HOMEWORK 4

Due in class Wed, Mar. 7.

1. (Bass 15.21). Suppose p > 1 and q is its conjugate exponent, $f: [0,1] \to \mathbb{R}$ is absolutely continuous with $f' \in L^p$, and f(0) = 0. Prove that if $g \in L^q$, then

$$\int_0^1 |fg| \, dx \le p^{-1/p} ||f'||_p ||g||_q.$$

- **2.** Given a normed vector space X and $x_n, x \in X$, say that $x_n \to x$ weakly if $H(x_n) \to H(x)$ for every bounded linear functional $H \in X^*$.
 - (a) Prove that norm convergence implies weak convergence: if $||x_n x|| \to 0$ then $x_n \to x$ weakly.
 - (b) (Bass 15.10, Folland 6.2.20). Fix $1 , and suppose that <math>f_n \in L^p(\mu)$ is such that $\sup_n ||f_n||_p < \infty$ and $f_n \to f$ μ -a.e.; prove that $f_n \to f$ weakly. Hint: given $g \in L^q$, where q is conjugate to p, pass to a finite measure subset A such that $\int_{X \setminus A} |g|^q d\mu$ is small, then pass to a subset of A on which f_n converges uniformly.
 - (c) Use the previous part to give an example of a sequence that converges weakly but not in norm.
- **3.** (Bass 17.5). Let X be a compact metric space. Prove that C(X) has a countable dense subset.
- 4. (Bass 17.7). Let X be a compact metric space and \mathcal{B} its Borel σ -algebra. Let μ_n be a sequence of finite measures on (X, \mathcal{B}) with $\sup_n \mu_n(X) < \infty$.
 - (a) Prove that for every $f \in C(X)$ there is a subsequence n_j such that $\int f d\mu_{n_j}$ converges.
 - (b) Let $A \subset C(X)$ be a countable dense subset; prove that there is a subsequence n_j such that $\int f d\mu_{n_j}$ converges for all $f \in A$.
 - (c) With n_i as in the previous part, prove that $\int f d\mu_{n_i}$ converges for all $f \in C(X)$.
 - (d) Define $L: C(X) \to \mathbb{R}$ by $L(f) = \lim_{j\to\infty} \int f \, d\mu_{n_j}$. Prove that L(f) is a positive linear functional on C(X). Conclude that there is a measure μ on (X, \mathcal{B}) such that $\int f \, d\mu_{n_j} \to \int f \, d\mu$ for all $f \in C(X)$. We say that μ is the **weak* limit** of the sequence μ_{n_j} ; this exercise proves that for every K > 0, the space of finite measures on (X, \mathcal{B}) with $\mu(X) \leq K$ is compact in the weak* topology.