HOMEWORK 1

Due in class Mon, Jan. 29.

1. (Bass 11.3) Let m be Lebesgue measure on \mathbb{R} and prove that for every measurable $f: \mathbb{R} \to \mathbb{R}$ we have

$$\int_{-\infty}^{\infty} |f(x)| \, dx = \int_{0}^{\infty} m(\{x : |f(x)| \ge t\}) \, dt.$$

- **2.** (Bass 11.6,10) Let $f \in L^1([0,1]^2, m)$, where m is two-dimensional Lebesgue measure.
 - (a) Prove that if $\int_0^a \int_0^b f(x, y) dy dx = 0$ for all $a, b \in [0, 1]$, then f = 0 *m*-a.e. Hint: one way to proceed is to let $\mathcal{C} = \{E \subset [0,1]^2 : \int_E f \, dm = 0\}$, prove that

 ${\mathcal C}$ contains all sets that are the direct product of two intervals, then prove that ${\mathcal C}$ contains all Borel sets and apply a general result.

(b) Give an example where

$$\int_{0}^{a} \int_{0}^{1} f(x, y) \, dy \, dx = 0 \quad \text{and} \quad \int_{0}^{1} \int_{0}^{b} f(x, y) \, dy \, dx = 0$$

for all $a, b \in [0, 1]$, but f does not vanish m-a.e.

- **3.** (Bass 11.11) Let μ be a finite measure on \mathbb{R} and let $f(x) = \mu((-\infty, x])$. Given c > 0, show that $\int [f(x+c) - f(x)] dx = c\mu(\mathbb{R}).$
- 4. (Folland 2.59, Bass 11.12) Let $f(x) = \frac{\sin x}{x}$. (a) Show that $\int_0^\infty |f(x)| dx = \infty$.

 - (b) Show that $\lim_{b\to\infty} \int_0^b f(x) \, dx = \frac{\pi}{2}$ by integrating $e^{-xy} \sin x$ over $(0,b) \times (0,\infty)$.