HOMEWORK 2

Due in class Wed, Feb. 7.

- 1. (Bass 12.2–3) Let μ be a signed measure on (X, \mathcal{A}) and define integration with respect to μ by $\int f d\mu = \int f d\mu^+ \int f d\mu^-$.
 - (a) Prove that

$$\left|\int f\,d\mu\right| \leq \int |f|\,d|\mu|.$$

(b) Prove that

$$|\mu|(A) = \sup\left\{ \left| \int_A f \, d\mu \right| : |f| \le 1 \right\}.$$

- **2.** (Bass 12.5) Let (X, \mathcal{A}) be a measurable space, and λ a signed measure. Suppose that $\lambda = \mu \nu$, where μ and ν are finite positive measures. Prove that $\mu(A) \geq \lambda^+(A)$ and $\nu(A) \geq \lambda^-(A)$ for every $A \in \mathcal{A}$.
- **3.** (Bass 12.7) Suppose that μ is a signed measure on (X, \mathcal{A}) . Prove that if $A \in \mathcal{A}$, then

$$\mu^+(A) = \sup\{\mu(B) : B \in \mathcal{A}, B \subset A\}$$

and

$$\mu^{-}(A) = -\inf\{\mu(B) : B \in \mathcal{A}, B \subset A\}.$$