified for ‖·‖p. The only one that is not
immediate is the triangle inequality. This takes a little work to prove, but can be
done by mimicking the argument for inner product spaces. The following analogue
of Lemma 3.20 is crucial.

Lemma 3.31 (Young’s inequality). Given 1 ≤ p < ∞,
let q be the conjugate exponent defined by the condition
1
p

+ 1
q

= 1. Then for every a, b ≥ 0 we have ab ≤ ap

p
+ bq

q
.

Young’s inequality can be proved either using concavity of

logarithm and rewriting the left-hand side as e
1
p
ln ap+ 1

q
ln bq ,

or by comparing areas in the figure shown. a

b

y = xp−1
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Given f ∈ Lp and g ∈ Lq, one can write f̂ = f/‖f‖p and ĝ = g/‖g‖q, then apply

Young’s inequality to |f̂(x)ĝ(x)| at each x ∈ X to obtain the following generalization
of Cauchy–Schwarz.

Proposition 3.32 (Hölder’s inequality). If p, q are conjugate exponents, 1 ≤ p, q ≤
∞, and f ∈ Lp, g ∈ Lq, then fg ∈ L1 and we have ‖fg‖1 ≤ ‖f‖p‖g‖q.

Finally, with a little bit of computation one can mimic the proof of the triangle
inequality from Cauchy–Schwarz to prove the triangle inequality for Lp-norms. (The
p =∞ case is an easy exercise.)

Proposition 3.33 (Minkowski’s inequality). Given 1 ≤ p ≤ ∞ and f, g ∈ Lp, we
have ‖f + g‖p ≤ ‖f‖p + ‖g‖p.

All of this shows that Lp(µ) is a normed vector space for every 1 ≤ p < ∞. In
fact it is complete as well, by Proposition 3.28 and the following.

Proposition 3.34. If fn ∈ Lp are such that
∑

n ‖fn‖p < ∞, then there is f ∈ Lp
such that limN→∞ ‖f −

∑N
n=1 fn‖p = 0.

The Lp spaces are one of the fundamental examples of Banach spaces. Some
justification for the notation L∞ is provided by the following.

Exercise 53. Let µ be a finite measure and f a measurable function. Prove that
‖f‖∞ = limp→∞ ‖f‖p.

It is useful to keep in mind examples of functions which are in some Lp spaces
but not others.

Example 3.35. Given α > 0, let fα(x) = x−α for x ∈ (0,∞). Then

fα ∈ Lp([0, 1])⇔ αp < 1⇔ α < 1/p,

fα ∈ Lp([1,∞))⇔ αp > 1⇔ α > 1/p.

A special case occurs when X = N and µ is counting measure; in this case we
write `p for the set of all infinite sequences with

∑
n |xn|p <∞. Recall that the case

p =∞ appeared already in an exercise.

Exercise 54. Show that c00 ⊂ `p ⊂ c0, and that both inclusions are strict.

Exercise 55. Show that the closure of c00 in the `p-norm is `p.

The fact that an arbitrary element of a Banach space can often be approximated
with elements taken from a more restrictive subspace was, in some sense, at the
heart of many of our earlier results on integration, where we approximated arbitrary
measurable functions with simple functions.

Recall that S denotes the collection of all measurable simple functions on X. This
can also be described as the vector space spanned by the set of functions of the form
1A, where A ⊂ X is measurable.
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Proposition 3.36. Given a measure space (X,A, µ) and 1 ≤ p ≤ ∞, the subspace
S is dense in Lp(µ).

Now we consider the specific case X = R and µ = λ.

Definition 3.37. A function f : R → R is a step function with bounded support if
there are a0 < a1 < · · · < an such that f |(ai−1,ai) is constant for each 1 ≤ i ≤ n, and
f(x) = 0 for all x < a0 and all x > an.

The set S0 of all step functions with bounded support is the vector space spanned
by functions of the form 1(a,b), where a < b ∈ R.

Proposition 3.38. S0 is a dense subspace of Lp(R, λ) for every 1 ≤ p <∞.

This has a couple useful consequences.

Proposition 3.39. The space Cc(R) = {f : R → R : f is continuous and ∃R > 0
s.t. f(x) = 0 ∀|x| > R} is dense in Lp(R, λ) for every 1 ≤ p <∞.

Exercise 56. Given f : R → R and a ∈ R, define a function fa : R → R by fa(x) =
f(x− a); note that this is the function whose graph is equal to the graph of f , shifted
horizontally by a units. Show that if 1 ≤ p <∞, then for any f ∈ Lp(R, λ) and b ∈ R
we have lima→b ‖fa − fb‖p = 0.

Note that these last three results all fail for p =∞.


