HOMEWORK 3

Due in class Wed, Feb. 21.

- 1. (Bass 13.5) Let μ, ν be two finite measures on a measurable space (X, \mathcal{A}) . Say that μ and ν are equivalent measures if $\mu \ll \nu$ and $\nu \ll \mu$. Show that μ and ν are equivalent if and only if there exists $f \in L^1(\mu)$ such that f is strictly positive μ -a.e. and $d\nu = f d\mu$.
- **2.** (adapted from Bass 13.11) Let (X, \mathcal{F}, μ) be a measure space, and $\mathcal{E} \subset \mathcal{F}$ a sub- σ -algebra of \mathcal{F} . Let f be a nonnegative function that is \mathcal{F} -measurable and μ -integrable. Define $\nu(A) = \int_A f d\mu$ for $A \in \mathcal{E}$, and let $\bar{\mu}$ be the restriction of μ to \mathcal{E} .
 - (a) Prove that $\nu \ll \bar{\mu}$ as measures on (X, \mathcal{E}) , so the Radon–Nikodym derivative $g = d\nu/d\bar{\mu}$ exists and is \mathcal{E} -measurable. Show that $\int_A g \, d\mu = \int_A f \, d\mu$ for all $A \in \mathcal{E}$.

The function g is called the **conditional expectation** of f with respect to \mathcal{E} , and written $g = \mathbb{E}[f|\mathcal{E}]$. If f is integrable and real-valued but not necessarily nonnegative, we define $\mathbb{E}[f|\mathcal{E}] = \mathbb{E}[f^+|\mathcal{E}] - \mathbb{E}[f^-|\mathcal{E}]$.

- (b) Show that if h is \mathcal{E} -measurable and $\int_A h \, d\mu = \int_A f \, d\mu$ for all $A \in \mathcal{E}$, then $h = g \mu$ -a.e. Then show that $f = g \mu$ -a.e. if and only if f is equal μ -a.e. to a \mathcal{E} -measurable function.
- (c) Show that if $\mathcal{E} = \sigma\{A_1, A_2, \dots\}$, where $X = \bigsqcup_{n=1}^{\infty} A_n$ is a partition of X into disjoint sets A_n , then for every n with $\mu(A_n) > 0$, and μ -a.e. $x \in A_n$, we have

$$\mathbb{E}[f|\mathcal{E}](x) = \frac{1}{\mu(A_n)} \int_{A_n} f \, d\mu.$$

- (d) Let $X = [0, 1]^2$, let \mathcal{F} be the Borel σ -algebra on X, and let $\mathcal{E} = \{\emptyset, [0, 1]\} \times \mathcal{B}([0, 1])$ be the σ -algebra containing all sets of the form $[0, 1] \times B$, where $B \subset [0, 1]$ is Borel. Let $f(x, y) = \sin(\pi x) \sin(\pi y)$, and determine $\mathbb{E}[f|\mathcal{E}]$.
- **3.** (Bass 14.5) A real-valued function f is Lipschitz with constant M if $|f(x) f(y)| \le M|x y|$ for all $x, y \in \mathbb{R}$. Prove that f is Lipschitz with constant M if and only if f is absolutely continuous and $|f'| \le M$ a.e.
- **4.** (Bass 14.6 and 14.9)
 - (a) Let f_n be a sequence of nondecreasing nonnegative functions on [0, 1]; let f = ∑_{n=1}[∞] f_n and suppose f(1) < ∞. Prove that f'(x) = ∑_{n=1}[∞] f'_n(x) for a.e. x.
 (b) Find a strictly increasing function f: [0, 1] → ℝ such that f' = 0 a.e.
- 5. (Bass 14.10) If $f: [a, b] \to \mathbb{R}$ is continuous, let $M(y) = \#\{x \in [a, b] : f(x) = y\}$; note that this may be finite or infinite. Prove that M is a Borel measurable function and that $\int M(y) \, dy$ equals the total variation of f on [a, b]; in particular, if f is a continuous function of bounded variation then M(y) is finite for a.e. y.